
Introduction

Motivation: study of the derived categories of coherent sheaves on algebraic varieties
and similar algebraic invariants; what happens when the variety moves in a family? Do
we get some kind of algebraic period map?

History: Beilinson/Mukai discovered that 1) derived category of coh. sheaves can be
”affine”, i.e., described by the endomorphism algebra of an object; 2) derived categories
of nonisomorphic varieties can be equivalent.

Structure: it was realized early on that the triangulated structure axiomatics is some-
what deficient, e.g., no functorial cones. Bondal-Kapranov, then Toen: need to consider
enhancements, i.e., dg-categories.

Homological mirror symmetry (Kontsevich): when W and M are mirror dual CY-
varieties then Db Coh(W ) is equivalent to the Fukaya category of M . The latter is an
A∞-category.

What is an A∞-algebra (aka strong homotopy algebra)? Have m1 differential, m2

double product and higher products mn of degree 2− n, obeying some axioms, such that
the product on H∗ induced by m2 is associative.
A∞-algebras are closely related to dg-algebras. At least over a field, one can pass from

an A∞-algebra to an equivalent dg-algebra. There is also a construction called homological
perturbation lemma that constructs an A∞-structure on cohomology of a dg-algebra.

Remark: there are results about uniqueness of enhancements of derived categories of
interest but they require to consider the entire derived category, i.e., all objects and
morphisms between them. A∞-enhancements allow to consider only endomorphisms of a
generator.

Bondal-Van den Bergh, Kontsevich: existence of generator. E.g., for a quasiprojective
variety, there exists a vector bundle E, such that the entire derived category is recovered
from the dg-algebra of endomorphisms of E. For example, on a curve can take O ⊕ L,
where L is a line bundle of positive degree.

Idea: start with a nice generator of Db Coh(X), then compute the associated A∞-
algebra, then study the corresponding moduli of A∞-algebras. The hope is that there
will be only finitely many data on which the A∞-algebra depend, so typically will get
some affine scheme of finite type with a reductive group action, so that the corresponding
GIT-picture will provide notions of stability and the modular compactifications.

Applications: homological mirror symmetry; derived equivalences on coherent side (in-
volving noncommutative orders); geometric realization of solutions of the Associative
Yang-Baxter equation.

Plan: 0. Background. A-infinity algebras, homological perturbation, Massey products,
twisted complexes, derived categories and their enhancements.

1. Computations for elliptic curves
2. General results on moduli spaces of A-infinity structures.
3. Moduli of curves and A-infinity structures.
4. Homological mirror symmetry for punctured tori.
5. Moduli of A-infinity structures, Yang-Baxter equation and noncommutative orders

on curves.
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1. Homological background

1.1. A∞ and An-structures. For a graded associative S-algebra A (where S is a com-
mutative ring and A is flat as S-module), we denote the terms of the Hochschild cochain
complex of A over S as follows: CHs+t(A/S)t denotes the space of S-multilinear maps
A⊗s → A of degree t (where tensoring is over S). We have the induced bigrading
HHs+t(A/S)t of the Hochschild cohomology. The corresponding grading by the upper
index is compatible with the definition of the Hochschild cohomology for A∞-algebras.

Below we use the notion of An-structure which is a truncated version of an A∞-structure
defined by Stasheff (see [57, Def. 2.1]). For a moment let A be a graded S-module. Recall
that an S-linear An-structure is given by a collection of S-multilinear maps

(m1, . . . ,mn) ∈ CH2(A/S)1 × . . .× CH2(A/S)2−n

satisfying the standard A∞-identities involving only m1, . . . ,mn (see below). Follow-
ing [57, (2.4)], An-structures can be described conveniently in terms of truncated bar-
construction

Bar≤n(A) =
n⊕
i=1

T iS(A[1]).

It has a natural structure of a graded coalgebra over S (without counit), such that it
is a sub-coalgebra of the full bar-construction Bar(A) = ⊕i≥1T

i
S(A[1]). Here we take as

a primary grading on Bar≤n(A) the grading induced by the one on A. We also have a
bar-grading for which T iS(A[1]) has degree i.

For each cochain c ∈ CHs+t(A/S)t, where s ≥ 1, we denote by Dc the corresponding
coderivation of Bar(A) of degree s + t − 1, preserving each sub-coalgebra Bar≤n(A) (we
recover c from the component Bar≤s(A)→ A[1] of Dc). Explicitly,

(1.1.1) Dc(a1 ⊗ . . .⊗ an) =
n−s+1∑
i=1

±a1 ⊗ . . .⊗ ai−1 ⊗ c(ai, . . . , ai+s−1)⊗ ai+s . . .⊗ an

(for the signs, see [12, Prop. 1.4]).

Definition 1.1.1. We say that m = (m1, . . . ,mn) ∈ CH2(A/S)1 × . . . × CH2(A/S)2−n
define an (S-linear) An-algebra structure on A if

D2
m|Bar≤n(A) = 0.

An An-algebra (resp., A∞-algebra) is called minimal if it has m1 = 0.

Considering components of this identity with respect to the bar-grading, we can rewrite
this as a collection of identities

(1.1.2)
r∑
i=1

Dmi
Dmr+1−i

|Bar≤n(A) = 0,

where r = 1, . . . , n. Note that since m ∈ CH2(A/S), the degree of Dm is 1.
We denote by [D,D′] = DD′− (−1)deg(D) deg(D′)D′D the supercommutator of coderiva-

tions. By definition,

[Dc, Dc′ ] = D[c,c′],
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where [c, c′] is the Gerstenhaber bracket. Also, if Dc has degree 1 then D2
c is still a

coderivation, so it corresponds to some cochain ([c, c]/2 when 2 is invertible). Thus, we
can view the identity (1.1.2) as the linear equation for coderivations associated with some
Hochschild cochains in CH3(A/S)3−r. Since such cochains c are uniquely determined from
the restriction Dc|Bar≤r(A), we see that rth identity (1.1.2) can be checked on Bar≤r(A).
Also, we deduce the following result.

Lemma 1.1.2. The elements (m1, . . . ,mn) as above define an S-linear An-structure on
A if and only if

r∑
i=1

Dmi
Dmr+1−i

= 0,

for r = 1, . . . , n. If 2 is invertible in S then this is equivalent to
r∑
i=1

[mi,mr+1−i] = 0,

r = 1, . . . , n.

The first few identities (1.1.2) are easy to interpret. First, D2
m1

= Dm2
1
, so we get

m2
1 = 0. The next identity [m1,m2] = 0 is simply the Leibnitz identity for the differential

m1. The next identity

D2
m2

+D[m1,m3] = 0

implies that m2 induces an associative product on the cohomology with respect to m1.

Examples 1.1.3. 1. By definition, a dg-algebra is the same as A2-algebra. It is also the
same as an A∞-algebra that has mi = 0 for i ≥ 3.
2. Here is a simple example of a minimal A∞-algebra with nontrivial m3. Let us consider
the quiver with three vertices X1, X2, X3 and three arrows a12 : X1 → X2, a23 : X2 → X3,
and a31 : X3 → X1. Let A be the quotient of the path-algebra of this quiver (over some
field) by the relations stating that the product of any two composable arrows is zero (so
the only nontrivial m2 is given by the product with idempotents e1, e2, e3 corresponding
to vertices). Equip A with grading by deg(a12) = deg(a23) = 0 and deg(a31) = 1. We
define m3 by

m3(ai+2,i, ai+1,i+2, ai,i+1) = ei

for i ∈ Z/3, and set mi = 0 for i > 3. It is easy to check that this is indeed an A∞-algebra.
In fact, it is a “model” A∞-algebra for an exact triangle.

Definition 1.1.4. The group of gauge transformations G is the group of degree-preserving
coalgebra automorphisms α : Bar(A)→ Bar(A) such that the component Bar(A)→ A[1]
is given by a collection

(f1 = id, f2, . . .) ∈ CH1(A/S)−1 × CH1(A/S)−2 × . . . .
The group of extended gauge transformations is defined similarly by requiring f1 just to be
invertible. Note that any such automorphism automatically preserves any sub-coalgebra
Bar≤n(A) and the condition f1 = id is equivalent to the condition that α acts as identity
on every quotient Bar≤i(A)/Bar≤i−1(A).
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We usually identify elements of G with the corresponding collections f = (f1 =
id, f2 . . .) and denote by αf the corresponding automorphism of Bar(A). Note that the
group G acts on the set of An-structures for every n: for f ∈ G and an An-structure m,
the new An-structure f ∗m is determined by

Df∗m = αfDmα
−1
f ,

where in the right-hand side we restrict αf to Bar≤n(A). This action is compatible with
the projection from the set of An+1-structures to that of An-structures and preserves
minimality.

Exercise. Define a notion of an A∞-morphism between A∞-algebras A and B as a
sequence of maps fn : A⊗n → B, n ≥ 1, where deg(fn) = 1−n, satisfying natural axioms
(use bar-constructions). Further, define the composition of A∞-morphisms and show that
f = (fn) is invertible if and only if f1 is invertible (the identity A∞-morphism has f1 = id
and f>1 = 0). Similarly, define An-morphisms between An-algebras looking at Bar≤n.

Definition 1.1.5. An A∞-morphism from A to B is called a quasi-isomorphism if f1

(which commutes with m1) is such.

In fact, there is a notion of homotopy between A∞-morphisms and hence, the notion of
a homotopy equivalence. By a theorem of Prouté [44], every quasi-isomorphism between
A∞-algebras over a field is a homotopy equivalence. In particular, whenever there is
a quasi-isomorphism of A∞-algebras, A → B, there is also a quasi-isomorphism in the
opposite direction, B → A. This is very different from the situation with the dg-algebras
where a similar statement is not true.

Definition 1.1.6. An A∞-structure on A is called (strictly) unital if there is an element
1 ∈ A0 such m1(1) = 0, m2(1, x) = m2(x, 1) = x, and mi(x1, . . . , xi) = 0, for i > 2
whenever one of xi is equal to 1.

In fact, it turns out that any A∞-algebra for which there is a cohomological unit in
H0A is quasi-isomorphic to a strictly unital one (this is due to Fukaya).
A∞-categories and A∞-functors are discussed similarly. Quasi-equivalence: the induced

cohomology functor should be an equivalence.
Convention: denote morphisms in an A∞-category as hom∗(X, Y ), and denote by

Hom∗(X, Y ) the cohomology with respect to m1.

1.2. Homological perturbation. There is a general construction of the A∞-structure
on the cohomology of a dg-algebra (A, d) over a field k, equipped with a projector Π :
A→ B onto a subspace of ker(d) and a homotopy operator Q such that 1−Π = dQ+Qd.

This goes back to Kadeishvili’s work [15]. Merkulov’s formula for this A∞-structure
(see [29]) was rewritten in [18] as a sum over trees:

(1.2.1) mn(b1, . . . , bn) = −
∑
T

ε(T )mT (b1, . . . , bn).

Here T runs over all oriented planar rooted 3-valent trees with n leaves (different from the
root) marked by b1, . . . , bn left to right, and the root marked by Π (we draw the tree in
such a way that leaves are above, and every vertex has two edges coming from above and
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one from below). The expression mT (b1, . . . , bn) is obtained by going down from leaves to
the root, applying the multiplication in A at every vertex and applying the operator Q
at every inner edge (see [18, sec. 6.4] for details). The sign ε(T ) has form

ε(T ) =
∏
v

(−1)|e1(v)|+(|e2(v)|−1) deg(e1(v)),

where v runs through vertices of T (we do not count the root or leaves as vertices),
(e1(v), e2(v)) is the pair of edges above v, for an edge e we denote by |e| the total number
of leaves above e and by deg(e) the sum of degrees of all leaves above e (recall that leaves
are marked by bi).

The standard way of choosing Q for a given subspace B ⊂ ker(d) of cohomology repre-
sentatives is to pick a subspace C ⊂ A complementary to ker(d) and define Q by

Q(x) =


(d|C)−1(x), x ∈ im(d),

0, x ∈ B,
0, x ∈ C.

Example.
m3(b1, b2, b3) = Π[Q(b1b2)b3 − (−1)deg(b1)b1Q(b2b3)].

Next, construct a quasi-isomorphism of A∞-algebras H∗B → B, using similar tree-
formula: the only difference, is Q replace Π at the end. E.g., f2(a1, a2) = ±Q(a1a2),
etc. Thus, B is quasi-isomorphic to the original A∞-algebra. This implies that the
obtained A∞-structure does not depend on choices up to a gauge equivalence (using
Prouté’s theorem).

Lemma 1.2.1. Assume in addition that ΠQ = QΠ = Q2 = 0. Then the A∞-structure
on B given by the homological perturbation is unital.

Proof. It is convenient to use Merkulov’s original formula (equivalent to (1.2.1))

mn(b1, . . . , bn) = Πλn(b1, . . . , bn),

where λn : A⊗n → A are defined for n ≥ 2 by the following recursion: λ2(a1, a2) = a1a2,

λn(a1, . . . , an) = ±Q(λn−1(a1, . . . , an−1)) · an ± a1 ·Q(λn−1(a2, . . . , an))+∑
k+l=n;k,l≥2

±Q(λk(a1, . . . , ak)) ·Q(λl(ak+1, . . . , an)).

Since, ΠQ = 0, it is enough to prove that λn(b1, . . . , bn) ∈ Q(A). Let us use induction in
n. In the case n = 3 we have

λ3(b1, b2, b3) = Q(b1b2)b3 ± b1Q(b2b3)

and the assertion follows immediately from the fact that Q(B) = 0. Suppose now that
n ≥ 4 and the assertion holds for all n′ < n. Since Q2 = 0, the induction assumption easily
implies that the first two terms in the recursive formula for λn belong to Q(A). Similarly,
all the remaining terms vanish if n ≥ 5. In the case n = 4 the term Q(b1b2) ·Q(b3b4) also
vanishes because either b1b2 ∈ B or b3b4 ∈ B and Q(B) = 0. �

Note that the assumptions of Lemma 1.2.1 hold for the standard choice of Q associated
with the choice of a complementary subspace to ker(d).
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Remark 1.2.2. The homological perturbation construction can be generalized in several
ways. First, it works for dg-categories and the output becomes an A∞-caegory. Secondly,
one can start with an A∞-algebra A, and B can be any homotopically equivalent complex
to A. Then B can be equipped with an A∞-algebra structure, such that the obtained
A∞-algebra is A∞-equivalent to A.

We will need a version of the homological perturbation lemma for a dg-algebra (A, d)
over a commutative ring R. It is straightforward to see that the construction still works
once we have a homotopy Q. Thus, it is enough to know that embeddings im(d) ↪→ ker(d)
and ker(d) ↪→ A are splittable, or more generally that A is homotopy equivalent to a
complex of R-modules with the trivial differential. To this end we will use the following
simple observation.

Lemma 1.2.3. (i) Let (C•, d) be a bounded above complex of projective R-modules, where
R is a commutative ring. Assume in addition that every cohomology H i(C•) is a projective
R-module. Then for each i the embeddings im(di−1) ⊂ ker(di) and ker(di) ⊂ Ci are
splittable, where di : Ci → Ci+1.
(ii) Let C•,• be a bicomplex of R-modules such that Ci,• = 0 for i 6∈ [−N,N ] for some
N > 0 (i.e., bounded in horizontal direction). Assume that each complex Ci,• is homotopy
equivalent to a bounded above complex of projective R-modules. Assume also that the
cohomology modules of the total complex tot(C) are projective. Then tot(C) is homotopy
equivalent to a complex of R-modules with the trivial differential.

Proof. (i) The exact sequences

(1.2.2) 0→ im(di)→ ker(di+1)→ H i+1 → 0, 0→ ker(di)→ Ci → im(di)→ 0

show that it is enough to prove that ker(di) and im(di) are projective R-modules. We can
check this by the descending induction on i. The base of induction holds since Ci = 0 for
sufficiently large i. Assuming that ker(di+1) is projective, we use exact sequences (1.2.2)
to deduce first that im(di) is projective and then that ker(di) is projective. This gives the
induction step.
(ii) Without loss of generality we can assume that Ci,• = 0 for i 6∈ [0, N ]. We can represent
the total complex (up to a shift) as an iterated cone

Cone(. . .Cone(Cone(C0,• → C1,•)→ C2,•) . . .→ CN,•),

where we view the horizontal differentials as chain maps di : Ci,• → Ci+1,•. Note that
the above maps between iterated cones are well defined since di ◦ di−1 = 0 as maps of
complexes. By assumption, for every i we have a homotopy equivalence of Ci,• with a
bounded above complex P i,• whose terms are projective R-modules. We can define chain

maps d
i

: P i,• → P i+1,• (uniquely up to a homotopy) so that they correspond to di under
these homotopy equivalences. Note that for a chain map f : A → B, the homotopy
class of Cone(F ) depends only on an isomorphism class of the arrow f : A → B in the
homotopy category of complexes. This implies, that tot(C) is homotopy equivalent to
some iterated cone

tot(P ) := Cone(. . .Cone(Cone(P 0,• → P 1,•)→ P 2,•) . . .→ PN,•).
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(Note that P •,• acquires a structure of a twisted complex in the sense of [5].) Note tot(P ) is
bounded above and has projective terms. Its cohomology groups are also projective, since
they are the same as for tot(C). Therefore, by part (i), tot(P ) is homotopy equivalent to
a complex with the trivial differential. Hence, the same is true for tot(C). �

Remark 1.2.4. The situation of Lemma 1.2.3(ii) sometimes occurs when trying to run
the homological perturbation for the functor RΓ(X, ·) (derived global sections) applied
to a sheaf of dg-algebras A• on X. The standard way of calculating RΓ(X,A•) leads
to a bicomplex, and Lemma 1.2.3(ii) amounts to imposing suitable assumptions on the
complexes RΓ(Ai) and on the hypercohomology of A•. For an example, see Lemma 4.3.1.

1.3. Relation of A∞-structures to Hochschild cohomology. When we discuss min-
imal A∞-structures, i.e., A∞-structures with m1 = 0, the product mn+1 plays no role
in the identity (1.1.2) with r = n + 1, so it makes sense to make the following shift in
numbering 1.

Definition 1.3.1. A minimal A′n-structure is an An+1-structure with m1 = mn+1 = 0.
Equivalently, this is a minimal An-structure which extends to an An+1-structure, i.e.,
satisfies one extra equation [m2,mn] + . . . = 0.

When we talk about minimal S-linear A′n-structures on a graded associative S-algebra
A, unless otherwise specified, we always assume that m2 is the given product on A. Note
that for a Hochschild cochain c ∈ CHs+t(A/S)t we have

[Dm2 , Dc] = Dm2Dc + (−1)s+tDcDm2 = Dδ(c),

where δ(c) = [m2, c] is the Hochschild differential.
For example, a minimal A′3-algebra is an associative algebra together with any m3 ∈

CH2(A)−1 satisfying [m2,m3] = 0. In other words, m3 should be a Hochschild cocycle.
For a graded associative algebra A let us denote by An(A) (resp., A′n(A)) the set of all

minimal S-linear An-structures (resp., A′n-structures) on E. Note that (m2, . . . ,mn,mn+1)
is in An+1(A) if and only if (m2, . . . ,mn) is in A′n(A), so we have the natural projection

An+1(A)→ A′n(A)

which realizes A′n(A) as the quotient of An+1(A) by the free action of CH2(A/S)1−n (by
addition in the last component).

Lemma 1.3.2. Let m and m′ be two minimal A′n-structures on the same graded associative
algebra (A,m2), such that mi = m′i for i < n, where n ≥ 3.
(i) δ(m′n − mn) = 0, i.e., m′n − mn is a Hochschild cocycle for (A,m2), so it defines a
cohomology class in HH2(A)2−m.
(ii) Suppose m′ = f ∗m, where f is a gauge equivalence with fi = 0 for 1 < i < n − 1.
Then m′n−mn = ±δ(fn−1). Thus, there exists a gauge equivalence f with m′≤n = f ∗m≤n
and f<n−1 = id if and only if the cohomology class [m′n −mn] in HH2(A)2−n is trivial.

1In [38, Sec. 4] there is an error in this respect: wherever minimal An-structures are mentioned, they
should be replaced by minimal A′

n-structures in the sense of Definition 1.3.1
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Proof. (i) The A∞-axiom gives an expression of both [m2,mn] and [m2,m
′
n] in terms of

mi and m′i with i < n.
(ii) This is easily obtained by evaluating both sides of the equation Dm′αf = αfDm on
a1 ⊗ . . .⊗ an and using the explict form of αf :
(1.3.1)

αf (a1 ⊗ . . .⊗ an) =∑
i1+...+ik=n±fi1(a1, . . . , ai1)⊗ fi2(ai1+1, . . . , ai1+i2)⊗ . . .⊗ fik(an−ik+1, . . . , an).

�

Definition 1.3.3. For each n let us denote by G≥n ⊂ G the subgroup of f = (f1 =
id, f2, . . .) with fi = 0 for 2 ≤ i < n. To see that this is a subgroup we observe that
this vanishing condition is equivalent to the condition that αf acts as identity on all the
quotients Bar≤i(A)/Bar≤i−n+1. In particular, G≥2 = G.

Let A be a graded associative algebra. Lemma 1.3.2(ii) implies that the subgroup
G≥n acts trivially on the set An(A) of minimal An-structures, while an element f =
(id, 0, . . . , 0, fn−1) of G≥n−1 acts on m = (m2, . . . ,mn) ∈ An(A) by

f ∗m = (m2, . . . ,mn−1,mn + δ(fn−1)).

Thus, the action of G on An(A) factors through an action of G/G≥n. Furthermore, since
the projection An+1(A)→ An(A) is G-equivariant, we get a well defined action of G/G≥n
on the closed subscheme A′n(A) ⊂ An(A) (which is the image of the projection from
An+1(A)).

Any minimal A′n+1-structure induces a minimal A′n-structure by forgetting mn+1. The
following well-known result states that an obstacle to extending an A′n-structure to an
A′n+1-structure lies in HH3(A)2−n (it is stated without proof as [1, Lem. 2.3]).

Lemma 1.3.4. (i) Let A be an associative algebra with generators D1, . . . , Dn and defin-
ing relations

r∑
i=1

DiDr+1−i = 0,

for r = 1, . . . , n. Set S =
∑n

i=2DiDn+2−i. Then

D1S − SD1 = 0.

(ii) For a minimal A′n-structure m = (m2, . . . ,mn) on A there exists a Hochschild cocycle
φn(m) ∈ CH3(A)1−n (so δ(φn(m)) = 0) such that

(1.3.2) Dφn(m) =
n∑
i=3

Dmi
Dmn+3−i

.

The A′n-structure m is extendable to an A′n+1-structure (m2, . . . ,mn,mn+1) if and only if
φn(m) is a coboundary.

Proof. (i) Let us give A the grading by degDi = 1 and use the corresponding supercom-
mutators. Then we have

[D1, S] =
n∑
i=2

[D1, Di]Dn+2−i −
n∑
i=2

Di[D1, Dn+2−i].
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Applying the relations we can rewrite the sums in the right-hand side as
n∑
i=2

[D1, Di]Dn+2−i = −
∑

i≥2,j≥2,i+j≤n+1

DiDjDn+3−i−j,

n∑
i=2

Di[D1, Dn+2−i] =
∑

i≥2,j≥2,i+j≤n+1

Dn+3−i−jDiDj.

Thus, both sums are equal to ∑
i≥2,j≥2,k≥2,i+j+k=n+3

DiDjDk,

so they cancel out.
(ii) The existence of the Hochschild cochain φn(m) follows from the fact that the expression
in the right-hand side of (1.3.2) is a coderivation. The fact that φn(m) is δ-closed follows
from (i). By Lemma 1.1.2, the condition on mn+1 to extend m = (m2, . . . ,mn) to an
An+1-structure is

[Dm2 , Dmn+1 ] = −
n∑
i=3

Dmi
Dmn+3−i

,

i.e., δ(mn+1) = −φn(m), which implies the assertion. �

Due to the above results, HH2(A) and HH3(A) play an important role in classifying
minimal A∞-structures on A. The cohomology space HH1(A) also shows up in connection
with the notion of a homotopy between gauge transformations (see [16] and [35, Sec. 2.1],
where these are called homotopies between strict A∞-isomorphisms).

Definition 1.3.5. (i) Let f, f ′ : A→ B be a pair of A∞-morphisms between A∞-algebras.
A homotopy h from f to f ′ is given by a collection of maps hi : A⊗i → B of degree −i,
where i ≥ 1, satisfying some equations. These equations are written as follows: there
exists a unique linear map H : Bar(A) → Bar(B) of degree −1 with the component
Bar(A)→ B given by (hi), such that

(1.3.3) ∆ ◦H = (αf ⊗H +H ⊗ αf ′) ◦∆,

where αf , αf ′ : Bar(A)→ Bar(B) are coalgebra homomorphisms corresponding to f and
f ′, ∆ denotes the comultiplication. Then the equation connecting h, f and f ′ is

(1.3.4) αf − αf ′ = DB ◦H +H ◦DA,

where DA (resp., DB) is the coderivation of Bar(A) (resp., Bar(B)) corresponding to the
A∞-structure on A (resp., B).
(ii) If A and B are only An-algebras and f, f ′ : A → B are An-morphism, then we can
consider homotopies h from f to f ′ defined by a collection of maps (hi) as above for
i ≤ n and satisfying euqations (1.3.3), (1.3.4) for the corresponding maps Bar≤n(A) →
Bar≤n(B).

Note that if we only know that f : A→ B is an A∞-morphism, i.e., αf is a homomor-
phism of dg-coalgebras, then one can easily check that equations (1.3.3) and (1.3.4) imply
that αf ′ is a homomorphism of dg-coalgebras, i.e., f ′ is an A∞-morphism from A to B.
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Lemma 1.3.6. Let A and B be A∞-algebras and f = (fi) be an A∞-morphism from
A to B. For every collection (hi)i≥1, where hi : A⊗n → B has degree −i, there exists a
unique A∞-morphism f ′ from A to B such that h is a homotopy from f to f ′. The similar
assertion holds for homotopies (hi)1≤i≤n between An-morphisms of An-algebras.

Proof. We are going to construct the maps H|Bar(A)≤n
and αf ′ |Bar(A)≤n

recursively, so that
at each step the equations (1.3.4) and (1.3.5) are satisfied when restricted to Bar(A)≤n.
Also, we want H to have (hi) as components. Then the uniqueness will be clear.

It is easy to see that equation (1.3.3) is equivalent to the following formula
(1.3.5)
H[a1| . . . |an] =

∑
i1<...<ik<m<j1<...<jl=n

±[fi1(a1, . . . , ai1)| . . . |fik−ik−1
(aik−1+1, . . . , aik)|

hm−ik(aik+1, . . . am)|f ′j1−m(am+1, . . . , aj1)| . . . |f ′jl−jl−1
(ajl−1+1, . . . , ajl)],

where a1, . . . , an ∈ A, n ≥ 1 (one can have k = 0 or l = 0 in this sum). Note that H|A[1]

is given by h1 and αf ′ |A[1] is given by f ′1 = f1 −m1 ◦ h1 − h1 ◦m1. Now assume that the
restrictions of H and αf ′ to Bar(A)≤n−1 are already constructed, in particular, the maps
f ′i : A⊗i → B are defined for i ≤ n − 1. Then the formula (1.3.5) defines uniquely the
extension of H to Bar(A)≤n (note that in the RHS of this formula only f ′i with i ≤ n− 1
appear). It remains to apply formula (1.3.4) to define αf ′|Bar(A)≤n

. �

There is an analog of Lemma 1.3.2 for gauge equivalences and homotopies between
them.

Lemma 1.3.7. Let m and m′ be minimal AN -structures on the associative algebra A,
f, f ′ be a pair of gauge equivalences from m to m′. Assume that fi = f ′i for i < n, where
2 ≤ n < N .
(i) Set c(a1, . . . , an) = (f ′n − fn)(a1, . . . , an). Then c is a Hochschild n-cocycle (defining a
cohomology class in HH1(A)1−n).
(ii) If h : f → f ′ is a homotopy such that hi = 0 for i < n − 1, then one has f ′n − fn =
±δhn−1. Thus, f≤n and f ′≤n are homotopic if and only if the class [f ′n−fn] in HH1(A)1−n
is trivial.

1.4. Triple Massey products for A∞-structures. Note that for a minimalA∞-structure,
m3 is Hochschild cocycle, and a gauge equivalence can change it by a coboundary (see
Lemma 1.3.2). Thus, to any gauge-equivalence class of a minimal A∞-structure one can
associate a Hochschild cohomology class [m3] of the corresponding associative algebra.
However, this class is often hard to compute. Massey products provide invariants which
are easier to compute.

Let us consider a more general notion for a not necessarily minimal A∞-category A.
We start with a triple of composable morphisms [a1] ∈ Hom(Z, T ), [a2] ∈ Hom(Y, Z),

[a3] ∈ Hom(X, Y ) represented by some m1-closed elements a1, a2, a3. Assume that the
compositions [a1][a2] and [a2][a3] vanish in H0(A). Then we can find a12 ∈ hom−1(Y, T ),
a23 ∈ hom−1(X,Z) such that

m1(a12) = m2(a1, a2), m1(a23) = m2(a2, a3).

Now let us set

(1.4.1) MP ([a1], [a2], [a3]) = [m3(a1, a2, a3) +m2(a12, a3)−m2(a1, a23)].
10



It is easy to check that the expression in the right-hand side is m1-closed: this follows
from

m1m3(a1, a2, a3) = m2(a1,m2(a2, a3))−m2(m2(a1, a2), a3) = m2(a1,m1a23)−m2(m1a12, a3)

and from the Leibnitz identity.
Furthermore, if we change a12 or a23 or representatives for [ai], then the right-hand

side of (1.4.1) would change by adding summands of the form [a1][b23] and [b13][a3]
for some b12 ∈ Hom−1(Y, T ), b23 ∈ Hom−1(X,Z). Thus, the triple Massey product
MP ([[a1], [a2], [a3]) is a well defined element in

coker(Hom−1(X,Z)⊕ Hom−1(Y, T )
[a1]◦?,?◦[a3]

> Hom−1(X,T ).

When m3 = 0 this definition coincides with the usual definition given in the dg-context.
On the other hand, if m1 = 0 then the triple Massey product is the class represented
by [m3(a1, a2, a3)]. Finally, we claim that this Massey product is preserved under any
equivalence of A∞-categories. This is a consequence of the following result (proved in [34,
Prop. 1.1] with different sign conventions).

Proposition 1.4.1. Let F : C → C ′ be an A∞-functor between A∞-categories, let [F1] :
H∗C → H∗C ′ be the functor between the corresponding graded categories inducced by F1.
Then for a triple of composable arrows as above, one has

[F1]MP ([a1], [a2], [a3]) = MP ([F1][a1], [F1][a2], [F1][a3]).

Proof. We have by the A∞-functor axioms,

m2(F1a1, F1a2) = F1(m2(a1, a2))−m1F2(a1, a2) = F1m1a12 −m1F2(a1, a2)

= m1(F1a12 − F2(a1, a2)),

and similarly
m2(F1a2, F1a3) = m1(F1a23 − F2(a2, a3)).

Thus, MP ([F1a1], [F1a2], [F1a3]) is represented by the element

m3(F1a1, F1a2, F1a3) +m2(F1a12 − F2(a1, a2), F1a3)−m2(F1a1, F1a23 − F2(a2, a3)).

Now from the A∞-functor axioms we get the congruence modulo im(m1),

m3(F1a1, F1a2, F1a3) +m2(F1a1, F2(a2, a3))−m2(F2(a1, a2), F1a3)

≡ F1m3(a1, a2, a3) + F2(m2(a1, a2), a3)− F2(a1,m2(a2, a3)).

Thus, we can rewrite the above representative as

F1m3(a1, a2, a3) +m2(F1a12, F1a3)−m2(F1a1, F1a23) + F2(m1a12, a3)− F2(a1,m1a23)

≡ F1

(
m3(a1, a2, a3) +m2(a12, a3)−m2(a1, a23)

)
,

where we used again the A∞-functor axioms. �

The above definition of triple Massey products can be slightly generalized: instead of
considering a decomposable tensor f ⊗ g ⊗ h one can take any tensor in the appropriate
subspace of Hom(X, Y )⊗ Hom(Y, Z)⊗ Hom(Z, T ).

1.5. Triangulated structure and generators.
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1.5.1. Enhancements. Standard dg-enhancement of the derived category: dg-category of
complexes.

For perfect complexes easier to use

hom(E•, F •) = R(Hom(E•, F •)),

where R is some functorial multiplicative chain model for computing cohomology, e.g.,
one can use Cech or Dolbeault resolutions.

Lunts-Orlov: uniqueness of enhancements for Db(CohX) and for perfect complexes,
where X is a projective scheme over a field.

1.5.2. Triangulated A∞-categories and twisted complexes. Definition of the A∞-category
of twisted objects over an A∞-category A.

FIrst take closure under shifts and under direct sums. Then consider pairs (X, δ), where
X is an object of A, δ ∈ hom1(X,X) is strictly upper-triangular with respect to a finite
split filtration, such that ∑

t

(−1)(
t
2)mt(δ, . . . , δ) = 0.

Note that here the left-hand side is well defined and takes values in hom2(X,X). The
hom-space between two such objects (X, δX) and (Y, δY ) is simply hom(X, Y ). There
are natural A∞-products (mt

n) for the twisted objects (in particular, the differential mt
1

on hom(X, Y )), which are obtained by inserting the twisting elements δ in any number
wherever possible.

Definition 1.5.1. AnA∞-category is called triangulated ifA → TwA is a quasi-equivalence.

The category TwA is always triangulated and can be characterized as a universal
triangulated envelope of A.

1.5.3. Exact triangles in an A∞-category. Start with a : X → Y a closed morphism of
degree 0. Then we can view a as a morphism X[1]→ Y of degree 1. We define Cone(f) to
be the twisted complex (X[1]⊕Y, a). We have natural closed maps b : Y → Cone(f) and c :
Cone(f)→ X[1]. Note that c◦ b = 0 while b◦a = d(α), where α ∈ hom−1(X[1],Cone(f))
with the component idX . We have m3(c, b, a) = 0. However, the triple Massey product
MP (c, b, a) is the class of m2(c, α) = idX (it is not necessarily univalued).

This construction of the cones shows that ifA is a triangulated A∞-category thenH0(A)
is triangulated in the usual sense. Any A∞-functor between triangulated A∞-categories
gives an exact functor.

Example 1.5.2. Note that triple Massey products can be computed using the triangu-
lated structure on H0(TwA). Consider the cone of the middle arrow (which is a twisted
complex),

C2 := Cone(a2) = (Y [1]⊕ Z, a2).

Then the pair ã3 := (a3, a23) gives a closed morphism in Hom−1(X,C2), while the pair
ã1 := (a13, a1) gives a closed morphism in Hom0(C2, T ). Now the Massey product is the
class of the composition ã1 ◦ ã3.
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1.5.4. Generators. Recall that an objectG of a triangulated category T is called a classical
generator (aka split-generator) if the minimal triangulated subcategory of T closed under
passing to direct summands and containing G is the entire category.

Sometimes, one also uses a more restricted notion of G generating T as a triangulated
category (i.e., not allowing passing to direct summands).

Proposition 1.5.3. (see [48, Lemma 3.34] If the image of cohomological full and faithful
A∞-functor F : A → B generates B (as a triangulated A∞-category) then F extends to a
quasi-equivalence F : TwA → B.

An additive category is called split-closed if every idempotent in it splits. A triangulated
A∞-category A is called split-closed if H0A is such. Every triangulated A∞-category has
a canonical split-closure, which can be constructed using the Yoneda embedding into
the A∞-category of A∞-modules. Typically, A∞-categories arising in geometry, such as
derived categories of coherent sheaves (or their perfect subcategories), are split-closed.

We say that an object G generates a triangulated A∞-category A if the split-closed
triangulated A∞-subcategory containing G is the entire A.

Proposition 1.5.4. (see [48, Cor. 4.9]) if A ⊂ B full subcategory in a split-closed tri-
angulated A∞-category, such that A split-generates B, then B is equivalent to the split
closure of TwA.

1.6. Cyclic A∞-structures.

Definition 1.6.1. Let (A,m•) be an A∞-structure over a field k, equipped with a bilinear
form 〈·, ·〉 → k. We say that (A,m•) is cyclic with respect to this bilinear form if

〈mn(a1, . . . , an), an+1〉 = (−1)n(deg(a1)+1)〈a1,mn(a2, . . . , an+1).

We say that a bilinear form has degree N if 〈x, y〉 = 0 for homogeneous elements x, y such
that deg(x) + deg(y) 6= N .

It is often convenient to have a cyclic structure since it cuts down the number of higher
products to be considered. On a conceptual level these cyclic symmetries should be viewed
as an algebraic version of a Calabi-Yau condition. Cyclic A∞-structures play a central
role in Costello’s construction of a Gromov-Witten type potential (see [8]).

It is a natural question what data should be given on a dg-algebra, so that the corre-
sponding minimal A∞-algebra given by a homological perturbation is cyclic. Kontsevich-
Soibelman in [19] give the following sufficient criterion which uses cyclic homology HC∗.

Theorem 1.6.2. ([19, Thm. 10.2.2] Let A be an A∞-algebra over a field k of charac-
teristic zero with finite dimensional cohomology H∗(A) (with respect to m1). Suppose
θ : HCN(A) → k is a functional such that the induced degree N pairing on H∗(A) given
by

〈x, y〉 = θ(ι(xy)),

where ι : H∗(A) → HC∗(A) is the natural map, is perfect. Then the corresponding
minimal A∞-structure on H∗(A) is gauge equivalent to a cyclic A∞-structure with respect
to the above pairing.
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Corollary 1.6.3. Let (B, d) be a dg-algebra over a field k of characteristic zero such that
H∗(B) is finite-dimensional. Suppose we are given a functional θ : BN → k such that
θ(dBN−1) = 0, θ(xy) = (−1)deg(x) deg(y)θ(yx), and the induced pairing θ(xy) (of degree N)
on H∗(B) is perfect. Then the minimal A∞-structure on H∗(B) obtained by homological
perturbation is cyclic with respect to θ(xy).

Proof. We just have to observe that θ extends (trivially) to a functional on HCN(B). �

Here is an example of a geometric setup where the above result can be applied.

Corollary 1.6.4. Let A be a bounded complex of coherent sheaves on a reduced connected
projective curve C over a field k of characteristic zero, equipped with a structure of dg-O-
algebras. Suppose we are given a morphism of coherent sheaves τ : A0 → ωC satisfying
τ ◦ d = 0, τ(xy) = (−1)deg(x) deg(y)τ(yx) and such that inducing pairing

(1.6.1) A⊗A → ωC

is perfect in derived category, i.e., the induced morphisms A → Hom(A, ωC)→ RHom(A, ωC)
are quasi-isomorphisms. Then there is a minimal A∞-structure on H∗(C,A) compatible
with the pairing θ(xy), where θ : H1(C,A)→ H1(C, ωC) ' k is induced by τ .

Proof. Let B = K•(A) be the Cech complex associated with a covering of C by two
open subsets U1 and U2. We equip B with multiplicative structures using the following
products of Cech 0-cochains and Cech 1-chains:

(1.6.2) (a1, a2) · b12 =
1

2
(a1 + a2)b12, b12 · (a1, a2) =

1

2
b12(a1 + a2).

The map τ induces a morphism of Cech complexes

K•(θ) : K•(A)[1]→ K•(ωC).

The functional H1(C, ωC)
∼
> k can be viewed as a functional on K1(ωC). Composing

it with K•(θ) we get a functional

θ : B1 → k

which vanishes on the image of d. Also, the condition that τ vanishes on supercommu-
tators implies the same condition for θ. Finally, the assumption that we get a perfect
pairing (1.6.1) together with Serre duality implies that θ(xy) induces a perfect pairing on
H∗(B). Thus, all the conditions for applying Corollary 1.6.3 are satisfied. �

Let us point out the following higher-dimensional version of Corollary 1.6.4.

Proposition 1.6.5. Let X be a projective equidimensional CM-scheme of dimension N
over a field k of characteristic zero, (A•, d) a complex of coherent sheaves over X, equipped
with a dg-algebra structure (with unit). Assume that we have a morphism τ : A0 → ωX
such that τ ◦ d = 0 and τ(xy) = (−1)deg(x) deg(y)τ(yx). Then τ gives rise to a morphism
in derived category

A• ⊗A• → ωX .

Assume that the induced pairings

H i(C,A•)⊗Hn−i(C,A•)→ Hn(C, ωX)→ k
14



are perfect (where H i(C,A•) are hypercohomology). Then the minimal A∞-structure on
H∗(C,A•) obtained by homological perturbation is gauge equivalent to a one, cyclic with
respect to the pairing θ(xy), where θ : Hn(C,A•)→ Hn(C, ωC)→ k is induced by τ .

Proof. The Cech complex of A with respect to a finite covering U of X is obtained
from the corresponding cosimplicial dg-algebra C = CU(A). Applying instead Thom-
Sullivan normalization N(·)TS (see [14, Sec. 5.2], [59, App. A,B]), we get a dg-algebra
B = N(C)TS computing H∗(C,A•). Furthermore, by functoriality of the construction,
from the morphism τ , viewed as a chain map of complexes A → ωX , we get a chain map

N(τ) : B → N(CU(ωX))TS,

where the latter complex represents RΓ(X,ωX). Note that the product structure on
N(C)TS is induced by the natural morphisms N(C)TS⊗N(C)TS → N(C⊗C)TS, together
with the product maps on C. Thus, we derive that N(τ) satisfies the same identity
as τ , i.e., it vanishes on supercommutators. Composing N(τ) with a chain map T :
N(CU(ωX))TS → k[−N ] representing the canonical trace map Hn(X,ωC) → k, we get a
chain map θ : B → k[−N ] vanishing on supercommutators. By assumption, the induced
pairing on H∗(B) is perfect, so we can apply Corollary 1.6.3 again. �

There is a particular case when the cyclic A∞-structure can be obtained directly by
homological perturbation (i.e., without using Theorem 1.6.2). Namely, suppose we are
given a dg-algebra (B, d) and a symmetric bilinear form 〈·, ·〉 on B (the symmetry means
〈x, y〉 = (−1)deg(x) deg(y)〈y, x〉).

Proposition 1.6.6. ([20]) Suppose

(1.6.3) 〈dx, y〉+ (−1)deg(x)〈x, dy〉 = 0

and the homotopy Q : B → B in the data for the homological perturbation satisfies

(1.6.4) 〈Qx, y〉 = (−1)deg(x)〈x,Qy〉.
Then the minimal A∞-structure on H∗(B) given by the tree formula is cyclic with respect
to the pairing induced by 〈·, ·〉.

To get the homotopy operator of this kind one can use complements to ker(d) of a
special kind.

Lemma 1.6.7. Assume that C ⊂ B is a subspace such that ker(d)⊕B = C, and let A ⊂
ker(d) be a subspace of cohomology representatives. Assume 〈C,C〉 = 0 and 〈C,A〉 = 0.
Then the homotopy operator Q associated with A and C satisfies (1.6.4) and hence, we
obtain a cyclic A∞-structure on H∗(B).

Using this we get the following direct construction of cyclic A∞-structures.

Proposition 1.6.8. Let B = B0 ⊕ B1 be a dg-algebra concentrated in degrees [0, 1],
〈·, ·〉 a symmetric pairing of degree 1 on B satisfying (1.6.3), such that H∗(B) is finite-
dimensional and the induced pairing on H∗(B) is perfect. Let also A ⊂ ker(d) ⊂ B be
a subspace of cohomology representatives. Then there exists a subspace C ⊂ B0, comple-
mentary to ker(d), such that the corresponding A∞-structure on H∗(B), obtained by the
homological perturbation, is cyclic with respect to the pairing induced by 〈·, ·〉.
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Proof. The condition 〈C,C〉 = 0 is automatic since C ⊂ B0. The pairing C ⊗ A1 → k
can be interpreted as a map C → A∗1 ' A0 (where the latter isomorphism is given by
the pairing between A0 and A1). Correcting C by this map, we get a new subspace in
C ⊕ A0, which is still complementary to ker(d), and which is orthogonal to A1. Then we
can apply Lemma 1.6.7 and Proposition 1.6.6. �

Corollary 1.6.9. Let C be a projective connected reduced curve over a field k of char-
acteristic 6= 2, and let A be a coherent sheaf of OC-algebras, equipped with a moprhism
τ : A → ωX . Assume that we have a morphism τ : A → ωC such that τ(xy) = τ(yx).
Assume that the induced pairing

A⊗A → ωC

is perfect in the derived category. Then the minimal A∞-structure on H∗(C,A) obtained
by homological perturbation is gauge equivalent to a one cyclic with respect to the pairing
θ(xy), where θ : H1(C,A)→ Hn(C, ωC)→ k is induced by τ .

Proof. The corresponding Cech complex K•(A), equipped with the product (1.6.2), sat-
isfies assumptions of Proposition 1.6.8. �

2. Examples of calculations for elliptic curves

2.1. Some triple Massey products. Let C be an elliptic curve. Consider composable
arrows

(2.1.1) O → Ox′
[1]
> P → Ox

where x, x′ ∈ C and P is a line bundle of degree 0. Assume x 6= x′ and P 6= O, then have
Hom∗(O, P ) = 0 and Hom∗(Ox′ ,Ox) = 0. So this is a perfect setup for triple Massey
products: the double compositions are automatically zero and there is no ambiguity.

By applying translation, can assume that x′ = e, the neutral element of the group law.
To compute the Massey product we include the second arrow in the exact triangle

P → P (e)→ Oe → P [1]

Then we have to find a section of P (e) with residue 1 at e and then evaluate at y.
Let L be a fixed line bundle of degree 1 on C and θ ∈ H0(C,L) is a generator, such

that θ vanishes at a point e ∈ C, which we can take as the neutral element of the group
law. We can realize P uniquely as t∗yL⊗ L−1. Thus, θ(z + y)/θ(z) is a section of P with
a pole of order 1 at e, i.e., a section of P (e). We should normalize it by the value of the

residue at e, so we should consider s(z) = θ′(0)·θ(z+y)
θ(y)θ(z)

and then evaluate it at x which gives

s(x) =
θ′(0) · θ(x+ y)

θ(y)θ(x)
=: F (x, y),

the Kronecker function (also studied by Zagier).
There is a generalization of this picture to higher rank vector bundles, which we sketch

following [34, Sec. 1]. Recall that by the classical result of Atiyah, a vector bundle V
on an elliptic curve C is stable if and only if it is simple and for a given pair (r > 0, d),
with gcd(r, d) = 1, the moduli space M = Mr,d of stable vector bundles of rank r and
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degree d is isomorphic to C. Note that distinct V1, V2 ∈M one has Hom(V1, V2) = 0 (by
stability). Hence, using Serre duality, we see that Ext1(V1, V2) = 0. Thus, for a pair of
points x1 6= x2 of C, we again obtain a well defined univalued triple Massey product by
looking at composable arrows

V1 → Ox1
[1]
> V2 → Ox2 .

Note that this Massey product is a map

(V1|x1)∗ ⊗ V2|x1 ⊗ (V2|x1)∗ '
Hom(V1,Ox1)⊗ Ext1(Ox1 , V2)⊗ Hom(V2,Ox2)→ Hom(V1,Ox2) ' (V1|x2)∗

(here we use some trivialization of ωC and the Serre duality for the identification V2|x1 '
Ext1(Ox1 , V2)). Replacing the middle arrow by a universal map V2|x1 ⊗Ox1

[1]
> V2, we

can compute the Massey product in the same way as before by using the exact triangle

V2 → V2(x1)→ V2|x1
[1]
> V2

Thus, our Massey product is determined from the commutative diagram

Hom(V1|x1 , V2|x1) <
∼

Hom(V1, V2(x1))

Hom(V1|x2 , V2|x2)

evx2∨
MP

>

where the horizontal arrow is an isomorphism due to the condition Ext∗(V1, V2) = 0.
Dualizing, we can view this Massey product as an element

rV1V2x1x2
∈ Hom(V2|x1 , V1|x1)⊗ Hom(V1|x2 , V2|x2).

One can apply the A∞-axiom of the form m3(m3(f1, g1, f2), g2, f3) + . . . = 0 to sequences
of composable arrows

V1
f1
> Ox1

g1
> V2

f2
> Ox2

g2
> V3

f3
> Ox3 ,

where deg(fi) = 0, deg(gi) = 1, and (Vi) and (xj) are distinct. Using results of Sec. 1.6
one check in addition the following cyclic symmetry:

〈f ′,m3(g1, f2, g2)〉 = −〈m3(f ′, g1, f2), g2〉
where f ′ ∈ Hom(V3,Ox1) and 〈·, ·〉 denotes the pairing between Hom(Vi,Oxj) and Ext1(Oxj , Vi).
This allows to express all terms of the A∞-axiom via r

Vi,Vi′
xj ,xj′ and leads to the following

equation

(2.1.2) (rV3V2x1x2
)12(rV1V3x1x3

)13 − (rV1V3x2x3
)23(rV1V2x1x2

)12 + (rV1V2x1x3
)13(rV2V3x2x3

)23 = 0

in Hom(V2|x1 , V1|x1)⊗Hom(V3|x2 , V2|x1)⊗Hom(V1|x3 , V3|x3), which is called a set-theoretical
Associative Yang-Baxter Equation (AYBE). We will return to this equation later in Sec.
5.

Lifting the points xi to a universal covering C → C one can choose trivializations of

all vector spaces Vi|xj and express the tensors r
Vi,Vj
xi,xj in terms of the Kronecker function

F (x, y) (with C replaced by a finite étale covering), see [34, Sec. 2.2].
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Remark 2.1.1. There is a partial generalization of this picture to higher genus curves
studied in [36].

2.2. Line bundles of degree 0 and 1: transcendental computation. Let C = C/Λ,
where Λ = Z + Zτ , be an elliptic curve. We want to compute (following [42]) the A∞-
structure, obtained by homological perturbation, on the algebra

E = Ext∗(G,G), where G =
r⊕
i=1

Pi ⊕
s⊕
j=1

Lj,

where (Pi) are distinct line bundles of degree 0, and (Lj) are distinct line bundles of degree
1 on C.

Let L be the standard line bundle of degree 1 on C such that the theta-function

θ = θ(z, τ) =
∑
n∈Z

exp(πiτn2 + 2πinz)

descends to a global section of L. Then the line bundles (Pi), (Lj) can be written in the
form

Pi = P (wi), Lj = t∗zjL,

for some complex numbers (wi), (zj) (unique modulo Λ), where P (w) := t∗wL⊗ L−1.
Note that E is obtained as the cohomology of the Dolbeault dg-algebra

ΩG := (Ω0,∗(End(G)), ∂).

To construct the cohomology representatives and the homotopy operator Q on ΩG we
use the flat metric on C and on the relevant line bundles. Namely, the hermitian metric
on L is given by

(f, g) =

∫
C

f(z)g(z) exp
(
−2π

y2

Im(τ)

)
dxdy,

where z = x + iy. To get metrics on Lj we use the translation t∗zj . Also, we get the

induced metrics on Pi = t∗wi
L⊗ L−1.

Then we get the required complements to ker(∂) and to im(∂) in ker(∂) as orthogonals
with respect to the metric. In particular, E will be embedded into ΩG as the subspace
of harmonic forms.

We fix a generator ξ ∈ H1(C,O) which is represented by the (0, 1)-form dz. Let η ∈
H1(C,L−1) denote the unique generator such that η ◦ θ = ξ. Then the space Ext∗(G,G)
has the following natural basis:
(i) identity elements in Hom(Pi, Pi), Hom(Lj, Lj);
(ii) the elements ξi ∈ Ext1(Pi, Pi) and ξj ∈ Ext1(Lj, Lj), corresponding to the canonical
generator ξ ∈ H1(C,O);
(iii) θij := t∗zj−wi

θ ∈ H0(t∗zj−wi
L) ' Hom(Pi, Lj);

(iv) ηji := t∗zj−wi
η ∈ H1(t∗zj−wi

L−1) ' Ext1(Lj, Pi).

Note that θij are holomorphic functions, so they are harmonic. The (0, 1)-form dz
representing ξ is also harmonic. The harmonic (0, 1)-form with values in L−1 representing
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η ∈ H1(C,L−1) is

η :=
√

2 Im(τ) · θ(z, τ) exp
(
−2π

Im(z)2

Im(τ)

)
dz.

Aside from multiplications with the identity elements, the only nontrivial compositions
in E are

ηji ◦ θij = ξi, θij ◦ ηji = ξj.

The Eisenstein-Kronecker-Lerch series (see [60, ch. VIII]) are given by

K∗a(z, w, s; Λ) =
∑

λ∈Λ\{−z}

(z + λ)a

|z + λ|2s
〈λ,w〉Λ,

where a ∈ Z≥0, z, w ∈ C, s is a real number,

〈z, w〉Λ := exp[A−1(zw − wz)],

where A = Im(τ)/π. This series converges absolutely for Re s > a/2 + 1. It is known
that K∗a(z, w, s; Λ) analytically extends (for fixed z, w) to a meromorphic function on the
entire s-plane, with possible poles only at s = 0 (for a = 0, z ∈ Λ) and at s = 1 (for
a = 0, w ∈ Λ). Using this analytical continuation the Eisenstein-Kronecker numbers
e∗a,b(z, w; Λ), for integers a ≥ 0, b > 0, are defined as the following special values:

e∗a,b(z, w) = K∗a+b(z, w, b; Λ).

Note that these values are not continuous in z and w (the discontinuity occurs when either
z ∈ Λ or w ∈ Λ).

Due to different conventions in [42], in the theorem below we actually compute the
A∞-structure (mn) on Eop, obtained as the cohomology of the dg-algebra (ΩG)op. The
opposite A∞-structure on E differs from this by some signs.

Theorem 2.2.1. ([42, Thm. A]) For a, b, c, d ≥ 0 one has

mn((ξi)
a, θij, (ξj)

b, ηji′ , (ξi′)
c, θi′j′ , (ξj′)

d) =

(−1)(
n+1
2 )+1A

b+d+1(b+ d)!

a!b!c!d!
· e∗a+c,b+d+1(zj′ − zj, wi − wi′) ·

fi′jfij′

fijfi′j′
· θij′ ,

where fij = exp(A−1(zj − wi + wi)
2/2). Note that here the indices in the pairs (i, i′) and

(j, j′) are not necessarily distinct.

The remaining mn are determined by the condition that our A∞-structure on E =
Ext∗(G,G) is cyclic with respect to a natural pairing (see Sec. 1.6). Note also that one
can get rid of the exponential factor (depending on fij) by rescaling the basis of E.

For example,

e∗0,2k(0, 0) = e2k =
∑

λ∈Λ\{0}

1

λ2k

for k ≥ 2, e∗2k+1(0, 0) = 0, and

e∗0,2(0, 0) = e∗2 =
∑
m

∑
n;n6=0 if m=0

1

(mτ + n)2
− π

Im(τ)
.
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We will not give a full proof of Theorem 2.2.1, only a sample calculation. Namely, let
us calculate m3(θij, ηji′ , θi′j′). Note that this is a univalued triple Massey product

Pi → Lj
[1]
> Pi′ → Lj′ ,

similar to (2.1.1) (in fact it can be obtained from (2.1.1) by an autoequivalence of the
derived category). This time we calculate using the homological perturbation:

m3(θij, ηji′ , θi′j′) = Π[QP (wi′−wi)(θijηji′)θi′j′ − θijQP (zj′−zj)(ηji′θi′j′)].

Here for a holomorphic line bundle M we denote by QM : Ω(0,1)(M) → Ω(0,0)(M) our
homotopy operator defined using hermitian metrics. In the case when M = P (w) for
w 6∈ Λ, QM is simply the inverse of ∂.

For w 6∈ Λ, the line bundle P (w) is trivialized as an C∞-line bundle by a nowhere
vanishing section exp(−2πiw · v), where we use the real coordinates (u, v) such that
z = u+ vτ . Then the sections

ϕw,λ(z) := 〈λ, z〉 · exp(−2πiw · v)

form an orthonormal basis of L2-sections of P (w). Furthermore, one has

∂ϕw,λ = A−1(λ+ w) · ϕw,λdz,
and QP (w) is just the inverse to ∂, so

QP (w)(ϕw,λdz) =
A

λ+ w
ϕw,λ.

We need to decompose θijηji′ (resp., θi′j′ηji′) in the orthonormal bases of sections of
P (wi′ − wi) (resp., P (zj′ − zj)). For this we use the identity

(2.2.1)

√
2 Im(τ) · θ(z) · θ(z + z0) exp(−2π Im(τ)(v + v0)2) =

exp(2πiz0v0) ·
∑

λ∈Λ cλ(−z0) · 〈λ, z0〉 · ϕ−z0,λ(z),

where z0 = u0 + v0τ ,

cmτ−n(z) = (−1)mn exp(−A−1(|λ|2 + 2λz + z2)/2).

This identity is proved by interpreting the Fourier coefficients of the above product as
integrals; then by rewriting them as hermitian pairings of the form

(θ(z + w), θ(z) · exp(−2πw · v))

of sections of the line bundle t∗wL ' L⊗P (w); and finally using the expansion of the theta-
function to rewrite as a Gaussian integral over R (see [32, Sec. 2]; the above identity also
follows from [52, Prop. 4.1]). Applying (2.2.1) we get

θij(z)ηji′(z) =
∑
λ∈Λ

ϕwi′−wi,λ(z) ·cλ(wi′−wi)〈λ, zj−wi′〉 exp(2πi(wi−wi′)
Im(zj − wi′)

Im τ
) ·dz,

and hence,

QP (wi′−wi)(θijηji′) =

A ·
∑
λ∈Λ

ϕwi′−wi,λ(z) · cλ(wi
′ − wi)〈λ, zj − wi′〉
λ+ wi′ − wi

exp(2πi(wi − wi′)
Im(zj − wi′)

Im τ
).
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Now computing Π[QP (wi′−wi)(θijηji′)θi′j′ ] is equivalent to calculating the pairings

(QP (wi′−wi)(θijηji′)θi′j′ , θij′) =

∫
C

QP (wi′−wi)(θijηji′)·θi′j′θij′ exp(−2π
Im(z + zj′ − wi)2

Im τ
)dxdy.

Applying (2.2.1) again we get the expansion

θi′j′θij′ exp(−2π
Im(z + zj′ − wi)2

Im τ
) =

1√
2 Im τ

·
∑
λ∈Λ

ϕwi−wi′ ,λ
(z) · cλ(wi − wi′) · 〈λ, zj′ − wi〉 exp(2πi(wi′ − wi)

Im(zj′ − wi)
Im(τ)

).

Now we observe that ∫
C

ϕw,λϕ−w,λ′dxdy =

{
Im(τ) λ+ λ′ = 0,

0 otherwise.

Hence, the above pairing is equal to

(QP (wi′−wi)(θijηji′)θi′j′ , θij′) = A ·
√

Im τ

2
· exp(2πi(wi − wi′)

Im(zj − zj′ + wi − wi′)
Im τ

)·∑
λ∈Λ

cλ(wi′ − wi)c−λ(wi − wi′)〈λ, zj − zj′ + wi − wi′〉
λ+ wi′ − wi

,

whereas (θij′ , θij′) = 1/
√

2 Im τ .
Computing Π[θijQP (zj′−zj)(ηji′θi′j′) in a similar way, we get the following answer

m3(θij, ηji′ , θi′j′) = A ·
(
Φ(wi′ − wi, zj′ − zj)− Φ(zj′ − zj, wi′ − wi)

)
· θij′ , where

Φ(z0, w0) = exp(A−1z0(w0 − w0)) ·
∑
λ∈Λ

1

λ+ z0

exp(−A−1|λ+ z0|2)〈−λ,w0〉.

To get the statement of Theorem 2.2.1 in this case one has to use in addition the identity

e∗01(z, w) = exp(A−1z(w − w))[Φ(z,−w)− Φ(−w, z)].
On the other hand, our answer is compatible with the computation of the triple Massey
product in Sec. 2.1 because of the identity

(2.2.2) Φ(z,−w)− Φ(−w, z) = 2πiF (z, w),

where F (z, w) is the Kronecker function. The relation between e∗01(z, w) and the Kronecker
function is classical (see [60, VIII.2, Eq.(3), p.70]). On the other hand, the identity (2.2.2)
was discovered in [33]. The main part of the proof is checking that Φ(z,−w)− Φ(−w, z)
is meromorphic in z and w (this uses the Poisson summation formula).

Note that if we just take the generator G = O⊕L then the A∞-structure on Ext∗(G,G)
is expressed in terms of e∗a,b(0, 0). Using the A∞-constraints one can show that these are
expressed as some polynomials with Q-coefficients in (e∗n) (and hence, as polynomials in
e∗2, e4 and e6). Namely, let us set for a, b ≥ 0,

ga,b =
b!

Aa
e∗a,b+1.
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Then ga,b = gb,a, and ga,b = 0 if a+ b is even. Applying the A∞-constraint to the string

(ξ)a, θ, η, θ, η, θ, (ξ)b

one gets the identity∑
a=a1+a2

(
a

a1

)
ga1,0ga2,b −

a+ 2 + δb,0
a+ 1

ga+1,b =
∑

b=b1+b2

(
b

b1

)
g0,b1ga,b2 −

b+ 2 + δa,0
b+ 1

ga,b+1,

which gives a recursive formula for ga+1,b in terms of all ga′,b′ with a′ ≤ a. Since
g0,n = n!e∗n+1, we get a procedure to express all ga,b as polynomials in (e∗n) (with ra-
tional coefficients).

Kaneko-Zagier theory states that the ring C[e∗2, e4, e6] is isomorphic to the ring of quasi-
modular forms C[E2, E4, E6], where

E2k = 1− 4k

B2k

∞∑
n=1

σ2k−1(n)qn,

where σp(n) is the sum of the pth powers of the divisors of n. More precisely, this isomor-
phism sends E4 and E6 to themselves viewed as modular forms (recall that E2k(exp(2πiτ)) =
e2k(τ)/(2ζ(2k))), and it sends E2 to the holomorphic part of 3

π2 e2, where e∗2 = e2−π/ Im τ .

Remark 2.2.2. Caldararu and Tu [6] use this to get a purely holomorphic model for
the A∞-structure on Ext∗(G,G). More precisely, one can view the A∞-algebra given
by Theorem 2.2.1 (with wi = zj = 0) as an A∞-algebra Eτ over the ring of almost
holomorphic forms, i.e., polynomials in e∗2, e4, e6. On the other hand, applying the Kaneko-
Zagier isomorphism, one gets an A∞-algebra Ehol

τ over the ring of quasimodular forms.
Extending scalars, we can view both Eτ and Ehol

τ as minimal A∞-algebras over the ring
of C∞-functions on the upper-half plane (with the same underlying associative algebra).
Caldararu and Tu show in [6, Thm. 5.14] that there is a gauge equivalence between these
two structures.

Remark 2.2.3. Our formulas also show that in the case G = O ⊕ L one has mn = 0 for
all odd n. In fact, any minimal A∞-algebra structure on the corresponding algebra E is
gauge equivalent to the one with m3 = 0 since HH2(E)−1 = 0 (see ???). In fact it turns
out that HH2(E)2−i = 0 for i = 3, 4, 5, 7 and i ≥ 9, while HH2(E)−4 and HH2(E)−6 are
1-dimensional. Thus, by a gauge equivalence we can turn any A∞-structure into the one
with m3 = m4 = m5 = 0, so that m6 and m8 will be Hochschild cocycles. It is not a
priori clear that the classes of [m6] and [m8] in the 1-dimensional spaces HH2(E)−4 and
HH2(E)−6 are well defined functions of a gauge equivalence orbit of m. Later we will see
that this is indeed the case, and the relevant moduli space of A∞-structures is equivalent
to the affine plane (which can be though of as the space of cubics in the Weierstrass
normal form).

3. Moduli spaces of A∞-structures

3.1. The moduli problem. We start with a given graded sheaf of O-algebras E over a
scheme S and would like to define the corresponding moduli problem for A∞-structures
on E .
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Note that all the notions related to A∞-structures over a commutative ring generalize
readily to the case of sheaves of O-modules over a scheme. Namely, for a graded sheaf
F of locally free O-modules over a scheme S we denote by CHs+t(F/S)t the sheaf of
homomorphisms of O-modules F⊗s → F of degree t, and by CHs+t(F/S)t its space of
global sections over S. We have a natural notion of an An-structure (resp., A∞-structure)
on F , given by a collection of global sections

m = (m1, . . . ,mn) ∈ CH2(F/S)1 × . . .× CH2(F/S)2−n)

(resp., m = (m1,m2, . . .) with mn ∈ CH2(F/S)2−n), satisfying the standard A∞-identities
involving only m1, . . . ,mn (resp., all A∞-identities). Similarly, the definitions of A∞-
morphisms and homotopies between them and the results of Sec. 1.3 immediately gener-
alize to this context.

Since we are interested in minimal An-structures (resp., A∞-structure), i.e., those with
m1 = 0, we consider A′n-structures, i.e., An-structures satisfying one addiitional A∞-
identity involving [m2,mn] (see Definition 1.3.1). The action of the group of gauge trans-
formations on the set of minimal A′n-structures also immediately generalizes to the relative
context: we have a sheaf of groups G over S, where an element of G(U) is a collection of
sections

f = (f1 = id, f2, . . .) ∈ H0(U,CH1(F/S)−1 × CH1(F/S)−2 × . . .),
with the product rule obtained by interpreting f as a coalgebra automorphism of the
bar-coalgebra of F (see Sec. 1.3). We use the notation G[2, n − 1] := G/G≥n for the
quotient of G acting on the set of minimal A′n-structures on F . We denote the projection
G→ G[2, n− 1] by f 7→ f≤n−1.

Remark 3.1.1. The above definition of an An-algebra over a scheme is a bit naive. A
more flexible notion should involve defining mi’s only over an open covering Ui of S, and
the gluing should be given by a collection of higher homotopies defined on intersections
Ui1∩. . .∩Uir . We do not need the most general definition since we only aim at constructing
the usual space as a moduli space of A∞-structures (in good situations), not an ∞-stack.
Even at this level we will need a certain gluing procedure, but a much simpler one.

Now let us fix a scheme S and a sheaf E of graded associative OS-algebras over S. We
assume also that E is locally free of finite rank over OS. We denote by E|s the fiber of E
over a point s ∈ S. Roughly speaking, we would like to classify families of minimal A∞-
algebras, up to gauge equivalence, such that the corresponding family of graded associative
algebras is obtained from E .

Definition 3.1.2. (i) For a sheaf of graded associative OT -algebras E over a scheme T
we denote by A′n(E/T ), where n ≥ 2 (resp., A∞(E/T )), the set of minimal A′n-structures
(resp., A∞-structures) on E.
(ii) Now for a fixed (E/S) as above, for n ≥ 2, we have the presheaf A′n = A′n,E (resp.,
A∞ = A∞,E) on the category of S-schemes, which associates with ϕ : T → S the set
A′n(ϕ∗E/T ) (resp., A∞(ϕ∗E/T )). This functor is represented by an affine scheme of finite
type over S, which we still denote by A′n,E . Namely, A′n,E is the closed subscheme in the

total space of the vector bundle CH2(E/S)−1⊕ . . .⊕CH2(E/S)2−n given by the relevant
A∞-equations.
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We have a natural projection

(3.1.1) πn : A′n → A′n−1 : m 7→ m≤n−1.

Next, we have the sheaf of groups G of gauge transformations acting on each functor
A′n through the quotient G[2, n− 1], and the first apporximation to our moduli functo is
obtained by taking the quotient by this action.

Definition 3.1.3. For each n ≥ 2, we define the functor

M̃n : SchopS → Sets

where SchS is the category of S-schemes, as follows. For an S-scheme f : T → S, we
define

M̃n(T ) := A′n(T )/G[2, n− 1](T ).

Similarly, we set

M̃∞(T ) := A∞(T )/G(T ).

In general, the quotient-functor M̃n is not representable and (at least) needs to be
sheafified. Let us consider the topology on the category SchS, such that open coverings
of p : T → S are pull-backs under p of Zariski open coverings of S. We call this S-Zariski
topology.

Definition 3.1.4. Let us denote by Mn (resp., M∞) the sheafification of the functor

M̃n (resp., M̃∞) with respect to the S-Zariski topology.

3.2. Nice quotients. Here we make a digression on a special situation when an action
of a group scheme on a scheme admits a quotient. We work over a fixed base scheme S.

Definition 3.2.1. Let G be a group scheme, X be a G-scheme. We say that a G-invariant
morphism π : X → Q is a nice quotient for the G-action on X if locally over S (in Zariski
topology) there exists a section σ : Q→ X of π and a morphism ρ : X → G, such that

(3.2.1) x = ρ(x)σ(π(x)) and ρ(σ(x)) = 1.

In this situation we call σ(Q) a nice section for the action of G on X. We say that π is a
strict nice quotient if ρ and σ can be defined globally over S.

In the case when S is a point we obtain precisely the situation of [38, Def. 4.2.2].
Note that a nice quotient is automatically a categorical quotient (in the category of

S-schemes). Indeed, let f : X → Z be a G-invariant morphism, where Z has trivial
G-action. Then f(x) = f(σ(π(x))), so f is a composition of f ◦ σ : Q→ Z with π. This
implies that the existence of a nice quotient is a local quesion in S. Namely, if Xi → Qi

are nice quotients for Xi = p−1(Ui), where (Ui) is an open covering of S, p : X → S is a
projection, then we can glue them into a global morphism π : X → Q.

Remark 3.2.2. If π : X → Q is a nice quotient for the G-action on X then π is a universal
geometric quotient (see [30]). Indeed, any base change of π is still a nice quotient. The
following properties are clear: π is surjective, U ⊂ Q is open if and only if π−1(U) is open,
geometric fibers are precisely the orbits of geometric points. Finally, we claim that OQ
coincides with G-invariants in π∗OX . Indeed, given a G-invariant function f on π−1(U)
then f(x) = f(σ(π(x)), so it descends to the function f ◦ σ on U .
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Let us consider the following presheaf of sets on SchS:

T 7→ X(T )/G(T ).

Lemma 3.2.3. Let π : X → Q is a nice (resp., strict nice) quotient for the G-action then
the sheafification of the above presheaf with respect to the S-Zariski topology (resp., the
presheaf itself) is naturally isomorphic to the functor represented by Q. Thus, a T -point
of Q can be represented by a collection of Vi-points of X, where Vi = f−1(Ui) for some
open covering (Ui) of S, such that for any i, j, the corresponding Vij-points of X, where
Vij = Vi ∩ Vj, differ by G(Vij)-action.

Proof. We have a natural morphism from X(T )/G(T ) to the sheaf represented by Q,
which becomes an isomorphism over an open affine covering of S (due to the existence of
a decomposition (3.2.1)). This immediately implies the assertion. �

The following lemma will help us to construct nice quotients inductively.

Lemma 3.2.4. Let G be a group scheme over S acting on a scheme X over S. Assume
that G fits into an exact sequence of group schemes

1→ H → G→ G′ → 1

and that the projection G → G′ admits a section s : G′ → G which is a morphism of
schemes (not necessarily compatible with the group structures). Suppose we have a scheme
X ′ with an action of G′ and a morphism f : X → X ′ compatible with the G-action via
the homomorphism G → G′. Assume that there exists a nice quotient πH : X → QH for
the H-action on X and a nice quotient π′ : X ′ → Q′ for the G′-action on X ′. Finally,
assume that the following condition holds: for any S-scheme T and any points x ∈ X(T ),
g ∈ G(T ) such that f(gx) = f(x) there exists an open covering T = ∪Ti and a point
hi ∈ H(Ti) for each i, such that gx = hix. Then there exists a nice quotient for the
G-action on X. The same assertion holds for strict nice quotients.

Proof. It is enough to prove the assertion for strict nice quotients. Without loss of
generality we can assume that the section s : G′ → G satisfies s(1) = 1. By assumption,
we have sections σH : QH → X and σ′ : Q′ → X ′ and the corresponding maps ρH : X → H
and ρ′ : X ′ → G′ satisfying (3.2.1). Let us define morphisms ρf : X → G and πf : X → X
by

ρf = s ◦ ρ′ ◦ f, πf (x) = ρf (x)−1x.

One immediately checks that
f ◦ πf = σ′ ◦ π′ ◦ f.

In particular, πf (x) ∈ f−1(σ′(Q′)). Let us set Q̃ = f−1(σ′(Q′)) ⊂ X. Note that for x ∈ Q̃
we have

ρf (x) = s(ρ′(f(x)) = s(1) = 1,

since ρ′|σ′(Q′) = 1. Hence, for x ∈ Q̃ we have πf (x) = x. Now we set

Q = σ−1
H (Q̃) ⊂ QH ,

and define the maps π : X → Q and ρ : X → G required for the definition of a nice
quotient by

π = πH ◦ πf ,
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ρ(x) = ρf (x)ρH(πf (x)).

Note that π is well-defined. Indeed, we need to show that (σHπHπf )(x) ∈ Q̃. But

πf (x) ∈ Q̃, so this follows from the identity

(σHπHπf )(x) = ρH(πf (x))−1πf (x)

and the fact that Q̃ is preserved by the action of H. We also have a section σ : Q → X
of π given by σ = σH |Q.

It remains to check that our data defines a strict nice quotient for the G-action on X.
We have

x = ρf (x)πf (x) = ρf (x)ρH(πf (x))σH(π(x)) = ρ(x)σ(π(x)).

Also, by definition, we have σH(Q) ⊂ Q̃, so for y ∈ Q one has ρf (σH(y)) = 1 and
πf (σH(y)) = σH(y). Hence,

ρ(σ(y)) = ρf (σH(y))ρH(πf (σH(y))) = ρH(σH(y)) = 1.

It remains to prove that π is G-invariant. Given some x ∈ X(T ) and an element g ∈ G(T ),
we observe that

f(πf (gx)) = σ′(π′(f(gx))) = σ′(π′(f(x))) = f(πf (x)).

Thus, our assumption implies that πf (gx) and πf (x) locally in T belong to the same H-
orbit. Hence, locally in T we can find h ∈ H(T ) such that πf (gx) = hπf (x). Therefore,

π(gx) = πH(πf (gx)) = πH(hπf (x)) = πH(πf (x)) = π(x).

�

3.3. Representability theorem. As before, we fix a graded sheaf of OS-algebras E
over a scheme S, such that E is locally free of finite rank as an OS-module. The following
theorem shows that under the assumption that certain graded components of HH1(E|s)
vanish, the functor Mn (resp., M∞) is representable by an affine S-scheme.

For each intervals of integers I and J let us consider the following vanishing condition:

(V I
J ): HH i(E|s)−j = 0 for i ∈ I and j ∈ J , for every point s ∈ S.

Theorem 3.3.1. (i) Assume that either (V ≤1
[1,n−3]) holds, or S is a regular scheme of

dimension ≤ 1 and (V 1
[1,n−3]) holds. Then there exists a nice quotient A′n(E)/G[2, n − 1]

for the action of G[2, n−1] on A′n(E). This quotient A′n(E)/G[2, n−1], which is affine of
finite type over S, represents the functor Mn. If in addition S is affine then there exists

a strict nice quotient A′n(E)/G[2, n − 1], and the natural map of functors M̃n →Mn is
an isomorphism.

(ii) Assume that the condition (V ≤1
≥1 ) holds (resp., S is regular of dimension ≤ 1 and

(V 1
≥1) holds). Then the scheme lim←−nMn, affine over S, represents the functor M∞. In

the case when S is affine, the natural map M̃∞ →M∞ is an isomorphism.

(iii) Assume that there exists a nice quotient Mn for the action of G[2, n− 1] on A′n(E).
Assume in addition that either (V ≤2

n−1) holds, or S is regular of dimension ≤ 1 and (V 2
n−1)

holds. Then there exists a nice quotient Mn+1 for the action of G[2, n] on A′n+1(E), and
the natural map Mn+1 →Mn is a closed embedding.
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Assume in addition that either (V ≤2
≥n−1) holds, or S is regular of dimension ≤ 1 and

(V 2
≥n−1) holds. Then the scheme lim←−nMn represents the functor M∞, and the morphism

M∞ →Mn is a closed embedding. In the case when S is affine, the natural map M̃∞ →
M∞ is an isomorphism.

(iii’) Assume that there exists a nice quotient Mn for the action of G[2, n− 1] on A′n(E).

Assume in addition that either (V ≤3
n−1) holds, or S is regular of dimension ≤ 1 and (V

[2,3]
n−1 )

holds. Then the natural map Mn+1 →Mn is an isomorphism.
Assume in addition that either (V ≤3

≥n−1) holds, or S is regular of dimension ≤ 1 and

(V
[2,3]
≥n−1) holds. Then the natural morphism M∞ →Mn is an isomorphism.

The statement of the above theorem is a bit long since we aimed at greater generality,
so let us state a useful corollary from it.

Corollary 3.3.2. Assume the for some n ≥ 2 the conditions (V ≤1
[1,n−3]) and (V ≤2

≥n−1) hold

(resp., S is regular of dimension ≤ 1 and the conditions (V 1
[1,n−3]) and (V 2

≥n−1) hold).
Then the functor M∞ is representable be a scheme, which is affine of finite type over S.

Lemma 3.3.3. (i) Let (V •, d) be a bounded below complex of vector bundles over a scheme
S such that H i(V •|s) = 0 for i < p for every point s ∈ S. Then for each i < p, the image
im(di) of the differential di : V i → V i+1 is a subbundle of V i+1 and H i(V •) = 0.
(ii) Let (V •, d) be a complex of vector bundles over an affine scheme S. Assume that for
some integer i one has H i(V •) = 0 and the image of di (resp., di−1) is a subbundle of
V i+1 (resp., V i). Then there exist decompositions of vector bundles

V i = Bi ⊕Ki, V i+1 = Bi+1 ⊕Ki+1,

such that di−1 is a surjection V i−1 → Bi, while di factors as

di : V i → Ki ∼
> Bi+1 → V i+1.

In particular, for any ϕ : T → S the complex H0(T, ϕ∗V •) is exact in degree i. For
example, in the situation of (i) with affine S this is true for all i < p.

Proof. (i) Without loss of generality we can assume that V i = 0 for i < 0 and p > 0.
Then the map ds : V 0|s → V 1|s is injective for every s ∈ S. We claim that this implies
that d : V 0 → V 1 is the embedding of a subbundle. Indeed, it is enough to prove the
similar assertion for a morphism f : Am → An of free modules over a local ring A, such
that f modm is injective, where m ⊂ A is a maximal ideal. But in this case we can
choose a projection p : An → Am to a subset of m coordinates, such that p ◦ f modm is
an isomorphism. This implies that det(p ◦ f) is nonzero modm, hence it is invertible in
A. Thus, the composition p ◦ f : Am → Am is an isomorphism, so f is a split embedding.
Also, we see that H0(V •) = 0.

Now since V 1/d(V 0) is a vector bundle, we can replace our complex with the quasi-
isomorphic complex

V
•

: 0→ V 1/d(V 0)→ V 2 → . . .

and iterate the same argument (note that H∗(V
•|s) = H∗(V •|s)).

(ii) Let us set Bi := im(di−1) = ker(di), Bi+1 := im(di), and let Ki (resp., Ki+1) be the
image of any splitting of the projection V i → V i/Bi (resp., V i+1 → V i+1/Bi+1), which
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exists since S is affine. This gives the required decompositions of bundles over S. These
decompositions carry over to the complex H0(T, f ∗V •), which implies its exactness in
degree i. �

We also have the following version for complexes over regular schemes of dimension
≤ 1.

Lemma 3.3.4. Let (V •, d) be a complex of vector bundles over a regular scheme S of
dimension ≤ 1. Assume that for some i one has H i(V •|s) = 0 for all s ∈ S. Then
H i(V •) = 0, H i+1(V •) is locally free, and the image of the differential di : V i → V i+1

(resp., di−1) is a subbundle of V i+1 (resp., V i).

Proof. The question is local, so we can assume that S = Spec(A), where A is a spectrum
of a local ring. If A is a field then the assertion is clear, so we can assume that A is a
dvr. Let m denote the maximal ideal in A. Since m = (t), where t is not a zero divisor,
we have a short exact sequence of complexes

0→ V •
t
> V • → V •/mV • → 0.

Let us consider the corresponding long exact sequence of cohomology,

. . .→ H i(V •)
t
> H i(V •)→ 0→ H i+1(V •)

t
> H i+1(V •)→ . . .

By Nakayama lemma, we get H i(V •) = 0 (note that H i(V •) is finitely generated since A
is Noetherian). Also, multiplication by t is injective on H i+1(V •), so it is a free A-module.
Note that im(dj) is a free A-module of finite rank for any j, as a submodule of V j+1. Now
the exact sequence

0→ ker(di+1)/ im(di)→ V i+1/ im(di)→ im(di+1)→ 0

shows that V i+1/ im(di) is free. Finally, V i/ im(di−1) = V i/ ker(di) ' im(di) is also
free. �

Note that the sheaf of groups G[2, n − 1] is representable by a unipotent affine group
scheme over S which we still denote as G[2, n − 1]. Note also that the projection G →
G[2, n−1] admits a section (not compatible with the group structures) and so is universally
surjective.

Lemma 3.3.5. Let E be a sheaf of graded associative OT -algebras over a scheme T .
(i) Assume that HH1(E/T )−i = 0 for i = r, . . . , d − 2, where d ≥ 2, r ≥ 1. Suppose
m = (m•) and m′ = (m′•) are a pair of minimal A′n-structures on E, where n ≥ d, such
that m≤d = m′≤d and there exists a gauge transformation f with f ∗m = m′ and f≤r = id.
Then there exists a gauge transformation f ′, homotopic to f , such that f ′ ∗m = m′ and
f ′≤d−1 = id.
(ii) The natural map

A∞(E/T )/G(T )→ lim←−
n

A′n(E/T )/G[2, n− 1](T )

is surjective (where G is the group of gauge equivalences associated with E/T ). Assume
that either HH1(E/T )<0 = 0 or for some integer N > 0, one has HH2(E/T )<−N = 0.
Then the above map is an isomorphism.
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Proof. (i) In the case d < r+ 2 the assertion holds with f ′ = f . Now we use induction on
d (with the base case d = r + 1). Assuming the assertion holds for d − 1, we can find a
gauge transformation f ′, homotopic to f such that f ′ ∗m = m′ and f ′<d−1 = id. We have
to show that f ′ can be improved to make in addition f ′d−1 = 0. By Lemma 1.3.2(ii), we
have

0 = m′d −md = ±δ(f ′d−1),

so f ′d−1 is a Hochschild cocycle giving a class in HH1(E/T )1−j. Since this class is zero by
our assumptions, there exists a Hochschild cochain φ in CH0(E/T )1−j such that f ′d−1 =
[m2, φ]. By Lemma 1.3.7(ii), we can use φ to construct a homotopy from f ′ to a gauge
transformation f ′′ with f ′′<d−1 = f ′<d−1 and f ′′d−1 = 0.
(ii) To prove the surjectivity, suppose we have a collection (αn)n≥3 of minimal An-
structures on E/T , and a set of gauge equivalences (un ∈ G[2, n − 1](T )) such that
(αn+1)≤n = un · αn. Then we can recursively construct minimal An-structures (α′n), such
that (α′n+1)≤n = α′n, and gauge equivalences (vn ∈ G[2, n− 1](T )) such that α′n = vn · αn
and (vn+1)≤n−1un = vn. Namely, if (α′i), (vi) for i ≤ n are already constructed, then
we pick a gauge equivalence vn+1 ∈ G[2, n](T ), such that (vn+1)≤n−1 = vnu

−1
n , and set

α′n+1 := vn+1 · αn+1. Then (α′n) defines the required minimal A∞-structure.
For the injectivity part, consider first the case HH1(E/T )<0 = 0. Suppose α and β

are minimal A∞-structures such that α≤n is gauge equivalent to β≤n for each n. We are
going to construct recursively a sequence of gauge equivalences u1 = id, u2, u3, . . ., such
that (un)≤n−1 = id and for every n ≥ 2, one has

α≤n = (un−1un−2 . . . u1)β≤n.

Indeed, the induction base n = 2 is clear since α≤2 = β≤2. Assume that n ≥ 2 and (ui)
for i ≤ n − 1 are already constructed and satisfy the above property. Then the A′n+1-
structures α≤n+1 and (un−1un−2 . . . u1)β≤n+1 agree up to n, and are gauge equivalent.
Hence, by part (i), there exists a gauge equivalence un such that (un)≤n−1 = id and

α≤n+1 = (unun−1 . . . u1)β≤n+1.

It remains to note that the infinite product . . . u3u2u1 converges in G to some element u,
such that α = uβ.

In the case HH2(E/T )2−n = 0 for all n ≥ N , the proof of injectivity is easier: for any
pair of A∞-structures α and β such that α≤N is gauge equivalent to β≤N , we claim that α
is gauge equivalent to β. Indeed, this follows by iteratively applying Lemma 1.3.2(ii). �

Lemma 3.3.6. Let E/S be a sheaf of graded associative OS algebras over a scheme S,
such that E is locally free of finite rank over S. Assume in addition that the scheme S is
affine.
(i) Let us fix an integer d ≥ 2. Assume that either (V ≤1

[1,d−2]) holds, or S is regular of

dimension ≤ 1 and (V 1
[1,d−2]) holds. Let ϕ : T → S be a morphism of schemes, and let m

and m′ be a pair of minimal A′n-structures on ϕ∗E for some n ≥ d, such that m is gauge
equivalent to m′ (over T ) and m≤d = m′≤d. Then there exists a gauge equivalence u over
T , such that u≤d−1 = id and m′ = u ·m.
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(ii) Assume that either (V ≤1
≥1 ) holds, or for some N > 0, (V ≤2

≥N) holds (resp., S is regular

of dimension ≤ 1, and either (V 1
≥1) or (V 2

≥N) holds). Then the natural map

M̃∞(T )→ lim←−
n

M̃n(T )

is an isomorphism for every S-scheme T .

Proof. (i) Set E = ϕ∗E . Note that for each j, the Hochschild complex

(CH∗(E/T )−j, δ) = (H0(T,CH∗(E/T )−j, δ)

is obtained by taking global sections of the pull-back ϕ∗CH∗(E/S)−j. Thus, applying
Lemmas 3.3.3 and 3.3.4 to the complexes (CH∗(E/S)−j, δ) (which are bounded below),
we obtain that HH1(ϕ∗E/T )−j = 0 for j = 1, . . . , d − 2. Note that here the assumption
that E is a vector bundle over S implies that the same is true for the terms of these
complexes. Now the assertion follows from Lemma 3.3.5(i).
(ii) As in part (i), we get one of the vanishings HH1(ϕ∗E/T )<0 = 0 or HH2(ϕ∗E/T )<−N =
0. Hence, the assertion follows from Lemma 3.3.5(ii). �

Let us denote the graded components of the Hochschild differential as

δit : CH i(E/S)t → CH i+1(E/S)t.

Proof of Theorem 3.3.1.
(i) It is enough to prove the existence of a strict nice quotient for the G[2, n − 1]-action

on A′n = A′n(E) in the case when S is affine. Indeed, then it would follow that M̃n is

represented by this quotient (see Lemma 3.2.3), and hence, the map M̃n → Mn is an
isomorphism.

The existence of a strict nice quotient is proved by the induction on n, using Lemma
3.2.4. Assume that n > 2 and we already have a section Sn−1 for the G[2, n − 2]-action
on A′n−1. We have an exact sequence of sheaves of groups over S,

0→ CH1(E)2−n → G[2, n− 1]→ G[2, n− 2]→ 0.

We want to find a section for the CH1(E)2−n-action on A′n. By Lemma 3.3.3(i), there
exists a complement K2

2−n ⊂ CH2(E)2−n to the subbundle im δ1
2−n. Let SA′n denote the

closed subset of A′n given by the condition mn ∈ K2
2−n. Since the action of x ∈ CH1(E)2−n

on (m2, . . . ,mn) ∈ A′n changes mn to mn + δ1(x) and does not change (m2, . . . ,mn−1), we
see that SA′n is a section for the CH1(E)2−n-action on A′n. Furthermore, we claim that
the projection A′n → SA′n induced by the projection CH2(E)2−n → K2

2−n : m 7→ mK is
a strictly nice quotient for the action of CH1(E)2−n on A′n. Indeed, let us choosing any

splitting Q of a surjective map of bundles CH1(E)2−n
δ12−n
> im δ1

2−n. Then starting from
any (m2, . . . ,mn) ∈ A′n we will have

mn = (mn)K + δ1
2−nQ(m− (mn)K),

so that

(m2, . . . ,mn) = Q(m− (mn)K) ∗ (m2, . . . ,mn−1, (mn)K),

as required for a strictly nice quotient.
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Now we can apply Lemma 3.2.4 to the projection (3.1.1) and the compatible actions
of G[2, n − 1] → G[2, n − 2]. Note that to apply this Lemma we need to check that the
intersection of an G[2, n−1]-orbit with a fiber of πn is a CH1(E)2−n-orbit. But this follows
from Lemma 3.3.6(i). Thus, we deduce that

Sn := SA′n ∩ π−1
n (Sn−1)

is a section for the G[2, n− 1]-action on A′n.
(ii) First, assume that S is affine. Then, combining part (i) with Lemma 3.3.6(ii), we

derive that the functor M̃∞ is represented by the scheme lim←−nMn, affine over S. Hence,

in this case the map M̃∞ →M∞ is an isomorphism. Thus, in the case of general S the
map of sheavesM∞ → lim←−nMn becomes an isomorphism over an affine open covering of
S, hence, it is an isomorphism.
(iii) We can assume that S is affine and we have a nice section Sn for the action of
G[2, n − 1] on A′n(E). We claim that there exists a nice section Sn+1 for the action of
G[2, n] on A′n+1(E) and the projection Sn+1 → Sn is a closed embedding.

First, recall that A′n+1 is a closed subset of A′n × tot(CH2
1−n) given by the equation

δ2(mn+1) = −φn(m≤n),

where φn : A′n → tot(CH3
1−n) is a certain morphism (see Lemma 1.3.4(ii)) such that

δ3 ◦ φn = 0. Now by Lemmas 3.3.3(i) and 3.3.4, there exist decompositions of vector
bundles

CH2(E)1−n = B2 ⊕K2, CH3(E)1−n = B3 ⊕K3

such that B3 is the image of δ2 and the restriction δ2|K2 : K2 → B3 is an isomorphism.
Let (φB, φK) be the components of φn with respect to the decomposition of CH3

1−n. Then
the equations defining A′n+1 become

δ2(mn+1) = φB(m≤n), 0 = φK(m≤n).

Thus, on the subscheme SA′n+1 cut out by the condition mn+1 ∈ K2, we can solve the first
equation for mn+1, which shows that the projection SA′n+1 → An is a closed embedding.

Furthermore, SA′n+1 is a nice section for the action of CH1(E)1−n on A′n+1, so we can
apply Lemma 3.2.4 to deduce that the preimage Sn+1 ⊂ SA′n+1 is a nice section for the
action of G[2, n] on A′n+1(E). Note that here we use the fact that any two A′n+1-structures
m′ and m over ϕ : T → S, with m′≤n = m≤n, are in one orbit of CH1(E/T )1−n by the
triviality of HH2(E/T )1−n.

Hence, the composition Sn+1 ↪→ SA′n+1 → Sn is still a closed embedding .
The remaining assertions follow from this and from Lemma 3.3.6(ii).

(iii’) Again it is enough to consider the case when S is affine and there is a nice section
Sn for the action of gauge transformations on A′n(E). As in part (iii), we have a nice
section Sn+1 ⊂ SA′n+1 given as the preimage of Sn. Now, we observe that the additional
vanishing assumption we imposed give the vanishing of the component φK (by Lemmas
3.3.3(i) and 3.3.4). Thus, in this case the projection SA′n+1 → A′n is an isomorphism, and
hence the same is true for the projection Sn+1 → Sn.

The last assertion follows from this and from Lemma 3.3.6(ii). �
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3.4. A∞-structures with a segment of defining higher products. In the case when
E is a graded associative algebra with HH2(E)2−i 6= 0 only for i in some interval [q, q+p],
any A∞-structure on E is equivalent to the one with mi = 0 for 2 < i < q and is
determined by (mq, . . . ,mq+p). The following result (valid in characteristic zero) gives a
sufficient criterion for the corresponding moduli functor to be representable. Note that
it does not follow from Theorem 3.3.1, as we impose weaker vanishing assumptions on
HH1(E)i. In the case p < q − 2 we get a criterion for the moduli space to be a closed
subscheme of the affine space

∏q+p
n=qHH

2(E)2−n.

Theorem 3.4.1. Let E be a finite-dimensional graded associative algebra over a field k
of characteristic zero. Assume that for some integers p ≥ 0 and q ≥ 3, one has

HH1(E)1−i = 0 for i ∈ [2, p+ 1].

HH2(E)2−i = 0 for i > 2, i 6∈ [q, q + p]

Then for each n ≥ 3, there exists a strict nice quotient A′n/G[2, n − 1], so M̃n = Mn

is representable by an affine scheme over k. Furthermore, if p < q − 2 then Mp+q is

isomorphic to the affine space
∏p+q

n=qHH
2(E)2−n, and we have a natural closed embedding

M̃∞ =M∞ ↪→Mp+q.

Lemma 3.4.2. (i) Let c be a Hochschild cochain in CH2(E)2−n and let f be a gauge
transformation, such that f<k = id for some k ≥ 2. Then αfDcα

−1
f = Dc+c′, where

c′ ∈ CH2(E) has zero components in CH2(E)i for i > 3− k − n.
(ii) Assume that we are working over a field of characteristic zero. Let m and m′ be
A′n-structures on E (with given m2) such that m′r = mr for some r, 3 ≤ r < n, and
mi = 0 for 3 ≤ i < q, for some q ≥ 3. Assume also that n ≤ q + r − 3, and there exists
a gauge transformation f with f ∗ m = m′ and f≤r−2 = id. Then there exists a gauge

transformation f̃ with f̃ ∗m = m′ and f̃≤r−1 = id.

Proof. (i) This is a straightforward check using the explicit form of Dc and αf (see (1.1.1)
and (1.3.1)).
(ii) We have

0 = m′r −mr = ±δ(fr−1),

so [m2, fr−1] = 0. Hence, Dfr−1 commutes with Dm2 . Let us consider the automorphism
exp(Dfr−1) of Bar(E) (which is defined since the characteristic is zero). Then it commutes
with Dm2 and its component mapping from (E[1])⊗r−1 to E is fr−1. Thus, we have

αf = αf̃ ◦ exp(Dfr−1)

for some gauge equivalence f̃ such that f̃≤r−1 = id. Let us define m̃ from

Dm̃ = exp(Dfr−1)Dm exp(−Dfr−1),

so that m′ = f̃ ∗ m̃. Note that since Dfr−1 commutes with Dm2 , we have

exp(Dfr−1)Dm2 exp(−Dfr−1) = Dm2 .
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On the other hand, viewing exp(Dfr−1) as a gauge transformation, from part (i) we get
that for every i, q ≤ i ≥ n, one has

exp(Dfr−1)Dmi
exp(−Dfr−1) = Dmi+c(i),

with c(i) having zero components in CH2(E)>4−i−r. Hence, we get m̃ = m (since i ≥ q
and n ≤ q + r − 3), and the assertion follows. �

Proof of Theorem 3.4.1. As in Theorem 3.3.1, we prove the existence of a strict nice
quotient by induction on n. Assuming that such a quotient exists for the action of
G[2, n− 2] on A′n−1, and arguing as in Theorem 3.3.1, we reduce ourselves to proving the
following assertion for every n ≥ 3. Given a k-scheme T , A′n-structures m and m′ on ET ,
and a gauge equivalence f such that f ∗m = m′, we need to check that m′n−mn is in the
image of δ1

2−n.
First, we note that without loss of generality we can apply the same element of G[2, n−1]

to both m and m′ to make them simpler (since CH1
2−n is a normal subgroup in G[2, n−1]).

Thus, we can use the vanishing of HH2(E)2−i for 3 ≤ i < q, to assume that m′<q = m<q =
0.

Further, note that in the case n > p+q the assertion is automatic, due to the vanishing
of HH2(E)2−n (see Lemma 1.3.2(ii)). Thus, we can assume that n ≤ p+ q.

Next, applying Lemma 1.3.7(ii), we can modify f by a homotopy, so that we have
f≤p+1 = id. At this point, if n ≤ p+ 3 then m′n−mn = ±δ(fn−1), and we are done. Thus,
we can assume that n > p+ 3. In this case we can apply Lemma 3.4.2(ii) with r = p+ 2

and replace f by f̃ , such that f̃ ∗m = m′ and f̃≤p+2 = id. We can iterate this procedure
until we get f≤n−2 = 0, in which case m′n −mn = ±δ(fn−1).

Now assume that p < q − 2. Let us choose for each n ∈ [q, p + q] a subspace R2−n ⊂
ZH2(E)2−n of closed Hochschild cochains projecting isomorphically onto HH2(E)2−n.
For each n ∈ [q, p+ q] we have a natural closed embedding

n∏
i=q

R2−i ↪→ A′n,

extending (mq, . . . ,mn) to an A′n-structure with mi = 0 for 3 ≤ i < q. Indeed, we note
that due to the assumption p < q − 2, the A′n-identities in this case reduce to δ(mi) = 0
for i = q, . . . , n. Now we can prove by induction on n ∈ [q, p+ q] that

∏n
i=q R2−i is a nice

section for the action of G[2, n− 1] on A′n. Indeed, this follows easily from the inductive
construction of this section used before.

The last assertion follows from Theorem 3.3.1(iii). �

Corollary 3.4.3. Let E be a finite-dimensional graded associative algebra over a field k
of characteristic zero. If for some q ≥ 3 one has HH2(E)2−i = 0 for i > 3, i 6= q, then
M∞ is representable by a closed subscheme of the affine space HH2(E)2−q.

Example 3.4.4. There is an interesting example showing that the characteristic of the
field is important in the above Corollary. Namely, one can consider E to be the algebra
over a field k associated with the following quiver with relations. ??? Seidel in [50]
considers A∞-structures on E for k = C and proves that they are classified by the space
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HH2(E)−2 which can be identified with the space of binary quartics over k. It turns
out that in the case when k is a field of characteristic 2, one still has HH2(E)−1 =
HH2(E)<−2 = 0, while HH2(E)−2 is the space of binary quartics. However, the space
HH1(E)−1, which is identified with the space of binary quadrics, acts on HH2(E)−2 by
q ∗ f = f + q2 (where f ∈ HH2(E)−2 and q ∈ HH1(E)−1. Geometric meaning???

4. A∞-structures associated to curves

4.1. Moduli of curves with nonspecial divisors. We are going to consider A∞-
structures arising on certain special generators of perfect derived categories of projective
curves. Here we describe precisely which curves we consider and study the corresponding
moduli problem.

Let C be a reduced connected projective curve over a field k, and let p1, . . . , pn be
distinct smooth k-points of C (marked points). We assume that there is at least one
marked point on each irreducible component of C, and consider the following generator
of the perfect derived category Perf(C):

(4.1.1) G := OC ⊕
n⊕
i=1

Opi .

The fact that it is a generator is proved in a standard way: it is enough to show that
a sequence of line bundles O(−nD), where D = p1 + . . . + pn is contained in the thick
subcategory generated by G (see [46, Prop. 7.9]). But this follows easily from the exact
sequences

0→ OC(−(n+ 1)D)→ OC(−nD)→ OD → 0.

In addition, we impose the condition H1(C,O(p1 + . . . + pn)) = 0, i.e., we require the
divisor p1 + . . . + pn to be nonspecial. This assumption may seem a bit unmotivated at
the moment but it is needed in order to have a nice moduli space, as well as to guarantee
for the algebras Ext∗(G,G) to give a nice moduli space of A∞-structures.

Definition 4.1.1. We define by Unsg,n the moduli stack of pointed curves (C, p1, . . . , pn)
as above (we leave to the reader to define the corresponding groupoids-valued func-

tor). We also consider the Gn
m-torsor Ũnsg,n over Unsg,n, obtained by considering the data

(C, p1, . . . , pn, v1, . . . , vn) where vi is a nonzero tangent vector to C at pi.

The choices of nonzero tangent vectors rigidify our moduli problem. We will show

that under mild restrictions on the characteristic, Ũnsg,n is equivalent to a quasiprojective

scheme. Rescaling (v1, . . . , vn) we get an action of Gn
m on Ũnsg,n. The action of the diagonal

subgroup Gm ⊂ Gn
m will play a special role in our considerations.

We observe that there is a natural morphism

(4.1.2) π : Ũnsg,n → G(n− g, n)

to the Grassmannian of (n− g)-dimensional subspaces in the n-dimensional space, asso-
ciating with (C, p1, . . . , pn, v1, . . . , vn) the kernel of the coboundary homomorphism

H0(C,O(p1 + . . .+ pn)/O)→ H1(C,O).
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Note that this homomorphism is surjective since H1(O(p1 + . . . + pn)) = 0 and that the
tangent vectors give a trivialization of the space H0(C,O(p1 + . . .+pn)/O) =

⊕
iO(pi)|pi .

Recall that the Grassmannian G(n− g, n) is covered by the open cells US, isomorphic
to the affine spaces, indexed by subsets S ⊂ [1, n] of cardinality g: by definition, W is in
US if it is a graph of a linear map 〈uj | j 6∈ S〉 → 〈ui | i ∈ S〉. Equivalently, W ∈ US
means that the elements (ui)i∈S project to a basis of kn/W . This immediately imples
that the preimage π−1(US) is the open substack corresponding to (C, p•, v•) such that
H1(C,O(

∑
i∈S pi)) = 0.

Theorem 4.1.2. ([41, Thm. 1.2.2]) Assume that either n ≥ g ≥ 1, n ≥ 2 and we work
over Spec(Z[1/2]), or n = g = 1 and we work over Spec(Z[1/6]), or g = 0, n ≥ 2 and the

base is Spec(Z). Then the stack Ũnsg,n is equivalent to a scheme, affine over G(n−g, n) with
respect to the morphism π (see (4.1.2)). Furthermore, the push-forward of O under the

projection C \D → Ũnsg,n, where C is the universal curve, is locally free (of infinite rank).
Let Gm ⊂ Gn

m be the diagonal subgroup. Then π is Gm-invariant and the action of Gm

on the sheaf of algebras π∗O has nonnegative weights. The subscheme of Gm-invariants

in Ũnsg,n gives a section of the morphism π.

In fact, we can describe explicitly the curves corresponding to Gm-invariant points in

Ũnsg,n as follows. They are parametrized by the subspaces W ⊂ kn of dimension n− g. We
view such a subspace as a subspace of linear forms in independent variables u1, . . . , un,
identifying kn with

⊕n
i=1 k · ui. Then we define a subalgebra AW ⊂

⊕n
i=1 k[ui] by

AW := k · 1⊕W ⊕
n⊕
i=1

u2
i k[ui].

This algebra has a natural increasing filtration coming from the grading, and we define
the curve CW as

(4.1.3) CW := Proj(R(AW )),

where R(AW ) is the Rees algebra of AW . The Proj of a Rees algebra always comes with
a natural divisor, Proj(grF AW ), which in our case can be identified with the collection
of n distinct smooth points p1, . . . , pn. Furthermore, it can be equipped with canonical
tangent vectors vi at pi: the expression ti = u−1

i can be viewed as regular function in
a neighborhood of pi and gives rise to a formal parameter at it, so there is a unique
vi such that 〈vi, dti〉 = 1. We will check in the proof of Theorem 4.1.2 below that
π(CW , p1, . . . , pn, v1, . . . , vn) = W .

Sketch of proof of Theorem 4.1.2. First, we will consider the important particular case
n = g ≥ 1. The case n > g reduces to very similar considerations by considering the
standard open covering of the Grassmannian by affine spaces.

The main part of the proof is the construction of a canonical presentation and a canoni-
cal basis of the ring O(C \D), where D = p1 + . . .+pg, for a point (C, p1 . . . , pg, v1, . . . , vg)

in Ũnsg,g(k). By the Riemann-Roch theorem, the condition H1(O(D) = 0 is equivalent to

the condition H0(O(D)) = k. Furthermore, for any m ≥ 1 and i = 1, . . . , g, we still
have H1(O(D+mpi)) = 0, so H0(O(D+mpi)) is (m+ 1)-dimensional. Let us choose at
each point pi a formal parameter ti such that 〈vi, dti〉 = 1. Then we can choose rational

35



functions xi ∈ H0(O(D + pi)) (resp., yi ∈ H0(O(D + 2pi))) with the Laurent expansion
at pi starting with 1/t2i (resp., 1/t3i ). The ambiguity in choosing xi and yi is the fol-
lowing: we can change xi to xi + ai and yi to yi + bixi + ci, for some constants ai, bi, ci.
We will fix this ambiguity later. Note that for each m ≥ 1, the elements xm1 , . . . , x

m
g

(resp., xm−1
1 y1, . . . , x

m−1
g yg) project to a basis of H0(O(2mD))/H0(O((2m−1)D)) (resp.,

H0(O((2m+ 1)D))/H0(O(2mD))). Hence, the elements

(4.1.4) (xmi , x
m
i yi), for m ≥ 0, i = 1, . . . , g,

form a k-basis of the space H0(C \D,O).
Now the functions y2

i , xixj, xiyj and yiyj, where i 6= j, have some expressions as linear
combinations of this basis. By taking into account what we know about the poles of (xi)
and (yi), we obtain equations of the form

(4.1.5)

xixj = αjiyi + αijyj + γjixi + γijxj +
∑

k 6=i,j c
k
ijxk + aij,

xiyj = dijx
2
j + tjiyi + vijyj + rjixi + δijxj +

∑
k 6=i,j e

k
ijxk + bij,

yiyj = βjix
2
i + βijx

2
j + εjiyi + εijyj + ψjixi + ψijxj +

∑
k 6=i,j l

k
ijxk + uij,

y2
i = x3

i + qixiyi + rix
2
i + uiyi +

∑
j 6=i g

j
i yj + πixi +

∑
j 6=i k

j
ixj + si,

where i 6= j. Conversely, any algebra with generators (xi), (yi) and relations of this form
is spanned by the elements (4.1.4). The condition that they are linearly independent is
equivalent to a system of polynomial equations on the coefficients (these equations can
be found explicitly by applying the theory of Gröbner bases to an appropriate order on
monomials, see e.g., [11, Thm. 15.8]).

Furthermore, we can use the above equations to normalize our generators (xi), (yi).
Namely, if 2 and 3 are invertible, then we can choose them uniquely so that qi = ri =
ui = 0. If only 2 is invertible and g ≥ 2, then we can still make qi = ui = 0 and in
addition we can make γii0 = 0 for i 6= i0 and γi0i1 = 0 for some fixed indices i0 and i1,
i0 6= i1.

It is not hard to check that the obtained affine scheme is equivalent to our stack Ũnsg,g.
We use the natural filtration on the algebra given by the above equations to construct the
corresponding projective curve, and we use xi/yi as a formal parameter at the ith point
at infinity.

In order to treat the case n > g we consider the covering of Ũns
g,n by the open substacks

π−1(US), where S ⊂ [1, n], |S| = g. Over π−1(US) we will similarly construct a canonical
basis of H0(C \D,O), where now D = p1 + . . .+ pn. Namely, first we consider generators
xi, yi constructed as above for i ∈ S (where we use only the points (pi) with i ∈ S). Then
for each j 6∈ S, we add a generator xS,j ∈ H0(C,O(pj+

∑
i∈S pi)), such that xS,j = 1

tj
+. . .,

defined uniquely up to an additive constant. Then it is easy to see that the elements

(xmi , x
m
i yi, x

m+1
S,j ), i ∈ S, j 6∈ S,m ≥ 0

form a basis of O(C \D). We normalize these elements as before, except in the case g = 1,
n ≥ 2: here we normalize xi by the condition xi(pj0) = 0 for some j0 6∈ S.

Furthermore, in addition to relations between (xi, yi)i∈S as above we will have relations
in the algebra O(C \D) describing the expressions of xS,jxS,j′ , for j 6= j′, xixS,j and yixS,j
in terms of the basis. We can normalize xS,j by requiring that xS,j(pi0) = 0 for some fixed
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i0 ∈ S. Applying the theory of Gröbner bases we get an identification of π−1(US) with an
affine scheme of finite type over US.

Note that the Laurent expansion of xS,j at pi, where i ∈ S, should have form

(4.1.6) xS,j ≡
aS,ij
ti

+ . . .

It is easy to see that the functions (aS,ij)i∈S,j 6∈S are precisely the pull-backs of the standard
affine coordinates on US. One checks using the form of the relations in O(C \ D) that
the remaining coordinates in the affine embedding of π−1(US) have positive weights with
respect to Gm. In the case of a curve CW , for each j 6∈ S, the element

uj +
∑
i∈S

aS,ijui ∈ W

can be viewed as an element of the algebra AW = O(CW \D). Since u−1
i are parameters at

pi, we deduce that π(CW ) is the point of US with the coordinates (aS,ij), i.e., π(CW ) = W .
The fact that these are the only Gm-invariant points in π−1(US) follows from the above
observation about the Gm-weights of the affine coordinates. �

Remark 4.1.3. Let us consider the cuspidal curve Ccusp
1 of arithmetic genus 1, with the

affine part given by y2 = x3, over a field k of characteristic 2. Then we observe that the
derivation ∂y is well-defined on the algebra of functions on the affine part of Ccusp

1 (due
to ∂y(y

2) = 0). Furthermore, in terms of the parameter u = y/x on the normalization we
have ∂y = ∂u/u

2. Thus, at the point u = ∞ this vector field is regular and has a zero
of order 4. It follows that the curve Ccusp

1 × Spec(k[ε]/ε2) over the dual numbers has an
automorphism preserving the point at infinity and acting trivially on the tangent space

at it. Thus, in characteristic 2 the stack Ũns1,1 cannot be equivalent to a scheme.

4.2. Setup for moduli of A∞-structures. Next, we want to consider a moduli problem
for A∞-structures on a family of graded associative algebras over the Grassmannian G(n−
g, n), which we will then relate to the moduli space of curves Ũnsg,n.

Let Qn be the quiver with n+1 vertices marked as O,Op1 , . . . ,Opn and with the arrows

Ai : O → Opi , Bi : Opi → O, i = 1, . . . , n.

We denote by k[Qn] the corresponding path algebra in which we write the paths from
right to left. Let J0 be the two-sided ideal in the path algebra k[Qn] of Qn, generated by
the elements

AiBiAi, BiAiBi, AiBj,

where i 6= j. For an (n − g)-dimensional subspace W ⊂ kn we define JW ⊂ k[Qn] to be
the ideal generated by J0 together with the additional relations∑

xiBiAi = 0 for every
∑

xiei ∈ W,

and consider the corresponding quotient algebra

(4.2.1) EW = k[Qn]/JW .

We equip EW with the Z-grading by deg(Ai) = 0, deg(Bi) = 1.
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The similar definition makes sense whenW is anR-point of the GrassmanianG(n−g, n),
where R is a commutative ring. Then EW is an algebra over R, which is projective as an
R-module.

Lemma 4.2.1. Let (C, p•, v•) be an R-point of the moduli scheme Ũnsg,n, where R is a
commutative ring. Then there is a natural isomorphism of graded algebras

Ext∗(G,G) ' EW ,

where G is the sheaf (4.1.1) and W = π(C, p•, v•) is the corresponding R-point of the
Grassmannian.

Proof. For every i we have a natural identification Hom(O,Opi) = R ·Ai, where Ai = 1 ∈
H0(Opi). On the other hand, the tangent vector vi induces a trivialization of O(pi)|pi ,
and we define Bi ∈ Ext1(Opi ,O) as the class of the extension

0→ O → O(pi)→ O(pi)|pi → 0.

This gives an identification Ext1(Opi ,O) = R ·Bi. The composition BiAi is precisely the
image of the ith basis vector under the coboundary homomorphism

Rn =
n⊕
i=1

O(pi)|pi → H1(O).

This easily leads to the required identification. �

Remark 4.2.2. If we assume that H1(C,O(
∑

i∈S pi)) = 0 for S ⊂ [1, n], |S| = g, and use
the corresponding functions aS,ij defined by (4.1.6), then the relations in the corresponding
algebra Ext∗(G,G) take form

(4.2.2) BjAj =
∑
i∈S

aS,ijBiAi,

for every j 6∈ S.

The algebras EW are fibers of the natural sheaf of O-algebras Eg,n over G(n − g, n).
Furthermore, the group Gn

m acts naturally on G(n− g, n) (as diagonal matrices), and for
λ = (λ1, . . . , λn) = Gn

m we have a natural isomorphism

EW → Eλ·W : Ai 7→ Ai, Bi 7→ λiBi.

This equips the sheaf Eg,n with a Gn
m-equivariant structure.

We consider the moduli functor M∞ for minimal A∞-structures on the family of alge-
bras Eg,n, as in Sec.3.1.

4.3. Construction of a morphism. We are going to construct a natural morphism of
functors

(4.3.1) Ũnsg,n →M∞.

The idea is to associate with every curve (C, p1, . . . , pn, v1, . . . , vn) the gauge equivalence
class of the minimal A∞-structure on EW ' Ext∗(G,G), obtained by the homological
perturbation.

38



Let us explain how this can be done in a family with an affine base Spec(R). Let
π : C → Spec(R) be a flat projective family of curves, pi : Spec(R) → C are disjoint
sections, such that π is smooth near pi, and U = C \D is affine, where D = p1 + . . .+ pn.
We use the resolution P = [OC(−D)→ OC ] of the sheaf OD =

⊕
iOpi , so we get a locally

free sheaf of dg-algebras over C,

AG := End(OC ⊕ P ).

Now we need to get some dg-model for the cohomology of AG. One possibility is to
pick a finite affine open covering C = ∪iUi and to consider the corresponding Cech (total)
complex (which is equipped with a structure of a dg-algebra in a standard way). However,
the problem is that it is not clear why the obtained complex is homotopy equivalent to
its cohomology, so we can not get the input data needed for the homological perturbation
construction.

Instead we are going to consider a version of the Cech complex which uses the open
subset U = C \D together with relative formal disks around pi. Assuming that OC(U) is
a projective R-module, we will get in this way a complex which is homotopy equivalent to
its cohomology. Note that this projectivity condition is satisfied for the universal family

over an appropriate open covering of the moduli space Ũnsg,n (over Z[1/2] for n ≥ 2, or over
Z[1/6] for n = g = 1).

Then for every quasicoherent sheaf F on C we can consider the two-term complex
K•D(F) with

K0
D(F) = lim←−

n

H0
(
C,F/F(−nD)

)
⊕H0(U,F),

K1
D(F) = lim−→

m

lim←−
n

H0
(
C,F(mD)/F(−nD)

)
and the differential

d(s0, s) = κ(s)− ι(s0),

where we use natural maps ι : H0
(
C,F/F(−nD)

)
→ K1(F) and κ : H0(U,F)→ K1

D(F).
The construction of K•D(F) immediately generalizes to the case when F is a bounded

complex of vector bundles (by taking the total complex of the corresponding bicomplex).
Furthermore, if A is a complex of quasicoherent sheaves equipped with a structure of an
O-dg-algebra then we can equip the complex K•D(A) with a structure of a dg-algebra by
using the natural componentwise multiplication on K0

D(A) and using the multiplications

(4.3.2)
K0
D(A)⊗K1

D(A)→ K1
D(A) : (s0, s) · u = ι(s0) · u,

K1
D(A)⊗K0

D(A)→ K1
D(A) : u · (s0; s) = u · κ(s),

where on the right-hand side we use the natural product on K1(A).
Applying this construction to A = AG we get a dg-model K•D(AG) for the Ext-algebra

of G. We want to show that it is possible to get the input data for the homological
perturbation construction on this dg-algebra. In [38] we constructed explicit cohomology
representative and the homotopy needed for this. Here we will show how this can be
deduced using some simple properties of this setup.

Lemma 4.3.1. Let A be a sheaf of dg-algebras over C, which is bounded, i.e., concentrated
in degrees [−N,N ] for some N > 0. Assume that every term Ai is a direct sum of line
bundles of the form OC(mD) and that H∗(C,A) are projective R-modules. Assume also
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that O(U) is a projective R-module. Then K•D(A) is homotopy equivalent to a complex of
R-modules with the trivial differential.

Proof. We can think of K•D(A) as a total complex associated with the bicomplex

K•D(A−1)→ K•D(A0)→ K•D(A1).

By Lemma 1.2.3(ii), it is enough to check that each K•D(Ai) is homotopy equivalent to
a complex of projective R-modules. It suffices to prove this for K•D(OC(mD)). Choosing
relative formal parameters at ti, we can identify the latter complex with

O(U)⊕H≥−m
(κ,−ι)

>H.

whereH =
⊕n

i=1R((ti)),H≥−m =
⊕n

i=1 t
−m
i R[[ti]]. Let us setH<−m =

⊕n
i=1 t

−m−1
i R[t−1

i ],
so that we have a decomposition

H = H≥−m ⊕H<−m.

Let κ≥−m : O(U) → H≥−m and κ<−m : O(U) → H<−m be the components of κ with
respect to this decomposition. Then we have a natural projection

K•(OC(mD))
p
>
[
O(U)

κ<−m
>H<−m

]
.

We claim that it extends to a homotopy equivalence. Namely, we define the chain map[
O(U)

κ<−m
>H<−m

]
i
> K•(OC(mD))

by i(f) = (f, κ≥−m(f)), i(v) = v, for f ∈ O(U), v ∈ H<−m. Then p ◦ i = id, while the
homotopy between i ◦ p and id is given by h(v) = v≥−m for v ∈ H. This proves our claim.

It remains to note that H<−m is a free R-module, while O(U) is projective by assump-
tion. �

The terms AiG are direct sums of line bundles of the form OC(mD), and the coho-
mology H∗(K•D(AG)) ' Ext∗(G,G) are projective R-modules by Lemma 4.2.1. Hence,
assuming that O(U) is a projective R-module, Lemma 4.3.1 is applicable in our case, and
it gives a homotopy equivalence of K•D(AG) to its cohomology, which is needed to run the
homological perturbation.

Thus, for every standard open affine cell US ⊂ G(n − g, n), we can apply the above
construction to the open affine subset

Ũnsg,n(US) := π−1(US) ⊂ Ũnsg,n
and the sheaf of dg-algebras AG|π−1(US). Thus, the homological perturbation gives a
minimal A∞-structure on π∗Eg,n|π−1(US). Note that the obtained A∞-algebra is equivalent
to the dg-algebra K•D(AG|π−1(US)), so its gauge equivalence class does not depend on a
choice of homotopies up to gauge equivalence.

In particular, over the intersections π−1(US ∩ US′) the restrictions of the minimal A∞-
structures from π−1(US) and π−1(US′) are gauge equivalent. Thus, the map (4.3.1) is well
defined.

Next, we recall that there is a Gn
m-action on the moduli space Ũnsg,n, and that the open

subsets π−1(US) are invariant under this action. Furthermore, the sheaf of dg-algebras
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AG is Gn
m-equivariant, and the complexes K•D(AG|π−1(US)) still carry the algebraic Gn

m-
action (compatible with the action on the base rings). The constructions involved in
choosing a homotopy equivalence to the cohomology can all be made to be compatible
with the Gn

m-action. Thus, as a result we get minimal A∞-algebras over π−1(US), which
are Gn

m-equivariant, and the gauge equivalences on the intersections are Gn
m-invariant.

Lemma 4.3.2. For each S, the canonical isomorphism Ext∗(G,G) ' π∗EW of algebras

over Ũnsg,n(US) (defined for the universal family as in Lemma 4.2.1) is compatible with the
Gn
m-action, where the action on the left comes from the Gn

m-equivariant structure on G,
while the action on the right is induced by the rescalings

(4.3.3) Ai 7→ Ai, Bi 7→ λiBi,

for (λ1, . . . , λn) ∈ Gn
m.

Proof. This can be easily deduced from the fact that the isomorphism of Ext∗(G,G) with
π∗EW sends Bi to the generator of Ext1(Opi ,O), defined by the relative tangent vector vi,
and the Gm-action rescales vi by λ−1

i vi. �

Corollary 4.3.3. The map (4.3.1) is compatible with the Gn
m-actions, where the Gn

m-
action on M∞ is induced by the rescalings (4.3.3).

We will especially care about the action of the diagonal subgroup Gm ⊂ Gn
m, which acts

trivially on G(n − g, n). Note that the action of Gm on EW corresponds to the natural
Z-grading of EW (i.e., it acts on degree m component with the weight m). Note that the
induced action of Gm on A∞-structures rescales mn to λn−2mn.

4.4. Representability of the moduli of A∞-structures. Next, we want to prove that
M∞ is represented by an affine scheme of finite type over G(n − g, n). For this we
want to apply the criterion of Theorem 3.3.1, which requires some information about the
Hochschild cohomology of the algebras EW . We will get this information geometrically
by identifying HH∗(EW ) with the Hochschild cohomology of the corresponding special
curve CW .

Lemma 4.4.1. Let CW ∈ Ũnsg,n be the special curve corresponding to W ∈ G(n − g, n)
(see (4.1.3)). Then the minimal A∞-structure on Ext∗(G,G) ' EW coming from the
homological perturbation is homotopically trivial. Hence, we have an equivalence

Perf(CW ) ' Perf(EW )

and therefore, an isomorphism

HH∗(CW ) ' HH∗(EW ),

where W = π(C, p1, . . . , pn). The second grading on HH∗(EW ) corresponds to the weights
of the Gm-action, coming from the natural Gm-action on CW .

Proof. Recall that the point CW in the moduli space is Gm-invariant. Hence, by Corollary
4.3.3, the minimal A∞-structure on EW gives a Gm-invariant point ofM∞. But the Gm-
action simply rescales mn to λn−2mn. From this we can step by step deduce that all mn

with n > 2 can be made zero by a homotopy. Indeed, the class of [m3] in HH2(EW )−1 is
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Gm-invariant with respect to the weight-1 action, hence, [m3] = 0. Thus, we can choose a
gauge equivalent structure with m3 = 0. Next, look at the class of [m4] in HH2(EW )−2,
etc.

The equivalence of the perfect derived categories follows since G is a generator of
Perf(CW ). �

Thus, to apply our criterion of representability of the functor of A∞-structures, we need
to calculate HH1(CW ), or at least, its part of negative weight. For this we need some
geometric information about the curves CW .

Lemma 4.4.2. For each W ∈ G(n− g, n)(k), where k is a field, the curve C = CW is a
union of n irreducible components Ci, where pi ∈ Ci. These components are joined in a
single point q, which is the only singular point of C (with pi ∈ Ci \ {q}). Each component
Ci is either P1, or the cuspidal curve of arithmetic genus 1.

Proof. Since the points pi are smooth, it is enough to study the irreducible components of
the affine curve CW \D = Spec(AW ). The component Ci corresponds to the image of the
natural projections AW → k[ui]. This image contains k + u2

i k[ui] = k[u2
i , u

3
i ], so it either

equal to the latter subring, or is the entire k[ui]. This implies that the corresponding
irreducible component of CW \ D is either A1 or the cuspidal affine cubic, so that ui is
the affine coordinate on the normalization. �

Recall that the Hochschild cohomology of a quasi-projective scheme can be calculated
as

HH∗(X) = Ext∗X×X(∆∗OX ,∆∗OX),

where ∆ : X → X × X is the diagonal embedding. It is convenient to consider the
sheafified version H∗(X) := Ext∗(∆∗OX ,∆∗OX), which is a sheaf on X. There is a
local-to-global spectral sequence

(4.4.1) Epq
2 = Hp(X,HH∗) =⇒ HHp+q(X).

Note that we have HH0 = O, and applying Ext∗(·,∆∗OX) to the exact sequence

0→ J∆ → OX×X → ∆∗OX → 0,

where J∆ is the ideal sheaf of the diagonal, we immediately see that

HH1 ' HomX×X(J∆,∆∗OX) ' Hom(ΩX ,OX) ' TX ,

where TX is the tangent sheaf of X. In the case of a quasiprojective curve C spectral
sequence (4.4.1) degenerates, and we have exact sequences

(4.4.2) 0→ H1(C,HH i−1)→ HH i(C)→ H0(C,HH i)→ 0

for every i. In particular, for i = 1, we get an exact sequence

(4.4.3) 0→ H1(C,O)→ HH1(C)→ H0(C, T )→ 0.

Thus, to study HH1(C), we need some information on the global derivations, as well as
on H1(C,O).
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Lemma 4.4.3. Let C be a reduced projective curve over a field k with a Gm-action,
which is the union of irreducible components Ci, i = 1, . . . , n, joined in a single point q.

Assume that C \ {q} is smooth and that each normalization map C̃i → Ci is a bijection,

with C̃i ' P1. Assume also that the action of Gm on the Zariski tangent space at q has
negative weights. Then
(i) the action of Gm on H1(C,OC) has positive weights.
(ii) Assume in addition that C = CW for some subspace W ⊂ kn, where W = 0 if n = 1.
Assume also that either W = kn or char(k) 6= 2. If n = g = 1 then assume in addition
char(k) 6= 3. Then H1(C, T ) = 0, and the action of Gm on H0(C, T ) has weights 0 and
1.
(iii) Keep the assumptions of (ii). Let pi ∈ Ci \ {q} be the unique Gm-invariant point,
and let D =

∑
i pi. Then one has

H0(C, T (−D)) = H0(C, T )Gm , H0(C, T (−2D)) = 0.

Also, the natural map H0(C, T (nD))→ H0(C, T (nD)|D) is surjective for n ≥ 0.

Proof. (i) Let V = C \ {q}. We can choose a coordinate ui on an affine part of C̃i ' P1

containing q such that ui(q) = 0 and ui has some weight wi > 0 with respect to the
Gm-action. Let U be an affine neighborhood of q obtained by deleting on each Ci the
point where ui has a pole. We can calculate H1(C,OC) as the quotient of O(U \ {q}) by
O(V ) + O(U). Note that U \ {q} is the disjoint union of n copies of A1 \ {0}, with the
coordinates (ui). Since every uni with n ≤ 0 extends to a regular function on V , we see
that H1(C,OC) is spanned by positive powers of ui’s, so Gm has only positive weights on
it.
(ii) As before, we use the coordinates ui on affine parts of the normalizations C̃i. The
space H0(C, TC) embeds into the space of vector fields on V ' tni=1(Ci \ {q}), which are
spanned by umi ∂ui with m ≤ 2 (this comes from the condition of regularity at ∞).

We claim that if a vector field v = (Pi(ui, u
−1
i )∂ui) on U \ {q} extends to a derivation

of O(U) then Pi ∈ uik[ui] for every i. Indeed, assume first that n ≥ 2 and char(k) 6= 2.
Then applying v to the function on U corresponding to u2

i ∈ AW we get that v(u2
i )/2 =

Pi(ui)ui ∈ AW , which implies that Pi ∈ k[ui]. Furthermore, let Pi = ai moduik[ui].
Then Pi(ui)ui ≡ aiui modu2

i k[u2
i ], so the condition v2(ui) ∈ AW implies that aiv(ui) =

aiPi(ui) ∈ AW , which is possible only if ai = 0. This proves the claim in this case. In
the case W = kn and k is arbitrary, we have ui ∈ AW , so the condition v(ui) ∈ AW
immediately gives Pi ∈ uik[ui]. Finally, if n = g = 1 then applying v to u2

1 we get
P1(u1)u1 ∈ k[u2

1, u
3
1], so P1 = au−1

1 modu1k[u1]. Now v(u3
1) = 3au1 + . . ., so using that

char(k) 6= 3 we deduce a = 0, and the claim follows.
Thus, if v extends to a global section of TC then each Pi is a linear combination of ui

and u2
i , which implies that the weights of Gm on H0(C, TC) are 0 and 1. Similarly, we see

that if Pi ∈ u2
i k[ui] for every i then v extends to a derivation of O(U). Thus, H0(U, T )

and H0(V, T ) span H0(U \ {q}, T ), which gives the vanishing of H1(C, TC).
(iii) A vector field on U \ {q} has zero (resp., double zero) along D iff each Pi ∈ uik[u−1

i ]
(resp., Pi ∈ k[u−1

i ]). Together with calculations of (ii) this immediately implies our asser-
tions about H0(C, T (−D)) and H0(C, T (−2D)). Next, similarly to (ii) we can represent
sections of H0(C, TC(nD)) as vector fields v = (Pi(ui)∂ui) on U \{q} with deg(Pi) ≤ n+2,
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and the last assertion follows from the fact that v extends to a regular derivation of O(U)
whenever Pi ∈ u2

i k[ui]. �

Corollary 4.4.4. Let k be a field of characteristic 6= 2 (resp., 6= 2, 3 if n = 1). Then for
any subspace W ⊂ kn, where W = 0 if n = 1, one has

HH0(EW )<0 = HH1(EW )<0 = 0.

The same result holds for W = kn, n ≥ 2, with no restrictions on the characteristic.

Proof. By Lemma 4.4.1, we have HH1(EW ) ' HH1(CW ), where CW is the correspond-
ing special curve, and the second grading is induced by the Gm-action on CW . Now
HH0(CW ) = H0(CW ,O) lives in degree 0. For HH1 we use the exact sequence (4.4.3).
Now the assertion follows from Lemma 4.4.3(i)(ii). �

Proposition 4.4.5. Let us work over Z[1/2] if n ≥ 2, or over Z[1/6] if n = 1, or over Z
if g = 0. Assume that either n ≥ 2 or g = 1. Then the functor M∞ of A∞-structures (up
to a gauge equivalence) on the family (EW ) is represented by an affine scheme of finite
type over G(n− g, n).

Proof. Due to Corollary 4.4.4, the criterion of Theorem 3.3.1(ii) implies thatM∞ (resp.,
Mn) is represented by an affine scheme (resp., of finite type) over G(n− g, n). Next, we
note that by Lemma 4.4.1, HH i(EW ) is finite-dimensional for every i. Hence, by Theorem
3.3.1(iii), we derive that M∞ ' Mn for sufficiently large n, so it is of finite type over
G(n− g, n). �

4.5. Comparison of the moduli spaces via deformation theory.

Theorem 4.5.1. Assume that either

• n ≥ g ≥ 1, n ≥ 2 and we work over Z[1/2];
• n = g = 1 and we work over Z[1/6];
• g = 0, n ≥ 2 and we work over Z.

Then the map (4.3.1) is an isomorphism of schemes, compatible with the Gn
m-action.

Remark 4.5.2. It is plausible that that the (4.3.1) gives an equivalence of stacks over
Z. However, our method does not show it, since it is based on first proving representabil-
ity of each side. One could imaging constructing the map in the inverse direction that
would recover the affine part of the curve C as a certain moduli space of 1-dimensional
A∞-modules over Ext∗(G,G): a point p ∈ C \ D would correspond to the A∞-module
Ext∗(G,Op).

The crucial part of the proof of Theorem 4.5.1 is the comparison between the deforma-
tion theories of the curves CW (see (4.1.3)) and that of the trivial A∞-structures on the
algebras EW .

Let us fix a field k and consider the category Art(k) of local Artinian S-algebras with
fixed identifications of the residue field with k. Here S is our base ring, which is either Z
or Z[1/2] or Z[1/6]. Morphisms in this category are local homomorphisms inducing the
identity on the residue field.
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We use the following terminology from [27]. A deformation functor is a covariant functor
F : Art(k)→ Sets such that F (k) is a set with one element, and for any fibered product
diagram in Art(k),

B ×A C > C

B
∨

> A
∨

with B → A surjective (resp., A = k), the induced map

F (B ×A C)→ F (B)×F (A) F (C)

is surjective (resp., an isomorphism).
Given a curve (C, p1, . . . , pn, v1, . . . , vn) with smooth distinct marked points and the

nonzero tangent vectors at them, we have the corresponding deformation functor

Def(C, p•, v•) : Art(k)→ Sets

associating with R the set of isomorphism classes of flat proper families of curves πR :
CR → Spec(R) with sections pR1 , . . . , p

R
n , and trivializations of the relative tangent bundle

along them, such that the induced data over Spec(k) ⊂ Spec(R) is (C, p•, v•).
On the other hand, for any finite-dimensional minimal A∞-algebra E we have the

deformation functor

Def(E) : Art(k)→ Sets

of extended gauge equivalence classes of minimal A∞-algebras ER over R, reducing to E
over k. Let also, for a fixed n− g-dimensional subspace W ⊂ kn,

D̃ef(EW ) : Art(k)→ Sets

be the functor associating with R the set of pairs (WR,m•), where WR is an R-point of
G(n− g, n), reducing to W over k, and m• is a minimal A∞-structure on EWR

, reducing
to the trivial A∞-structure on EW , viewed up to a gauge equivalence reducing to the
identity modulo the maximal ideal. Note that we have a natural forgetful morphism

D̃ef(EW )→ Def(EW ).

Lemma 4.5.3. (i) Let M∞ be the functor of A∞-moduli associated with the family EW
over the Grassmannian. For every W ∈ G(n−g, n)(k), we have a natural identification of

D̃ef(EW )(R) with the fiber of M∞(R)→M∞(k) over the equivalence class of the trivial
A∞-structure on EW .
(ii) The functor D̃ef(EW ) is prorepresentable.

Proof. (i) First, we have to check that if a minimal R-linear A∞-structure m on EWR

reduces to an A∞-structure on EW that is gauge equivalent to the trivial one, then there
exists a gauge transformation f over R such that f ∗m reduces to the trivial A∞-structure
under R → k. This immediately follows from the fact that we can lift any gauge trans-
formation defined over k to a gauge transformation defined over R.

It remains to show that if we have minimal R-linear A∞-structures m and m′ on EWR
,

reducing to the trivial one on EW , and a gauge equivalence f such that f ∗m = m′ then
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there exists a gauge equivalence f ′ reducing to the identity on EW and such that we still
have f ′ ∗ m = m′. Let f , m, etc., denote the reduction with respect to R → k. Thus,
m = m′ is the trivial A∞-structure on EW . Since HH1(EW )<0 = 0 (see Corollary 4.4.4),
by Lemma 3.3.5, there exists a homotopy h = (hn) over k from the identity to f . We
can lift h to a homotopy h over R from the identity transformation of m′ to some gauge
transformation f1 with f1 ∗ m′ = m′ and f1 = f . Then setting f ′ = f−1

1 ◦ f gives the
gauge transformation with the required properties.

(ii) Since M∞ is representable by a scheme, part (i) implies that the functor D̃ef(EW )
is prorepresentable by the completion of the algebra of functions on M∞ at the k-point
corresponding to the trivial A∞-structure on EW . �

For each special curve CW = (CW , p•, v•) ∈ Ũnsg,n corresponding to a subspace W ∈
G(n−g, n)(k), where k is a field, the morphism (4.3.1) induces a morphism of deformation
functors

(4.5.1) Def(CW )→ D̃ef(EW ).

We stress that here Def(CW ) denotes the functor of deformations of not just a curve but
a curve with marked points and tangent vectors at them. The key step in the proof of
Theorem 4.5.1 is that under some assumptions on the characteristic of k, the morphism
(4.5.1) is an isomorphism.

Proposition 4.5.4. Assume that either n ≥ 2 and g = 0, or n ≥ 2 and the characteristic
of k is 6= 2, or n = g = 1 and the characteristic of k is 6= 2, 3. Then the morphism (4.5.1)
is an isomorphism.

Recall that the tangent space to a functor F : Art(k) → Sets is tF := F (k[ε]/(ε2)).
A morphism of deformation functors F → G is called smooth if it satisfies the following
lifting property: for every surjection B → A in Art(k), the induced map

F (B)→ G(B)×G(A) F (A)

is surjective. A morphism F → G is called étale if it is smooth and induces an isomorphism

tF
∼
> tG.

The main idea of the proof of Proposition 4.5.4 is that it is enough to check that the
morphism (4.5.1) is étale. Indeed, this is a consequence of the following general result.

Lemma 4.5.5. (cf. [27, Cor. 2.11]) Let φ : F → G be an étale morphism of deformation
functors, where G is prorepresentable. Then φ is an isomorphism.

Proof. First, since φ is smooth, applying the lifting property to the surjection A→ k, we
see that F (A) → G(A) is surjective for every A. Secondly, we claim that the fact that
the induced map tF → tG is injective, together with prorepresentability of G, imply that
F (A)→ G(A) is injective. Indeed, it is enough to prove that if we have a small extension

0→M → B → A→ 0

and F (A) → G(A) is injective then F (B) → G(B) is also injective. To this end we
observe that there is an isomorphism of rings

B ×A B ' B ×k (k ⊕M) : (b, b′) 7→ (b, (b, b′ − b)),
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where k⊕M is the trivial small extension of k, and we denote by b the reduction of b ∈ B
modulo the maximal ideal. Therefore, we get a canonical morphism

ηF : F (B)× F (k ⊕M) ' F (B ×k (k ⊕M)) ' F (B ×A B)→ F (B)×F (A) F (B).

Using this map (which is surjective by the definition of a deformation functor), we can
construct a transitive action of F (k ⊕M) ' tF ⊗k M on every fiber of the map F (B)→
F (A). Namely, given ξ ∈ F (B) and x ∈ F (k ⊕M) we define x ∗ ξ ∈ F (B), in the fiber
containing ξ, so that

ηF (ξ, x) = (ξ, x ∗ ξ).
These actions for F and G are compatible but for G we also know that ηG is an iso-
morphism since G is prorepresentable. This easily implies the required injectivity of
F (B)→ G(B). �

Thus, we will need to study the tangent spaces to our deformation functors and also
the smoothness of the map between them. For studying smoothness the following notion
is extremely useful. A complete obstruction theory with values in a k-vector space V for
such a functor is the data, for every small extension e,

(4.5.2) 0→M → B → A→ 0

in Artk (this means that M is an ideal in B annihilated by the maximal ideal of B), of
a map ve : F (A)→ V ⊗k M such that and element ξ ∈ F (A) lifts to F (B) if and only if
ve(ξ) = 0. In addition, we require the obstruction map to be compatible with morphisms
of small extensions.

We will use the following standard smootheness criterion for a morphism φ : F → G
of deformation functors: If φ extends to a compatible morphism of obstruction theories
VF → VG, which is injective, while the induced map of tangent spaces tF → tG is surjective,
then φ is smooth (see [27, Prop. 2.17]). The proof is an easy exercise using the action
of tF ⊗k M on the fibers F (B) → F (A) for a small extension (4.5.2), as in the proof of
Lemma 4.5.5.

We will also need the following standard result (it is proved in [27, Prop. 2.18] using
universal obstruction theories).

Lemma 4.5.6. Let F → G→ H be morphisms of deformation functors, such that F → H
is smooth and the induced map on tangent spaces tF → tG is surjective. Then F → G is
smooth.

Proof. Given a small extension (4.5.2), and an element (ξF , ηG) ∈ F (A) ×G(A) G(B) we
want to lift it to an element ηF ∈ F (B). Let ηH ∈ H(B) be the image of ηG. By
smoothness of F → H we can lift the element (ξF , ηH) ∈ F (A)×H(A)H(B) to an element
η̃F ∈ F (B). The problem is that the image of η̃F in G(B) differs from ηG. However, it
lies in the same fiber of the map to G(A), so the image of η̃F in G(B) differs from ηG by
an action of an element in tG ⊗kM . Thus, using the surjectivity of the map tF → tG, we
can correct η̃F by an action of an element in tG ⊗k M , so that the resulting element ηF
projects to ηG (without changing its image in F (A)). �

We have the following standard obstruction theory for deformations of A∞-structures.
For an A∞-algebra E, for every integer n, the Hochschild cochains of internal degree ≤ n
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form a subcomplex CH•(E)≤n in CH•(E). We denote by HH∗(E)≤n its cohomology
(note that the map HH∗(E)≤n → HH∗(E) is not necessarily injective).

Lemma 4.5.7. (i) Let Ek be a minimal A∞-algebra over k. Let us consider the functor
on Artk associating with R ∈ Artk the set of deformations of Ek to a minimal A∞-algebra
structure on a R-algebra ER (where ER is flat over R) up to extended gauge transfor-
mations (see Definition 1.1.4). Note that here we allow to deform m2 as well. Then the
tangent space to this deformation functor is naturally identified with HH2(Ek)≤0. Further-
more, there is a complete obstruction theory for this functor with values in HH3(Ek)≤0.
Similar statements hold for deformations of a small minimal A∞-category.

(ii) The tangent space to the functor D̃ef(EW ) can be identified with

HH2(EW )<0 ⊕ TWG(n− g, n).

There is a complete obstruction theory for this functor with values in HH3(EW )<0.

Proof. (i) Any A∞-structure of E⊗ k[ε]/(ε2) extending m = (mn) has form m+ εc, where
c = (c2, c3, . . .) ∈ CH2(E)≤0 satisfies [m, c] = 0. It is easy to see that the extended gauge
transformations amount to changing c by a Hochschild coboundary.

Given a small extension
0→M → B → A→ 0

in Artk, and a minimal A∞-algebra EA, deforming Ek, we can lift each mi to some
Hochschild cochain m̃i ∈ CH2(EB)2−i (such a lifting exists since EB is free as a B-
module, as any flat module over an Artinian local ring is free, see [56, 051E]). Let D
be the coderivation of Bar(EB) associated with m̃. The A∞-equations hold modulo M ,
hence

D2 = Dφ

for some φ ∈M ⊗B CH3(EB)≤0 = M ⊗k CH3(Ek)≤0. We have

[D,D2] = [D,Dφ] = 0,

so φ is a Hochschild cocycle. If we choose different liftings of mi then D would change to
D +D′ where D′ takes values in M ⊗k Bar(Ek). Then

(D +D′)2 = Dφ + [D,D′] + (D′)2 = Dφ + [D,D′]

since M2 = 0, so φ would change by a Hochschild coboundary. Thus, the class of φ in M⊗
HH3(Ek)≤0 is well defined. Conversely, if this class is zero then we can correct our choice
of m̃ to make φ = 0, so that m̃ defines an A∞-structure. Thus, φ is a complete obstruction
for the functor of A∞-structures. Since any extended gauge transformation over A lifts
to the one over B, the same obstruction works for the extended gauge equivalence classes
of A∞-structures.
(ii) The tangent space classifies pairs (f,m•), where f : Spec(k[t]/(t2)) → G(n − g, n) is
a morphism sending the closed point to W , and m• is a minimal A∞-structure on f ∗E ,
extending the given m2, reducing to the trivial one modulo (t), up to a gauge equivalence.
Then f corresponds to a tangent vector in TWG(n−g, n), while the class of (m3,m4, . . .) is
an element in HH3(EW )<0. The obstruction theory is obtained from the usual obstruction
theory for A∞-structures in part (i), using the fact that G(n− g, n) is smooth. �
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Remark 4.5.8. In general the spaces HH i(EW )<0 are given by the products of the
components HH i(EW )j for j < 0. However, in our case the spaces HH i(EW ) are finite-
dimensional, by Lemma 4.4.1, so for each i there is only finitely many j with HH i(EW )j 6=
0.

For a scheme S over a field k we denote by LS the cotangent complex of S over k.
Recall that in the case when S is smooth, this is just the sheaf of Kähler differentials ΩS.
In general, it should be viewed as a nonadditive derived functor of Ω. For example, in
the affine case S = Spec(A) it can be computed by taking a simplicial resolution by free
commutative algebras P• → A and setting LA = ΩP• ⊗P• A (see [56, 08P5]).

It is well known that the deformation theory of S is governed by Ext1(LS,OS), which is
the tangent space to deformations, and Ext2(L,OS) which is where the obstructions take
values. Thus, we need to understand these spaces for our curves C = CW , or rather the
corresponding map to the same spaces for deformations of A∞-structures. One of tricks
will be to reduce to considering the affine curves U = C \D. The point is that in this case
there are no higher products, so we just consider the map from deformations of O(U) as a
commutative algebra to its deformations as an associative algebra. One has the following
result about the induced map on the tangent spaces and obstuction theories.

Lemma 4.5.9. Let C be a projective connected reduced curve over a field k, D = p1 +
. . . + pn ⊂ C a finite subset of smooth points, such that U = C \ D is affine. Then the
natural map

(4.5.3) Exti(LU ,OU)→ HH i+1(U)

is an isomorphism for i = 1, and is an injection for i = 2.

Proof. By [45, Thm. 8.1], there is a spectral sequence

Epq
2 = Extp(

∧q
LU ,OU) =⇒ HHp+q(U)

where
∧•(?) denotes the exterior power functor on bounded above complexes. Since

LU ∈ D≤0, it follows that
∧i LU ∈ D≤0, so Epq

2 6= 0 only for p ≥ 0 (and q ≥ 0). Since U
is affine, we also have Ep0

2 = 0 for p > 0. We claim also that E0q
2 = 0 for q > 1. Indeed,

we have

Hom(
∧q

LU ,OU) = Hom
(
H0(

∧q
LU),OU

)
.

Note that the coherent sheaf H0(
∧q LC) on C is supported on the singular locus of C

(since q > 1), which is contained in U . Therefore, we have

Hom
(
H0(

∧q
LU),OU

)
' Hom

(
H0(

∧q
LC),OC

)
.

But OC cannot have subsheaves with finite support since all global functions on C are
constant, so the above space is zero, and our claim follows.

Thus, the spectral sequence implies that the map (4.5.3) is an isomorphism for i = 1,
while for i = 2 it fits into an exact sequence

0→ Ext2(LU ,OU)→ HH3(U)→ Ext1(
∧2

LU ,OU)→ 0.

�
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The following lemma shows that we do not loose any information on the tangent spaces
and obstruction spaces by passing from the projective curves C = CW to the affine curves
U = C \D.

Lemma 4.5.10. Assume that either W = kn and n ≥ 2, or k has characteristic 6= 2
(resp., 6= 2, 3 if n = 1). Let C = CW be a special curve over k, where W = 0 if n = 1,
and let D = p1 + . . .+ pn, U = C \D. Then the natural morphism

(4.5.4) Ext1(LC ,OC(−2D))→ Ext1(LC ,OC(−D))

is surjective, while the natural morphism

Ext1(LC ,OC(−D))→ Ext1(LU ,OU)

is an isomorphism. The natural morphism

Ext2(LC ,OC(−2D))→ Ext2(LU ,OU)

is an isomorphism.

Proof. (i) First, we observe that since LC is a locally free sheaf on the smooth part of C,
it follows that

Ext>0(LC ,OD) = 0.

Thus, applying the functor Ext•(LC , ·) to the exact sequences

0→ OC(nD)→ OC
(
(n+ 1)D

)
→ OD((n+ 1)D)→ 0

we get that the natural maps

Exti
(
LC ,OC(nD)

)
→ Exti

(
LC ,OC((n+ 1)D)

)
are isomorphisms for i = 2 and are surjective for i = 1. Furthermore, since LC ∈ D≤0(C)
and H0(LC) = ΩC , the map

(4.5.5) Hom(LC ,OC(nD))→ Hom(LC ,OD(nD))

can be identified with the map

H0(C, T (nD))→ H0(D, T (nD)|D)

which is surjective for n ≥ 0 by Lemma 4.4.3(iii). This implies that the map Ext1
(
LC ,OC(nD)

)
→

Ext1(LC ,OC((n+ 1)D)) is an isomorphism for n ≥ −1.
It remains to prove that the natural map

lim−→
n

Exti
(
LC ,OC(nD)

)
→ ExtiC(LC ,OU) ' ExtiU(LU ,OU)

is an isomorphism for any i. This would be immediate if LC were a perfect complex but
we do not know this.2 We will show that it is enough to use the fact LC is perfect in some
open neighborhood U ′ of D. Since C is smooth near D, we can just take as U ′ the smooth
locus in C. Now C is covered by U and U ′. Now the long exact sequences associated with
Cech resolutions

0→ OC(nD)→ OU ⊕OU ′(nD)→ OU∩U ′ → 0

2Here we correct a mistake in the proof of [38, Lem. 4.4.5](ii).
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show that it is enough to see that a similar assertion is true with OC(nD) replaced by
OU ′(nD). But in this case it reduces to the fact that the map

lim−→
n

Exti
(
LC ,OU ′(nD)

)
→ Exti(LC ,OU∩U ′)

is an isomorphism for any i, which is true since LC |U ′ is perfect. �

We also need similar assertions for Hochschild cohomology.

Lemma 4.5.11. (i) Let C be a reduced projective curve over a field k, U ⊂ C a comple-
ment to a finite number of smooth points. Then the natural morphism

HH i(C)→ HH i(U)

is an isomorphism for i ≥ 3.
(ii) Now let C = CW and U = C \D. Then under the assumptions of Lemma 4.5.10, the
map

HH2(C)→ HH2(U)

is an isomorphism

Proof. (i) Note that for i ≥ 2, the sheaf Hi has finite support (since it is zero on the
smooth part of C), so it does not have higher cohomology. Thus, for i ≥ 3, the horizontal
arrows in the commutative diagram

HH i(C) > H0(C,Hi)

HH i(U)
∨

> H0(U,Hi)
∨

are isomorphisms. Since Hi has finite support in U , the right vertical arrow is an isomor-
phism, hence, the left vertical arrow is also an isomorphism.
(ii) We have H1(U,H1) = 0 since U is affine. On the other hand, H1(C,H1) = H1(C, T ) =
0 for C = CW , by Lemma 4.4.3(ii). Thus, the argument of part (i) still applies for i = 2
and C = CW . �

Proof of Proposition 4.5.4 . Let UW be the affine curve CW \D, where D = p1 + . . .+ pn.
Let also C be the (non-full) subcategory in the A∞-enhancement of the derived category
of Qcoh(CW ) with the objects (G = OC ⊕ Op1 ⊕ . . . ⊕ Opn ,OUW

), all endomorphisms
(including Ext∗) of G, and all morphisms from G to OUW

and all endomorphisms of OUW

(but we do not include morphisms from OUW
to G). We have the following commutative

diagram of functors

(4.5.6)

Def(UW ) < Def(CW ) > D̃ef(EW )

Def(O(UW ))
∨

< Def(C)
∨

> Def(EW )
∨

where in the lower we consider deformations of A∞-algebras (A∞-category in the case of
C). Note that since O(UW ) lives in degree 0, this means that Def(O(UW )) is the functor
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of deformations of O(UW ) as an associative algebra. On the other hand, Def(UW ) can be
thought of as deformations of O(UW ) as a commutative algebra.

It is easy to see that each functor in this diagram is a deformation functor, as it describes
deformations of some algebraic structure (to check the first condition in the definition one
can use the appropriate obstruction theory).

As was mentioned earlier, the key statement need to prove is that the morphism (4.5.1)
is étale. To this end we will establish the following properties of the functors in our
diagram 4.5.6:

Def(UW ) <
sm (Step 2)

Def(CW )
isom on t(Step 4)

> D̃ef(EW )

Def(O(UW ))

ét (Step 2)

∨
< Def(C)

sur on t(Step 3)

∨
ét (Step 1)

> Def(EW )
∨

where “sm” (resp., “ét”) means “smooth” (resp., “étale”); “isom on t” (resp., “sur on t”)
means isomorphism (resp., surjection) on tangent spaces. Then the fact that (4.5.1) is
étale will follow formally from Lemma (4.5.6) (see Step 5 below).
Step 1. The map Def(C)→ Def(EW ) is étale. To prove that this morphism is étale it is
enough to check that it induces an isomorphism on tangent spaces and an embedding on
obstruction spaces. By Lemma 4.5.7, these spaces are given by HH2

≤0 and HH3
≤0 (applied

to C and EW ), respectively. Note that our morphism corresponds to the embedding of the
full subcategory on the object G into C. Since O(UW ) is the algebra of endomorphisms
of the A∞-module Hom(G,OUW

), it follows that this embedding induces an isomorphism

HH∗(C) ∼
> HH∗(EW )

(see [17], [25, Thm. 4.1.1]).
Hence, it is enough to check that the vertical arrows in the commutative diagram

HH i(C)≤0 > HH i(EW )≤0

HH i(C)
∨

> HH i(EW )
∨

are isomorphisms for i = 2 and that the map HH3(C)≤0 → HH3(C) is an embedding.
We have an exact sequence

(4.5.7)
HH1(C)→ H1

(
CH(C)≥1

)
→ HH2(C)≤0 → HH2(C)→ H2

(
CH(C)≥1

)
→

HH3(C)≤0 → HH3(C),
where CH(?)≥i := CH(?)/CH(?)≤i−1. Since EW has trivial higher products, we have a
canonical decomposition HH i(EW ) =

∏
j HH

i(EW )j, so the similar exact sequence for
EW has trivial connecting homomorphisms. Thus, it is enough to check that

(4.5.8) H2
(
CH(C)≥1

)
= H2

(
CH(EW )≥1

)
= 0

and that the map HH1(C)→ H1
(
CH(C)≥1

)
is surjective.

Since C has morphisms only of degree 0 and 1, the only possible cochains in CHs+t(C)t
with s + t = 2 and t ≥ 1 correspond to (s, t) = (1, 1). But such cochains should have
form Hom0(X, Y ) → Hom1(X, Y ), so they all vanish (since we exclude the identities in
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the Hochschild complex). The same argument works for EW , so we get the vanishings
(4.5.8).

Similar considerations with cochains show that

H1
(
CH(C)≥1

)
= CH1(C)1 = Ext1(O,O)⊕

g⊕
i=1

Ext1(Opi ,Opi)⊕
g⊕
i=1

Ext1(Opi ,O),

and the same formula holds for EW . Thus, in the commutative square

HH1(C) > H1
(
CH(C)≥1

)

HH1(EW )
∨

> H1
(
CH(EW )≥1

)∨

both vertical arrows are isomorphisms. Since the bottom horizontal arrow is surjective,
the top horizontal arrow is surjective too, as required.
Step 2. The map Def(CW )→ Def(UW ) is smooth, while the map Def(UW )→ Def(O(UW ))
is étale.

First, we observe that the maps on tangent spaces induced by these maps are

Ext1(LCW
,O(−2D))→ Ext1(LUW

,OUW
)→ HH2(UW ),

the first of which is surjective by Lemma 4.5.10, while the second is an isomorphism by
Lemma 4.5.9. Similarly the maps of obstruction spaces are

Ext2(LCW
,O(−2D))→ Ext2(LUW

,OUW
)→ HH3(UW ),

of which the first is an isomorphism by Lemma 4.5.10, while the second is injective by
Lemma 4.5.9. Hence, the maps Def(CW ) → Def(UW ) and Def(UW ) → Def(O(UW )) are
smooth and the second is étale.
Step 3. The map Def(CW )→ Def(C) induces a surjection on tangent spaces.

Indeed, Step 2, together with the commutativity of diagram (4.5.6), implies that
Def(C)→ Def(O(UW )) induces a surjection on tangent spaces. But

HH2(UW ) ' HH2(CW ) ' HH2(EW )

by Lemmas 4.5.11 and 4.4.1, so the dimensions of tangent spaces are the same. Hence,
Def(C)→ Def(O(UW )) induces an isomorphism on tangent spaces.

It follows that the maps induced on tangent spaces by Def(CW ) → Def(C) and by
Def(CW )→ Def(O(UW )) are isomorphic, so the required surjectivity follows from Step 2.

Step 4. The map Def(CW )→ D̃ef(EW ) induces an isomorphism on tangent spaces.
Note that by Steps 1 and 3, we know that the map Def(CW ) → Def(EW ) induces a

surjection on tangent spaces. Hence, the same is true for D̃ef(EW )→ Def(EW ). We claim
that there is a commutative diagram with exact rows

(4.5.9)

kn
α

> Ext1(LCW
,O(−2D))

β
> HH2(C) > 0

kn

=

∨
α′

> HH2(EW )<0 ⊕ TWG(n− g, n)

γ
∨

β′

> HH2(EW )≤0

γ′

∨
> 0
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where the arrow α (resp., α′) is induced by the Gn
m-action on the functor Def(CW ) (resp.,

D̃ef(EW )), while the right commutative square is induced by the right commutative square
in (4.5.6) (flipped about the diagonal). Note that we already know that γ′ is an isomor-
phism and β′ is surjective. To see the exactness of the top row we observe that by Steps
1 and 2, the map β can be identified with the morphism

Ext1(LCW
,O(−2D))→ Ext1(LCW

,O(−D))
∼
> Ext1(LUW

,OUW
),

where the second arrow is an isomorphism by Lemma 4.5.10. Hence, its kernel is the
image of the coboundary map H0(CW , T (−D)|D) → Ext1(LCW

,O(−2D)), which can be
identified with α. The exactness of the bottom row in (4.5.9) would follow from the
exactness in the middle of the sequence

kn → TWG(n− g, n)→ HH2(EW )0 → 0,

where the second arrow is the tangent map to the map W → EW , and the first arrow
corresponds to the Gn

m-action on G(n− g, n). But this follows from the observation that
a k[t]/(t2)-point of G(n − g, n), W , can be recovered from the isomorphism class of the
corresponding algebra EW up to a Gn

m-action.
Note that diagram (4.5.9), together with the fact that γ′ is an isomorphism, immediately

implies that γ is surjective. It remains to prove that the restriction of γ to im(α) is

injective. To this end we use the fact that each point CW ∈ Ũnsg,n lies in the section
σ(G(n− g, n)) of the projection to G(n− g, n), and that the Gn

m-orbit of CW still lies in
σ(G(n− g, n)). Hence, the tangent space to this orbit maps injectively to TWG(n− g, n),
which implies our assertion.
Step 5. The composition

Def(CW )→ Def(UW )→ Def(O(UW )),

is smooth since both arrows are smooth by Step 2. Hence, applying Lemma 4.5.6 to the
composition

Def(CW )→ Def(C)→ Def(O(UW ))

and using Step 3, we deduce that the morphism Def(CW )→ Def(C) is smooth.
Next, we deduce that the composition

Def(CW )→ Def(C)→ Def(EW )

is smooth since the second arrow is smooth by Step 1. Hence, applying Lemma 4.5.6 to
the composition

Def(CW )→ D̃ef(EW )→ Def(EW )

and using Step 4, we deduce that Def(CW ) → D̃ef(EW ) is smooth. Since it induces

an isomorphism on tangent spaces, we get that it is étale. But the functor D̃ef(EW ) is
prorepresentable (see Lemma 4.5.3), hence, by Lemma 4.5.5, the morphism Def(CW ) →
D̃ef(EW ) is an isomorphism. �

Proof of Theorem 4.5.1. We know that both schemes are affine of finite type over
G(n − g, n) (by Theorem 4.1.2 and Proposition 4.4.5), and that the morphism (4.3.1)
is compatible with Gm-action. Furthermore, the Gm-invariant loci of each scheme provide
a section of the projection to G(n− g, n), and the weights of Gm are non-negative on the
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spaces of functions (locally over G(n−g, n)). Thus, locally over G(n−g, n) our morphism
corresponds to a homomorphism f : A→ B of non-negatively graded algebras such that
f0 : A0 → B0 is an isomorphism. Furthermore, by Proposition 4.5.4, for every point of
Spec(A0) ' Spec(B0), the map f induces an isomorphism of deformation functors. Hence,
applying Lemma 4.5.12 below we deduce that f is an isomorphism. �

Lemma 4.5.12. Let f : A → B be a morphism of degree zero of non-negatively graded
algebras such that the induced map A0 → B0 is an isomorphism. Assume that A0 is
Noetherian, A and B are finitely generated as algebras over A0 ' B0, and for every
maximal ideal m ⊂ A0 the map f induces an isomorphism Â → B̂ of the completions
with respect to the maximal ideals m + A>0 and m + B>0, respectively. Then f is an
isomorphism.

Proof. It is enough to prove that f induces an isomorphism A/AN>0 → B/BN
>0 for each

N > 0. Note that A/AN>0 (resp., B/BN
>0) is a finitely generated module over A0 (resp.,

B0). Note that for any maximal ideal m ⊂ A0 ' B0, the (m + A>0)-adic topology on
A/AN>0 is equivalent to the m-adic topology, and similarly on B/BN

>0. Thus, we have a
morphism

A/AN>0 → B/BN
>0

of finitely generated A0-modules, inducing an isomorphism of m-adic completions of lo-
calizations at every maximal ideal m ⊂ A0. Since A0 is Noetherian, such a morphism is
an isomorphism. �

4.6. HH3 as an invariant of a curve singularity. The isomorphism of Theorem 4.5.1

suggests to look at the stratification of the moduli spaces Ũnsg,n given by the ranks of the
Hochschild cohomology groups of the corresponding A∞-algebras. The natural question
is whether these strata have some geometric interpretation. Here we show that HH3 gives
some interesting information about the singularities of the curve.

Note that when a curve (C, p•, v•) ∈ Ũnsg,n corresponds to an A∞-algebra structure m on
EW then there is an equivalence of categories

Perf(C) ' Perf(EW ,m),

where on the right we have the category of perfect A∞-modules over the A∞-algebra
(EW ,m). Indeed, this follows from the fact that G = OC ⊕Op1 ⊕ . . .⊕Opn is a generator
of Perf(C) (see Sec. 4.1). This implies that the Hochschild cohomology of these two
categories are the same:

HH∗(C) ' HH∗(EW ,m).

Proposition 4.6.1. (i) For a reduced connected projective curve C over an algebraically
closed field k one has

HH3(C) '
⊕

q∈SingC

HH3(OC,q).

Furthermore, for every singular point q, one has HH3(OC,q) 6= 0. In particular, C is
smooth if and only if HH3(C) = 0.
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(ii) For a reduced plane curve singularity q ∈ C one has

dimHH3(OC,q) = τ(q),

where τ(q) is the Tyurina number of the singularity.

Lemma 4.6.2. (i) Let C be a reduced curve over a field k. Then for any closed point
q ∈ C one has Ext1(Oq,OC) 6= 0.
(ii) If C is a Gorenstein curve then for any torsion coherent sheaf T on C one has
dim Ext1(T,OC) = `(T ).

Proof. (i) This follows immediately from the fact that C is Cohen-Macaulay and from the
cohomological characterization of depth (see [28, 15.D]). Here is a simple proof. First of
all, we can replace OC by the local ring A = OC,q, and Oq by its residue field A/M . The
equality Ext1(A/M,A) = 0 would imply that Ext1(T,A) = 0 for any finitely generated
A-module annihilated by some power of M . Now we can take a non-zero-divisor x ∈ M
and set T = A/(x). Then we get 0 = Ext1(A/(x), A) ' A/(x), which is a contradiction.
(ii) This immediately follows from Serre duality,

Ext1(T,OC) ' H0(C, T )∗.

�

Proof of Proposition 4.6.1. (i) Since for i ≥ 2 the sheaves HH i are supported on the
singularities of C, the exact sequence (4.4.2) gives an isomorphism

HH3(C) ' H0(C,HH i) =
⊕

q∈SingC

HH3(OC,q).

It remains to prove that if U is a singular affine curve then HH3(U) 6= 0. As in the
proof of Lemma 4.5.9, we have a surjection

(4.6.1) HH3(U)→ Ext1(
∧2

LU ,OU),

so it is enough to prove that Ext1(
∧2 LU ,OU) 6= 0.

Note that
∧2 LU has coherent cohomology supported on the singular locus of U . The

exact triangle

τ≤−1(
∧2

LU)→
∧2

LU → H0(
∧2

LU)→ . . .

leads to an exact sequence
(4.6.2)

0 = Hom(τ≤−1(
∧2

LU),OU)→ Ext1(H0(
∧2

LU),OU)→ Ext1(
∧2

LU ,OU)→ . . .

so it is enough to check that Ext1(H0(
∧2 LU),OU) 6= 0.

Note that for any nonzero sheaf F supported at one point q ∈ U (possibly singu-
lar), one has Ext1(F ,OU) 6= 0. Indeed, any surjection F → Oq induces an embedding
Ext1(Oq,OU) ↪→ Ext1(F ,OU) (since there are no morphisms from torsion sheaves to OU),
so this follows from Lemma 4.6.2(i).
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It remains to prove that H0(
∧2LU) is nonzero near a singular point q. To this end we

observe that LU can be represented by a complex

. . .→ P1
d1
> P0 → 0

of vector bundles. Furthermore, since coker(d1) ' ΩU , and q is singular, we deduce that
dim coker(d1(q)) ≥ 2. Now

∧2 LU is represented by the complex

. . .→ P1 ⊗ P0
d
>
∧2

P0,

where d(p1 ⊗ p0) = d1(p1) ∧ p0. Now let us consider the natural surjective map

π :
∧2

P0|q →
∧2

coker(d1(q)) 6= 0.

We have π ◦ d(q) = 0, so d(q) is not surjective. Hence, H0(
∧2 LU)|q 6= 0, as required.

(ii) We follow the same steps as in (i). Note first that in this case Ext2(LU ,OU) = 0, as
for any locally complete intersection, so the map (4.6.1) is an isomorphism (see the proof
of Lemma 4.5.9). Next, we observe that in the exact sequence (4.6.2) the term

Ext1(τ≤−1(
∧2

LU),OU) ' Hom(H−1
∧2

LU ,OU)

vanishes since H−1∧2LU is a torsion sheaf. Hence, we have

Ext1(
∧2

LU ,OU) ' Ext1(H0(
2∧
LU),OU).

Finally, using that OU is given by f = 0 in a smooth surface S, we get that

LU ' [OU
df
> Ω1

S|U ], and hence,

∧2
LU ' [OU

df
> Ω1

S|U
∧df
> Ω2

S|U ].

It follows that H0(
∧2 LU is isomorphic to the quotient of OU by the ideal generated by

the partial derivatives of f . Hence, `(H0(
∧2 LU) is exactly the Tyurina number (for U

containing only one singular point q). Now the result follows from Lemma 4.6.2(ii). �

Note that if we replace HH3(C) with the obstruction space to commutative deforma-
tions, Ext2(LC ,OC), then it will not be true that the vanishing of this space is equivalent
to smoothness. For example, Ext2(LC ,OC) = 0 for any curve which is a locally complete
intersection.

It is interesting to compute hh3(q) := HH3(OC,q) for some reduced curve singularities.

Proposition 4.6.3. (i) For the coordinate cross in 3-space, one has hh3(q) =???.
(ii) For the elliptic n-fold singularity, one has hh3(q) = n+ 1???
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4.7. More on m3. Let Mn(E) denote the moduli space of A′n-structures for the family
E = (EW ) over G(n − g, n). We assume that the assumptions of Theorem 4.5.1 are
satisfied, so all Mn(E) and M∞(E) are affine of finite type over G(n − g, n). Note that
M3(E) is the total space of a coherent sheaf over G(n−g, n) with the fibers HH2(EW )−1.
More precisely, this coherent sheaf is the kernel of a morphism of vector bundles over
G(n− g, n),

CH2(E/G(n− g, n))−1/ im(δ1)
δ2

> CH3(E/G(n− g, n)).

We have a natural projection M∞(E)→M3(E). It is interesting to study it from the

point of view of the moduli space of curves Ũnsg,n. For each subset S ⊂ [1, n], |S| = g, let
M∞(E , S) ⊂M∞(E) denote the preimage of the open cell US ⊂ G(n− g, n). Recall that
we have a natural affine embedding ofM∞(E , S), obtained by considering a section of the
gauge transformation group on the variety of all A∞-structures, or equivalently, certain
normal forms of A∞-structures. Among these affine coordinates, those coming from m3

are exactly the coordinates that have weight 1 with respect to the Gm-action (recall that
mn has weight n − 2). Thus, we have to look at the affine coordinates of weight 1 on

Ũnsg,n(S) := π−1(US) ⊂ Ũnsg,n.

In the case n = g, the only coordinates of weight 1 on Ũnsg,g are the functions αij defined
by the Laurent expansions

xi ≡
αij
tj

+ . . .

at pj, for i 6= j (this is equivalent to the definition of αij as a coefficient of yj in the
expansion of xixj in the canonical basis; see (4.1.5)).

In the case n > g, we have in addition the functions xS,j(pj′), for j, j′ 6∈ S, j 6= j′, as
well as the coefficients of yi in the expansion of yixS,j for i ∈ S, j 6∈ S (which can be
normalized to be zero for a fixed i0 ∈ S).

We conjecture that a generic smooth curve can be recovered from these coordinates

for sufficiently large g and n. Here is a more precise statement. Let M̃g,n denote the
Gn
m-torsor over Mg,n corresponding to choices of nonzero tangent vectors at the marked

points.

Conjecture. Let us work over an algebraically closed field of characteristic 0. The

projection from M̃g,n to M3(E) is birational onto its image whenever it is possible by
dimension consideration.

In the case n = g the dimension of M3(E) = HH2(E)−1 is g2 − g, where M̃g,g has
dimension 5g − 3, so the dimension of M3(E) is bigger when g ≥ 6. It was proved
in [10, Thm. 3.2.1] that indeed the conjecture holds in this case (using some computer
calculations to establish the case g = 6). We will discuss the idea of this proof in Sec. 4.8.

Another case when the conjecture is known is g = 1 and n > 1. In fact, in this case

the dimension ofM3(E) is bigger than that of M̃1,n starting with n ≥ 5. We will discuss
this case in Sec. 4.9 below.

It is instructive to calculate explicitly some of the functions of weight 1 on our moduli
spaces in terms of the products m3 on the algebras EW . We consider two examples: the
functions αij, where i, j ∈ S, and the functions xS,j(pk) − xS,j(pl), where j, k, l 6∈ S (xS,j
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is defined uniquely up to adding a constant, so these differences do not depend on any
choices).

Recall that Ai, Bi denote generators of EW . Let us also set ψi = AiBi ∈ Ext1(Opi ,Opi).

Proposition 4.7.1. (i) The functions αij on Ũnsg,n(S), where i, j ∈ S, i 6= j, are deter-
mined by the condition

(4.7.1) m3(Bi, ψi, Ai) = −
∑
j∈S

αijBjAj

(here αii maybe nonzero but it does not have an invariant interpretation).

(ii) The functions xS,j(pk) on Ũnsg,n(S), for j, k 6∈ S, j 6= k, satisfy

xS,j(pk)−xS,j(pl) = m3(Ak, Bj, Aj)−m3(Al, Bj, Aj)−
∑
i∈S

aS,ij(m3(Ak, Bi, Ai)−m3(Al, Bi, Ai)),

where aS,ij are defined by (4.1.6).

Proof. (i) Set DS =
∑

i∈S pi. We can realize αij as the composition

O xi
> O(DS + pi) > Opj .

Now one can check that O(DS + pi) can be represented by the twisted object

[O(DS + pi)] := (Opi ⊕ tODS
⊕ tO, tψi +

∑
i∈S

Bi).

Morphisms of degree 0 in Hom(O, [O(DS + pi)]) have form xAi +
∑

j∈S yj(tAj) + z(t id)
and the differential has form

δ(xAi +
∑
j∈S

yj(tAj) + z(t id)) = x ·m3(Bi, ψi, Ai)t+
∑
j∈S

yjBjAjt.

Thus, we can represent xi by the closed morphism Ai −
∑

j∈S α̃ij(tAj), where α̃ij are
determined from

m3(Bi, ψi, Ai) =
∑
j∈S

α̃ijBjAj.

On the other hand, the morphism O(DS +pi)→ Opj is induced by the natural projection
ej : tODS

→ Opj . Hence, the composition with xi is given by −α̃ijAj, which gives our
assertion.
(ii) As in part (i), we realize O(DS + pj) by the twisted object

[O(DS + pj)] = (Opj ⊕ODS
⊕O, Bj +

∑
i∈S

Bi).

Up to an additive constant, the element xS,j can be represented by some closed element
of the form Aj +

∑
i xiAi. Calculating the differential we get

δ(Aj +
∑
i

xiAi) = BjAj +
∑
i

xiBiAi.
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Thus, in order for our element to be closed, we should take xi = −aS,ij (due to the
relation (4.2.2)). The morphism [O(DS + pj)] → Opk , for k 6∈ S, k 6= j, corresponds to
the projection Ak : O → Opk . Thus, the composition

O xS,j
> O(DS + pj) > Opl

is given by

m3(Ak, Bj, Aj)−
∑
i∈S

aS,ijm3(Ak, Bi, Ai),

which immediately leads to our formula. �

Remark 4.7.2. Another way to see the relation (4.7.1) between the functions αij and
m3 is to study the triple Massey products

O → Opi
[1]
> Opi → O

(see [10, Sec. 2.4]).

4.8. Relation to canonical embedding. Here we work over an algebraically closed
field k of characteristic zero.

Let C be a smooth projective (connected) curve with distinct marked points p1, . . . , pg
such that H1(C,O(D)) = 0, where D = p1 + . . . + pg. By Serre duality, the latter
condition is equivalent to H0(ωC(−D)) = 0. This implies that for every i = 1, . . . , n, the
space H0(ωC(−D + pi)) is 1-dimensional, and its generator ωi satsifies ωi|pi 6= 0. Thus,
a choice of nonzero tangent vectors (v1, . . . , vg) at the marked points is equivalent to a
choice of nonzero 1-forms ω1, . . . , ωg such that ωi(pj) = 0 for i 6= j (the connection with
the choice of vi is given by 〈ωi(pi), vi〉 = 1).

Furthermore, by considering the restriction to the points pi, we immediately see that
(ω1, . . . , ωg) are linearly independent, so they form a basis of H0(C, ωC). Since we are
in characteristic zero, we can define a formal parameter ti at each point pi uniquely by
requiring that ωi = dti on the formal disk around pi. It turns out that the same formal
parameters can be characterized in a different way.

Proposition 4.8.1. (i) The formal parameters ti are characterized by the property that
for each m ≥ 2 there exists a function fi[m] ∈ H0(C,O(D + (m − 1)pi)), such that the
polar part of fi[m] at pi is 1

tmi
.

(ii) For i 6= j, let pij[n] denote the coefficient of 1
tj

in the Laurent series of fi[n] at pj.

Then the expansion of ωi near pj (where i 6= j) has form

(4.8.1) ωi = −
∑
n≥2

pji[n]tn−1
j dtj.

Proof. (i) First, we can check the existence of formal parameters t̃i for which the required
functions fi[m] exist. We start with arbitrary formal parameters ti and then gradually
improve them. First, we look at the polar parts of fi[2]: to kill the coefficient of 1

ti
we use

an appropriate change of the form ti 7→ ti + ct2i . Then we similarly use fi[3] to correct ti
by the cubic term, etc. (see [38, Lem. 2.1.1] for details).
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The rational differential fi[n]ωi can have a pole only at pi, so by the residue theorem,
we get Respi(fi[n]ωi) = 0 for every n ≥ 2. Thus, if we write ωi = φi(ti)dt̃i at the formal
neighborhood of pi then we deduce that φi = 1.
(ii) This follows immediately from the residue theorem applied to the rational differentials
fj[n]ωi for i 6= j, since Respi(fj[n]ωi) = pji[n] while Respj(fj[n]ωi) is equal to the coefficient

of tn−1
j dtj in the expansion of ωi at pj. �

Now we can combine the classical fact due to Petri that for g ≥ 4, a generic curve can
be defined by explicit quadratic and cubic equations in its canonical embedding (whereas
for g ≥ 5 one only needs quadratic equations) with the expansions (4.8.1), to see that a
generic curve (C, p•, v•) of genus g ≥ 4 (resp., g ≥ 5) is determined by the values of the
functions (pij[m]) with m ≤ 4 (resp., m ≤ 3) on it.

Lemma 4.8.2. Assume that g ≥ 4 and H0(C, ω⊗2
C (−3D)) = 0. If g = 4 then assume

in addition that H0(C, ω⊗3
C (−4D). Then the quadratic (resp., quadratic and cubic, if

g = 4) relations in the canonical algebra
⊕

n≥0H
0(C, ω⊗nC ) are determined by the values

of (pij[m]) with m ≤ 3 (resp., m ≤ 4).

Proof. By assumption, the map H0(C, ω⊗2
C ) →

⊕g
i=1 ω

⊗2
C |3pi is injective. Thus, the

quadratic relations coincide with the kernel of the composed map

H0(C, ωC)⊗2 →
g⊕
i=1

ω⊗2
C |3pi .

Thus, it is enough to know expansions of each ωi at each point pj modulo (t3j)dtj, and
the assertion follows from Proposition 4.8.1(ii). For cubic relations in the case g = 4, the
argument is similar using the map

H0(C, ωC)⊗3 →
4⊕
i=1

ω⊗3
C |4pi .

�

Lemma 4.8.3. One has for i 6= j,

pij[4] = 2αijγij −
∑
k 6=i,j

α2
ikαkj,

with αij = pij[2] and γij := γij − γii, where γij are determined from the expansions

xi = fi[2] =
αij
tj

+ γij + . . . , xi =
1

t2i
+ γii + . . .

Proof. Apply the residue theorem to the rational differential x2
iωj. �

Proposition 4.8.4. For g ≥ 4, the generic curve (C, p•, v•) in M̃g,g is determined by
the corresponding values of αij = pij[2], βij = pij[3] and γij. Hence, the corresponding
A∞-structure is determined by m3 and m4.
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Proof. By the classical theorem of Petri, the image of the canonical embedding of a
generic curve C of genus g ≥ 5 can be recovered from the quadratic relations between the
differentials (ωi). In the case g = 4 the same is true if we consider quadratic and cubic
relations. Furthermore, knowing (ωi) we can also recover the points pi (as common zeros
of (ωj)j 6=i) and the tangent vectors vi. It remains to apply Lemmas 4.8.2 and 4.8.3. To
translate this into a statement about A∞-structures we just have to observe that m3 and
m4 correspond to functions of weight ≤ 2 with respect to Gm, and both βij and γij have
weight 2 (recall that αij has weight 1). �

To deduce that a generic curve of genus g ≥ 6 is determined by the values of (αij) alone
(see [10, Thm. 3.2.1]), one has to use in addition the following equations:

αik(γjk − γji) + αjk(γik − γij)− αjiβik − αijβjk =
∑
l 6=i,j,k

αilαjlαlk

for every distinct i, j, k (obtained by applying the residue theorem to the rational differ-
entials xixjωk). We view these elements as linear equations on (βij) and γij. The claim
is that the solution is unique. Thus, we have to prove that for a generic curve the corre-
sponding matrix is nondegenerate. We prove this in [10] by reducing the problem to the
case g = 6, in which case we present an explicit nodal curve (rational with 6 nodes) for
which the matrix is nondegenerate.

4.9. Case of genus 1. In the case of genus 1 the moduli space Ũns1,n has a Gn
m-map to the

projective space Pn−1. Let us consider the preimage Vn of the open subset x1 . . . xn 6= 0
in Pn−1. Since the latter open subset is an open orbit of Gn

m, isomorphic to Gn
m/Gm, we

can expect that Vn is obtained from a smaller moduli space V n with just Gm-action, as

Vn = V n ×Gm Gn
m.

This is indeed the case, with V n parametrizing (C, p1, . . . , pn, ω), where C is a reduced
projective connected curve of arithmetic genus 1 with n smooth marked points, ω is
a nonzero section of the dualizing sheaf ωC , such that O(p1 + . . . + pn) is ample and
H1(C,O(pi)) = 0 for every i = 1, . . . , n. The latter condition is equivalent to nonvanishing
of ω(pi) for every i (see [22, Lem. 1.1.1]).

Note that V n has a unique Gm-invariant point, which is an elliptic n-fold curve Cn
(with one smooth marked point). This curve is defined as follows: C1 is a cuspidal cubic
in P2; C2 is a union of two P1, tangent at the point of intersection (forming a tacnode);
Cm is the union of m generic lines through a point in Pm−1.

For n ≥ 3, the affine part of the curve Cn can be described by the following equations
in the An−1 with coordinates (x2, . . . , xn):

(4.9.1)
xixj = xi′xj′ for i 6= j, i′ 6= j′,
x2x

2
3 = x2

2x3

(to get the projective curve Cn one adds n points at infinity, which become the marked
points).

It turns out (see [22, Sec. 1.1]) that for n ≥ 3, for each curve (C, p1, . . . , pn, ω) in V n,
one can describe an embedding of the affine curve C \D, where D = p1 + . . . + pn, into
An−1 with the defining equations deforming (4.9.1). Namely, for i = 2, . . . , n, we can find
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xi ∈ OC(p1 + pi) such that Resp1(xiω) = 1. These functions are unique up to additive
constants, and we can normalize them by requiring that

x3(p2) = 0, xi(p3) = 0 for i 6= 3.

Then the functions

(4.9.2) 1, xm2 x3, x
m
2 , . . . , x

m
n , for m ≥ 1

form a basis of O(C \D), and we have the following defining equations for C \D:

x2xi = x2x3 + cixi + cix2 − c, 4 ≤ i

x3xi = x2x3 + (a+ ci + ci)(xi − ci) + b, 4 ≤ i

xixj = x2x3 + cijxj + cjixi − c, 4 ≤ i < j,

x2x
2
3 = x2

2x3 + ax2x3 + bx2 + cx3 + d,

(4.9.3)

for some constants (a, b, c, d, ci, ci, cij), where i 6= j, i, j ≥ 4. For example, for n = 3,
we only have one equation (the last one), and a, b, c, d are independent variables on the
moduli space V 3 ' A4.

Using the fact that (4.9.2) is a basis ofO(C\D), we get some equations on (a, b, c, d, ci, ci, cij),
which can be found explicitly (see [22, Prop. 1.1.5]). In particular, we get that for n ≥ 5,
all of them can be expressed universally in terms of (a, ci, ci, cij), where 4 ≤ i < j. Now
we observe that the latter functions on V n have weight 1 with respect to the natural
Gm-action. Thus, for n ≥ 5, we get an affine embeding of V n into some affine space with
the weight 1 action of Gm.

Recalling the isomorphism of Ũns1,n with the moduli space of A∞-structures and the
fact that mn has weight n − 2 with respect to Gm, we derive that over the open subset

corresponding to Vn ⊂ Ũns1,n, every A∞-structure is determined by m3. In particular, we
get a stronger version of the Conjecture from Sec. 4.7 in this case: for g ≥ 5, the projection

M̃1,n →M3(E) is a locally closed embedding.
One can also say precisely which curves of arithmetic genus 1 can appear in the moduli

space V m.

Proposition 4.9.1. (see [22, Thm. 1.5.7]) For every (C, p1, . . . , pn, ω) in V n, the curve
C is Gorenstein with ωC ' OC. More precisely, C is either smooth, or a standard nodal
m-gon, where 1 ≤ m ≤ n (for m = 1 this means that it is an irreducible nodal curve), or
an elliptic m-fold curve Cm, for 1 ≤ m ≤ n.

Proof(sketch). The first key observation is that each curve Cn is Gorenstein. This is a
simple local computation done in [54, Prop. 2.5] (one has to check that dimωC/mωC = 1
near the singular point, where ωC is the dualizing sheaf, and for this one can use an
explicit description of ωC in terms of the normalization). Next, we use the Gm-action
on V n (corresponding to rescaling of ω). It is easy to see that the affine coordinates on
V n have positive Gm-weights, so the closure of every Gm-orbit contains the point where
all these coordinates are zero. This gives a flat family degenerating every curve in V n

into Cn. Since the Gorenstien property is open, we deduce that every curve in V n is
Gorenstein.
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If C is irreducible then it is either smooth, or standard 1-gon, or isomorphic to C1, so
assume C is reducible.

Let C = C0 ∪ C ′, where C0 is irreducible, C ′ is connected, and ξ = C0 ∩ C ′ is a finite
subscheme of C. The exact sequence

0→ OC → OC0 ⊕OC′ → Oξ → 0

shows that

1 = h1(OC) = h1(OC0)⊕ h1(OC′) + `(ξ)− 1.

Thus, either both both C0 and C ′ are of arithmetic genus 0 and `(ξ) = 2, or one of
the subcurves has genus 1 and the other 0 and `(ξ) = 1. We claim that the latter case
is impossible. Indeed, then we could find an irreducible subcurve C1 ⊂ C, which is
isomorphic to P1 and is joined to the union of the remaining components at one point
transversally. But then for a marked point pi ∈ C1 (which exists by the definition of V n)
we would have h0(C,O(pi)) ≥ 2, hence h1(C,O(pi)) 6= 0, which is a contradiction.

It follows that all irreducible components of C are isomorphic to P1. Furthermore, if
there exists an irreducible component Ci ⊂ C, such that Ci∩C \ Ci is one point q (with the

scheme structure of length 2), then C ′ = C \ Ci is a connected curve of arithmetic genus
0. Now the above observation implies that every irreducible component of C ′ contains q,
and it is easy to deduce that C is isomorphic to Cn.

In the case when for every component Ci the intersection Ci ∩ C \ Ci consists of two
points, one easily checks that C contains a standard nodal m-gon as a subcurve C ′. Using
the above observation again, one can see that in fact C = C ′. �

Remark 4.9.2. One can give a different proof of Proposition 4.9.1 using classification of
Gorenstein singularities of genus 1 (see [54, Lem. 3.3]).

The associative algebras EW corresponding to the points of Vn are all isomorphic.
Namely, they are isomorphic to the algebra E1([1, n]) of the quiver with relations Q([1, n])
given in Fig. 1 below, where the relations are B1A1 = . . . = BnAn, AjBi = 0 for i 6= j. We
denote the quiver in this way because we want to consider the subquivers Q[S] (isomorphic
to Q([1, |S|])) corresponding to subsets S ⊂ [1, n].

12

3 n

Figure 1. The quiver Q([1, n])
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By Theorem 4.5.1, a curve (C, p1, . . . , pn, ω) in V n(k), where n ≥ 2 and char(k) 6= 2 (or
n = 1 and char(k) 6= 2, 3), is determined by the corresponding A∞-structure m on the
algebra E1([1, n]).

In this setup we can give a characterization of nodal curves in terms of the correspond-
ing A∞-structures. The key idea is that given a subset S ⊂ [1, n] and an A∞-structure on
E1([1, n]), we can consider the induced A∞-structure on the subquiverQS (i.e., on the alge-
bra E1(S)). Geometrically this operation corresponds to passing to a curve (C, (pi)i∈S, ω).
However, it may happen that the divisor DS :=

∑
i∈S pi is not ample on C, so in fact, one

has to replace the curve C by a certain contraction C. More precisely, C is obtained as
the Proj of the Rees algebra of the filtered algebra H0(C \DS,O). Looking at the basis of
the latter algebra one can deduce that (C, (pi)i∈S, ω) is a well defined point of the moduli
space V m, where m = |S|.

In fact, it will be enough to consider the restrictions to one-element subsets S = {i},
in which case we look at subquivers Q(i) with just two vertices.

For an A∞-algebra structure on E1([1, n]) we denote by P0, P1, . . . , Pn the natural per-
fect A∞-modules associated with the vertices O,Op1 , . . . ,Opn .

Proposition 4.9.3. (i) A curve (C, p1, . . . , pn, ω) in V n(k) has only nodal singularities
if and only if for every i = 1, . . . , n, the restriction of the corresponding A∞-structure on
E1([1, n]) to Q(i) is homotopically nontrivial.
(ii) A curve (C, p1, . . . , pn, ω) is nodal with n irreducible components (i.e., isomorphic to
the standard n-gon Gn, with one marked point on each component) if and only if for every
i the condition in (i) is satisfied, and in addition, the subcategories 〈P0, Pi〉 (in the derived
category of perfect A∞-modules) are distinct for different indices i.

Proof. (i) Assume first that C is either smooth or nodal. Then the restriction of the
corresponding A∞-structure to Q(i) corresponds to replacing C with the contraction of
all components not containing pi, which will give an irreducible nodal curve with one
point. Since the homotopically trivial A∞-structure on Q(i) corresponds to the cuspidal
curve, we deduce the required nontriviality.

On the other hand, if C has a non-nodal singularity, then by Proposition 4.9.1, it is
isomorphic to the elliptic m-fold curve Cm for some m. Let us choose one marked point
on each component of C. Without loss of generality we can assume that these points
are p1, . . . , pm. Then replacing (C, p1, . . . , pn) with (C, p1, . . . , pm) we get a Gm-invariant
point of the moduli space that corresponds to the trivial A∞-structure on Q([1,m]). Now
restricting further to Q(1) gives the trivial A∞-structure.
(ii) By Proposition 4.9.1, the condition in (i) is equivalent to C being the standard m-
gon for some m. Suppose m < n. Then we can find i < j such that pi and pj belong
to the same irreducible component C ′ of C. It is easy to see that this implies that the
subcategories 〈OC ,Opi〉 and 〈OC ,Opj〉 are the same. Namely, we have a contraction

π : C → C that contracts every irreducible component of C other than C ′ to a point, and
both these subcategories are π∗ Perf(C). Under the equivalence ??? these subcategories
correspond to 〈P0, Pi〉 and 〈P0, Pj〉. Conversely, if C is the standard n-gon, so that all
marked points lie on different components then we claim that 〈OC ,Opi〉 6= 〈OC ,Opj〉 for
i 6= j. Indeed, let ιi : Ci ↪→ C be the embedding of the irreducible component containing
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pi. Then the functor Lι∗i sends Opj to zero, Opi to Opi , and OC to OC . Thus, the images
of our subcategories under this functor are distinct. �

Remark 4.9.4. The characterization of Proposition 4.9.3(ii) can be used to prove the
equivalence of the perfect derived category of the standard n-gon with the (compact)
exact Fukaya category of the n-punctured torus, see [23, Thm. B(i)]. Namely, we consider
in loc. cit. a natural set of exact Lagrangians (L0, . . . , Ln) such that morphisms between
them have the same dimensions as for the objects (OC ,Op1 , . . . ,Opn) on the standard
n-gon (where pi lies on the ith irreducible component), and the composition maps

Hom1(Li, L0)⊗Hom0(L0, Li)→ Hom1(L0, L0), Hom0(L0, Li)⊗Hom1(Li, L0)→ Hom1(Li, Li),

for i ≥ 1, are nondegenerate. This implies that the corresponding associative algebra is
isomorphic to E([1, n]). The more nontrivial part of the proof is to check that the objects
(L0, . . . , Ln) generate the Fukaya category. The argument is based on the fact that the
Dehn twists around the curves Li generate the pure mapping class group (see [23, Lem.
3.1.1]).

5. Pairs of 1-spherical objects, A∞-structures, and Yang-Baxter
equations

Now we will transition to studying another moduli space of A∞-structures which is re-
lated to solutions of the associative Yang-Baxter equation (AYBE) (see (2.1.2)). Namely,
our motivation is to find a generalization of the triple Massey product calculation over an
elliptic curve considered in Sec. 2.1, which gives rise to all solutions AYBE in a reasonable
class. First, we will address this problem formally, i.e., we will show that this Massey
product can be defined for any pair of 1-spherical objects in a cyclic A∞-category. Then
we will consider the question of realizing all such pairs of 1-spherical objects geometrically.

5.1. 1-spherical objects. One of the key properties used in the Massey product calcula-
tion in Sec. 2.1 was the form of the Serre duality for the elliptic curve. The more general
setup involves 1-spherical objects, as defined in [51].

Definition 5.1.1. An object X of an A∞-category C over a field k is called n-spherical
if Homi(X,X) = 0 for i 6= 0, n, Hom0(X,X) = Homn(X,X) = k, and for any object Y
of C the pairing between the morphism spaces in the cohomology category H∗C,

Homn−i(Y,X)⊗ Homi(X, Y )→ Hom1(X,X),

induced by m2, is perfect. In particular, these morphism spaces are finite-dimensional.

For example, a vector bundle V over an elliptic curve C is 1-spherical in Db(C) provided
it is endosimple, i.e., Hom(V, V ) = k.

In the case when C is a triangulated A∞-category, one can associate with an n-spherical
object E a twist A∞-endofunctor of C, TE defined by

(5.1.1) TE(X) = Cone(hom(E,X)⊗ E ev
> X)

which is an autoequivalence (see [51], [48, I.5]).
We are interested in pairs of 1-spherical objects (E,F ) such that Hom(E,F ) is concen-

trated in degree 0. We refer to such (E,F ) as a 1-spherical pair.
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Note that in this case we have two perfect pairings,

(5.1.2)
Hom1(F,E)⊗ Hom0(E,F )→ Hom1(E,E) ' k and
Hom0(E,F )⊗ Hom1(F,E)→ Hom1(F, F ) ' k.

We set V = Hom(E,F ) and use the second pairing to identify Hom1(F,E) with the dual
space V ∨. Then the first pairing gets identified with the map

V ∨ ⊗ V → k : v∗ ⊗ v 7→ 〈v∗, gv〉
for an element g ∈ GL(V ). Note that the definition of this element depends on the
choice of trivializations of 1-dimensional spaces Hom1(E,E) and Hom1(F, F ), however,
the corresponding element in PGL(V ) is an invariant of an isomorphism class of the pair
(E,F ). We say that (E,F ) is a symmetric 1-spherical pair if g is a scalar multiple of
identity.

In the case when C is the derived category of coherent sheaves on an elliptic curve,
as well as in some other geometric examples, we have an additional structure: the A∞-
structure on C is cyclic with respect to the symmetric pairings between Homi(a, b) and
Hom1−i(b, a) provided by the Serre duality. Thus, every 1-spherical pair of objects in a
cyclic A∞-category is symmetric. However, we will also consider not necessarily symmetric
pairs.

Assume that (E,F ) is a 1-spherical pair in a minimal A∞-category, with fixed trivial-
izations Hom1(E,E) ' Hom1(F, F ) ' k. Then we get a minimal A∞-algebra End(E⊕F ).
The underlying associative graded algebra S(V, g) depends only on the space V and the
element g ∈ GL(V ). Namely, S(V, g) is the algebra of the following graded quiver with
relations. It has two vertices E and F . The space of arrows from E to F (resp., from F
to E) is V in degree 0 (resp., V ∨), with defining relations

v∗ ◦ v = 〈v∗, g(v)〉ξF , v ◦ v∗ = 〈v∗, v〉ξE,
where ξE (resp., ξF ) is an arrow of degree 1 from E (resp., F ) to itself.

Conversely, given a minimal A∞-algebra on S(V, g) we get a 1-spherical pair in the
corresponding A∞-category with two objects. By a standard argument, it will still be
a 1-spherical pair in the triangulated A∞-envelope of this category. Thus, we have a
correspondence between 1-spherical pairs and A∞-structures on S(V, g). We can now
study the moduli spaces of such A∞-structures using the tools we developed.

5.2. Solutions of the Associative Yang-Baxter Equation (AYBE) and 1-spherical
pairs. Now we want to generalize the construction of an associative r-matrix (i.e., a so-
lution of the AYBE) from the triple Massey products on elliptic curves associated with
a family of stable vector bundles over an elliptic curve (see Sec. 2.1) to a certain Massey
product associated with any 1-spherical pair (E,F ) in a cyclic A∞-category C. The point
is that the construction only used some formal categorical properties. However, in the
general setup we do not have an analog of a pair of nonisomorphic stable vector bundles
f (resp., pair of distinct points). Instead, we consider families of formal deformations of
E and F and invert some formal expressions to make the Massey product well defined.

Let C be an A∞-category over a field k, such the spaces homi(?, ?) are finite-dimensional.
Suppose we have a k-algebra R, complete with respect to I-adic topology, for some ideal
I ⊂ R. Then we can consider twisted objects over the R-linear A∞-category C ⊗ R of
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the following kind: (X, δX), where X is an object of C and δX ∈ I ⊗ hom1(X,X) is an
element satisfying the Maurer-Cartan equation∑

i≥2

(−1)(
i
2)mi(δX , . . . , δX) = 0.

Note that the sum converges in R ⊗ hom2(X,X), since the term with mi belongs to
I i⊗hom2(X,X). As in Sec. 1.5.2, such twisted objects form a (non-minimal) A∞-category.
We denote by mt

n the A∞-products for morphisms between twisted objects.
Now, given a 1-spherical object E in a minimal A∞-category C over k, an I-adically

complete k-algebra R, and an element x ∈ I, we can consider a twisted object (E, x · ξE)
over C ⊗ R, where ξE is a generator of the 1-dimensional space Ext1(E,E). Note that
the Maurer-Cartan equation is satisfied trivially since Ext2(E,E) = 0. For example, we
can take R = k[[x]] and the twisted object (E, x · ξE) over C ⊗ k[[x]]. We can think of the
latter object as an incarnation of the universal formal deformation of E.

The formal analog of considering pairs of non-isomorphic objects in this context is
the following. We can take R = k[[x1, x2]][(x1 − x2)−1] and a pair of twisted objects
E1 = (E, x1 · ξE) and E2 = (E, x2 · ξE). Note that the morphism space hom(E1, E2) is the
complex

Hom0(E,E)⊗R mt
1> Hom1(E,E)⊗R,

where mt
1(idE) = (x2 − x1)ξE. Since (x1 − x2) is invertible in R, the differential mt

1 is an
isomorphism, so the complex is exact.

Now we can construct the analog of the triple Massey product from Sec. 2.1, associated
with a 1-spherical pair (E,F ) in a minimal A∞-category C over k. For this we take
R = k[[x1, x2, y1, y2]][∆−1

2 ], where ∆2 = (x1 − x2)(y1 − y2), and consider the twisted
objects

E1 = (E, x1 · ξE), E2 = (E, x2 · ξE), F1 = (F, y1 · ξF ), F2 = (F, y2 · ξF )

Note that we have canonical identifications

Hom0(Ei, Fj) = hom(Ei, Fj) = Hom0(E,F )⊗R, Hom1(Fj, Ei) = hom(Fj, Ei) = Hom1(F,E)⊗R.

Thus, given an element θ ∈ V := Hom(E,F ), we can view it as a closed morphism
θ[ij] ∈ Hom0(Ei, Fj) for i, j ∈ {1, 2}. Similarly, an element η ∈ V ∨ ' Hom1(F,E)
gives rise to η[ij] ∈ Hom1(Fi, Ej). Now we want to consider the triple Massey product
corresponding to the composable arrows

E1
θ[11]
> F1

η[12]
> E2

θ[22]
> F2.

Note that the compositions mt
2(η[12], θ[11]) and m2(θ[22], η[12]) are not zero on the nose,

however, they are coboundaries:

mt
2(η[12], θ[11]) = 〈η, gθ〉ξE = mt

1

( 〈η, gθ〉
x2 − x1

· idE
)
,

mt
2(θ[22], η[12]) = 〈η, θ〉ξF = mt

1

( 〈η, θ〉
y2 − y1

· idF
)
.
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Assuming that our A∞-category C is strictly unital, the products mt
2 containing identity

elements can be replaced by the original products m2. Thus, the Massey product is given
by

MP (θ[22], η[12], θ[11]) = mt
3(θ[22], η[12], θ[11])± 〈η, gθ〉

x2 − x1

· θ[22]± 〈η, θ〉
y2 − y1

· θ[11].

We can think of this Massey product as an element of(
Hom0(E1, F2)⊗RHom0(E2, F2)∨

)
⊗R
(
Hom1(F1, E2)∨⊗RHom0(E1, F1)∨

)
' End(V )⊗End(V )⊗R.

Choosing a basis (θα) in V , and letting (ηα) to be the dual basis in V ∨, we can write this
element as

(5.2.1) rx1x2y1y2
=

∑
α,α′,β,β′

〈ηβ′ ,MP(θα′ [22], ηβ[12], θα[11])〉 · eβ′α′ ⊗ eβα,

where we use the identification of Hom(E1, F2) with V ⊗R.
Similarly, we can consider the triple Massey product corresponding to the composable

arrows

F2
η[21]
> E1

θ[11]
> F1

η[12]
> E2.

We have

mt
2(η[21], θ[11]) = mt

1

(〈η, gθ〉 · idF
y1 − y2

)
, mt

2(θ[11], η[12]) = mt
1

(〈η, θ〉 · idE
x2 − x1

)
,

so we get

MP (η[21], θ[11], η[12]) = mt
3(η[21], θ[11], η[12])± 〈η, θ〉

x2 − x1

· η[21]± 〈η, gθ〉
y1 − y2

· η[12].

Let us record this Massey product by the element of End(V )⊗ End(V )⊗R,

(5.2.2) r̃x1x2y1y2
=

∑
α,α′,β,β′

〈MP(ηβ[12], θα[11], ηβ′ [21]), θα′〉 · eβ′α′ ⊗ eβα,

Next, we can consider twisted objects Ei = (E, xi · ξE), Fi = (F, yi · ξF ), for i = 1, 2, 3,
over a bigger ring R3 := k[[x1, x2, x3, y1, y2, y3]][∆−1

3 ], where ∆3 =
∏

i<j(xi − xj)(yi − yj).
As in Sec. 2.1, we want to apply the A∞-identity to the composable arrows

E1 → F1 → E2 → F2 → E3 → F3

to deduce some identity fo rx1x2y1y2
and r̃x1x2y1y2

. As a first step we can replace the A∞-structure
on the subcategory of our twisted objects with the minimal one using homological per-
turbation (see Remark 1.2.2). By the functoriality of the Massey products (see Propo-
sition 1.4.1), we see that the obtained products of the form m3(θ[jj], η[ij], θ[ii]) and
m3([η[ji], θ[ii], η[ij]), for i 6= j, coincide with the corresponding Massey products in the
original category. Thus, we get the identity of the form

MP (θ[33], η[23],MP (θ[22], η[12], θ[11]))±MP (θ[33],MP (η[23], θ[22], η[12]), θ[11])±
MP (MP (θ[33], η[23], θ[22]), η[12], θ[11]) = 0.

69



Now assume that our A∞-category is cyclic. Then the element g can be taken to be
id, and r̃x1x2y1y2

= ±rx1x2y1y2
. Thus, the above identity for the Massey products leads to the

following equation in End(V )⊗ End(V )⊗R3:

(5.2.3) (rx2x1y2y3
)12(rx1x3y1y3

)13 − (rx1x3y1y2
)23(rx2x3y2y3

)12 + (rx2x3y1y3
)13(rx1x2y1y2

)23 = 0,

which we call the formal set-theoretic AYBE. In addition, because of the cyclicity of the
A∞-structure, this tensor satisfies the following skew-symmetry condition:

(5.2.4) (rx1x2y1y2
)21 = −rx2x1y2y1

.

Note that the polar part of rx1x2y1y2
is id⊗ id

x2−x1 + P
y1−y2 , where P =

∑
eij⊗eji is the permutation

matrix.
One can check that cyclic A∞-equivalence between 1-spherical pairs (E,F ) lead to

the following equivalence relation between solutions of the set-theoretic AYBE. For every
ϕxy ∈ id +(x, y) ∈ Matn(k)⊗ k[[x, y]], we have a transformation

(5.2.5) rx1x2y1y2
7→ (ϕx2y1 ⊗ ϕ

x1
y2

)rx1x2y1y2
(ϕx1y1 ⊗ ϕ

x2
y2

)−1.

Theorem 5.2.1. ([24, Thm. A]) The above construction gives a bijection between cyclic
A∞-structures on S(kn, id), up to a cyclic A∞-equivalence, and equivalence classes of
solutions of the formal set-theoretic AYBE in k[[x, y]][∆−1

2 ], with the polar part id⊗ id
x2−x1 +

P
y1−y2 , satisfying the skew-symmetry condition.

The main point is that the pair of formal series (with coefficients in End(V )⊗2),

〈mt
3(θ[22], η[12], θ[11]), η〉, 〈mt

3(η[21], θ[11], η[12]), θ〉 ∈ End(V )⊗2[[x1, x2, y1, y2]],

can be viewed as generating functions for all possibly nonzero higher products on the
A∞-category with the objects E and F . Indeed, by considering the degrees we see that
all nontrivial higher products have one of the two forms,

ma+b+c+d+3((ξF )a, θ, (ξE)b, η, (ξF )c, θ, (ξE)d) and ma+b+c+d+3((ξE)a, η, (ξF )b, θ, (ξE)c, η, (ξF )d),

which are directly related to the coefficients of the above two formal series (recall that
we considered the first of these products in Theorem 2.2.1 in the case when E and F are
line bundles over an elliptic curve). Note that due to cyclic symmetry, the second type of
products is determined by the first.

5.3. Classification of nondegenerate trigonometric solutions of the AYBE. Let
us assume that in an associative r-matrix the variables xi, yj are complex numbers and
that rx1x2y1y2

depends only on their differences:

rx1x2y1y2
= r(x1 − x2, y1 − y2),

where r(u, v) is a meromorphic function in a neighborhood of (0, 0) in C2 with values
in Matn(C)⊗2, where n ≥ 2. For example, this assumption is satisfied for the solutions
associated with bundles over an elliptic curve. Then the equation (5.2.3) and the skew-
symmetry condition take form

(5.3.1) r12(−u′, v)r13(u+u′, v+ v′)− r23(u+u′, v′)r12(u, v) + r13(u, v+ v′)r23(u′, v′) = 0,

(5.3.2) r21(−u,−v) = −r(u, v).
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It is easy to check that if r(u, v) satisfies these equations then so does

r̂(u, v) := r(v, u)t · P,

where (a⊗ b)t = at ⊗ bt, and at denotes the transpose of a.
Let us say that r(u, v) is strongly nondegenerate if the tensors r(u, v) and r̂(u, v) have

the maximal rank n2 for generic (u, v). One can check (see [24, Prop. 1.4.4]) that if r(u, v)
is strongly nondegenerate then after rescaling the variables we will get that the polar part
of r(u, v) at u = 0 (resp., v = 0) has form 1⊗1

u
(resp., P

v
). Now we can look at the Laurent

series of r(u, v) in u near u = 0:

(5.3.3) r(u, v) =
1⊗ 1

u
+ r0(v) + . . .

Let us denote by pr : Matn(C) → sln(C) the projection along C · 1. Then one can check
that r(v) := (pr⊗ pr)(r0(v)) is a nondegenerate solution of the classical Yang-Baxter
equation (CYBE) with values in sln(C)⊗ sln(C),

[r12(v), r13(v + v′)] + [r12(v), r23(v′)] + [r13(v + v′), r23(v′)] = 0.

Here “nondegenerate” simply means that the tensor r(v) is nondegenerate for generic v
Recall that Belavin and Drinfeld in the seminal paper [3] classified nondegenerate so-

lutions of the classical Yang-Baxter equation for all simple complex Lie algebras, up to
some natural equivalence. They showed that they can be either elliptic or trigonometric
or rational, and further classified trigonometric solutions in terms of some combinatorial
data, involving so called Belavin-Drinfeld triples.

Similarly, one can pose the problem of classifying nondegenerate solutions r(u, v) of
the AYBE (and of its formal set-theoretic version). It was shown in [37] that if r(v) is
either elliptic or trigonometric then r(u, v) is determined by r(v), up to some natural
transformations. Furthermore, all elliptic solutions of the CYBE extend to those of the
AYBE and are obtained using our Massey product construction with bundles over elliptic
curves.

As for trigonometric solutions, it was proved in [37] that nondegenerate solutions of
the AYBE, with the Laurent expansion at u = 0 of the form (5.3.3) and such that r(v)
is a trigonometric solution of the CYBE, admit a classification in terms of the following
combinatorial data.

Definition 5.3.1. An associative Belavin-Drinfeld structure (BD-structure) (S,C1, C2, A)
consists of a finite set S, a pair of transitive cyclic permutations C1, C2 : S → S and a
proper subset A ⊂ S such that for all a ∈ A, one has :

C1(C2(a)) = C2(C1(a)).
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The trigonometric solution of the AYBE corresponding to an associative BD-structure
(S,C1, C2, A) is given by
(5.3.4)

r(u, v) =
1

exp(u)− 1

∑
i

eii ⊗ eii +
1

1− exp(−v)

∑
i

eii ⊗ eii

+
1

exp(u)− 1

∑
0<k<n,i

exp(
ku

n
)eCk

1 (i),Ck
1 (i) ⊗ eii +

1

exp(v)− 1

∑
0<m<n,i

exp(
mv

n
)ei,Cm

2 (i) ⊗ eCm
2 (i),i

+
∑

0<k,0<m;a∈A(k,m)

{
exp(−ku+mv

n
)eCm

2 (a),a ⊗ eCk
1 (a),Ck

1C
m
2 (a) − exp(

ku+mv

n
)eCk

1 (a),Ck
1C

m
2 (a) ⊗ eCm

2 (a),a

}
,

where we denote by A(k,m) ⊂ A the set of all a ∈ A such that Ci
1C

j
2(a) ∈ A for all

0 ≤ i < k, 0 ≤ j < m.
In [37] we also computed all the solutions of the AYBE coming from vector bundles

over the nodal degenerations of elliptic curves, i.e., cycles of projective lines (aka standard
m-gons). These solutions are trigonometric and correspond to some of the combinatorial
data above. However, it turned out that not all trigonometric solutions of the AYBE
appear in this way. Namely, it was also shown in [37] that the trigonometric solution of
the AYBE, corresponding to the data (S,C1, C2, A), arises from a simple vector bundle
on a cycle of projective lines if and only if the corresponding cyclic permutations C1 and
C2 commute (equivalently, C2 = Ck

1 for some k).
In [24] we observed that all trigonometric solutions of the AYBE corresponding to

the associative BD-structures can be constructed by looking at the Massey products
between appropriate objects in compact Fukaya categories of open Riemann surfaces.
Namely, starting from an associative BD-structure (S,C1, C2, A), we construct a square-
tiled surface Σ with a local symplectomorphism

π : Σ→ T
to the square torus T. In the case A = ∅, Σ is just the n−fold covering space of the
punctured torus T0 associated to the permutations C1, C2. In the case of general A we
fill in the holes in this n-fold covering, corresponding to elements of A. Lifts of standard
Lagrangian curves in T to Σ give a pair of exact Lagrangians L1 and L2 in Σ. Now,
we consider triple products between (Lx11 , L

y1
2 , L

x2
1 , L

y2
2 ), where (Lx1) and (Ly2) are certain

1-parameter deformations of L1 and L2, and show that the corresponding solution of the
AYBE is exactly the trigonometric solution associated with (S,C1, C2, A).

In search of a purely algebro-geometric construction of trigonometric solutions, we will
undertake a more systematic study of the corresponding moduli space of A∞-structures.

5.4. Moduli space of A∞-structures. We can consider the family of algebras S(kn, g)
as a sheaf of algebras over the scheme GLn. Thus, we have the corresponding functor
M∞(sph, n) of minimal A∞-structures as in Definition 3.1.4. Applying Theorem 3.3.1
one can prove the following representability result.

Theorem 5.4.1. Assume that n ≥ 3. Then the functor M∞(sph, n) is representable by
an affine scheme of finite type over GLn. Furthermore, the morphism M∞ → M4 is a
closed embedding. In the case n = 2 the similar assertions hold if we work over Z[1/2].
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This theorem is an immediate consequence of Theorem 3.3.1 and the following vanishing
result for the Hochschild cohomology of the algebras S(kn, g).

Proposition 5.4.2. Assume that either n ≥ 3, or n = 2 and char(k) 6= 2. Then

HH≤1(S(kn, g))<0 = HH2(S(kn, g))<−2 = 0.

Sketch of Proof. The computation is based on the fact that the algebra S = S(kn, g) is
Koszul (with a different grading), so we can use the Koszul resolution to compute the
relevant Hochschild cohomology.

Let αi ∈ Hom(E,F ), βi ∈ Hom1(F,E), i = 1, . . . , n, be the dual bases of arrows in our
quiver, so that the multiplication rule for these elements in S is given by

αjβi = δijξF , βi, αj = aijξE,

where g = (aij) ∈ GLn(k), and ξE (resp., ξF ) is a basis element in Hom1(E,E) (resp.,
Hom1(F, F )).

Let us view S as a K-algebra, where K = k idE ⊕k idF , and equip it with a new grading
degK such that degK(αi) = degK(βi) = 1. Then S is defined by homogeneous quadratic
relations with respect to the generators (αi, βi) and the quadratic dual algebra S ! has
relations ∑

1≤i,j≤n

aijα
∗
jβ
∗
i = 0,

n∑
i=1

β∗i α
∗
i = 0.

between the dual generators.
Here we use the following conventions about quadratic duality over K = k · idE ⊕k · idF .

For a quadratic K-algebra A with generators VEF and VFE of degree 1, and quadratic
relations REE ⊂ VFE⊗VEF , RFF ⊂ VEF ⊗VFE, the dual quadratic algebra has generators
V !
EF = V ∨FE and V !

FE = V ∨EF and quadratic relations

R!
EE = A∨2,EE ⊂ (VFE ⊗ VEF )∨ ' V !

FE ⊗ V !
EF , R!

FF = A∨2,FF ⊂ V !
EF ⊗ V !

FE.

The fact that S ! is Koszul is a variation of a well-known fact that a graded algebra A
over A0 = k with one quadratic relation is Koszul (S! has two defining relations but in
some sense they can be thought as one relation spread over two vertices E and F ).

The Hochschild cohomology of a KoszulK-algebra A (whereK is commutative semisim-
ple) can be computed using the Koszul resolution as follows (see e.g.,[58, Sec. 3]). We
have a natural embedding

(A!
m)∗ ↪→ A⊗m1

(here and below all tensor products are over K), so that the image consists of the inter-
section of kernels of the partial multiplication maps

a1 ⊗ . . .⊗ am 7→ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ am.
The corresponding subcomplex

A⊗ (A!
•)
∗ ⊗ A ⊂ A⊗ T •(A+)⊗ A

in the standard bar-resolution of A by free A − A-bimodules is still exact. Thus, we get
a resolution of the form

[. . .→ A⊗ (A!
m)∗ ⊗ A dm

> A⊗ (A!
m−1)∗ ⊗ A→ . . .→ A⊗ (A!

1)∗ ⊗ A→ A⊗ A]→ A.
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Let (vi) be generators in A1, (v∗i ) the dual generators of A!
1. Then the differential is given

by

dm(r ⊗ φ⊗ s) =
∑
i

rvi ⊗ v∗i φ⊗ s+ (−1)m
∑
i

r ⊗ φv∗i ⊗ vis,

where we use the A!-bimodule structure on (A!)∗ given by the operators dual to the left
and right multiplication.

Now assume that the algebra A has an additional Z-grading deg induced by a Z-
grading on A1. Then using the above resolution we get the following complex computing
the Hochschild cohomology of A with respect to the grading deg:

A→ A!
1 ⊗ A→ . . .→ A!

m ⊗ A
δm
> A!

m+1 ⊗ A→ . . .

with the differential

δm(ψ ⊗ s) = (−1)(deg(ψ)+deg(s)) deg(vi)
∑
i

ψv∗i ⊗ vis+ (−1)m+1
∑
i

v∗iψ ⊗ svi.

Here we assume that the basis (vi) is homogeneous with respect to deg.
Now we want to apply these considerations to the algebra S. To distinguish the grading

deg from degK we will denote the graded components with respect to degK as S{j}. Since
S = S{0} ⊕ S{1}, we have

(S ! ⊗ S){j} = S !{j} ⊗ S{0} ⊕ S !{j − 1} ⊗ S{1}.
Note that the induced grading deg on S ! has deg(α∗i ) = 0 and deg(β∗j ) = −1. Also, since

α∗i and β∗j have to alternate in any nonzero monomial in S !
m, we have S !

m{j} = 0 unless
m ∈ {−2j − 1,−2j,−2j + 1}. This immediately implies the vanishing

HHm(S){< −m− 1} = 0

for any m.
For m ≥ 0 the space HHm(S){−m− 1} is identified with the kernel of the map

δ : S !
2m+1{−m− 1} ⊗ S{0} → S !

2m2
{−m− 1} ⊗ S{0}.

But S !
2m+1{−m− 1} ⊗ S{0} = S !

2m+1eE ⊗ eE, and for x ∈ S !
2m+1eE we have

δ(x⊗ eE) =
∑
i

xα∗i ⊗ αi.

Thus, we need to know that if xα∗i = 0 for every i then x = 0. This is not hard to check
(in fact, there are no zero divisors in S !).

In order to prove the vanishing of HH1(S){−1} one needs to check few more facts
about the algebra S !. We skip this calculation. �

5.5. Noncommutative algebras associated with pairs of 1-spherical objects. As
was discussed in Sec. 5.1, for any minimal A∞-structure on the algebra S(V, g), where
V is a finite-dimensional vector space over k, we have a 1-spherical pair (E,F ) in the
corresponding derived category of A∞-modules, with Hom(E,F ) = V . Now we are go-
ing to use the twist functor TF (see (5.1.1)) to associate with the pair (E,F ) a certain
noncommutative algebra.
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Namely, for every i ≥ 0 we consider an object Ei := T iF (E) in the category of twisted
complexes over the category with objects E and F . Note that E0 = E. Then there is a
natural graded associative multiplication on

R = RTF ,E :=
⊕
i≥0

Hom(E0, Ei),

given by ab = T iF (a) ◦ b, where a ∈ Hom(E0, Ej) and b ∈ Hom(E0, Ei). Note that by
definition of the spherical twist, we have an exact triangle

Hom1(F,E)⊗ F [−1]→ E0
t
> E1 → . . .

We will prove below that the element t ∈ Hom(E0, E1) = R1 is a central non-zero-divisor
in R, so that R can be identified with the Rees algebra of an algebra A with an increasing
algebra filtration F•: R = R(A) :=

⊕
i≥0 FiA.

Let us associate with g ∈ PGL(V ) the subspace Endg(V ) ⊂ End(V ) consisting of
transformations a such that tr(ga) = 0. Next, we consider the associative algebra

(5.5.1) E(V, g) := {a0 + a1z + . . . ∈ End(V )[z] | a0 ∈ k · id, a1 ∈ Endg(V )},

which we view as a graded algebra with deg(z) = 1, deg(a) = 0 for a ∈ End(V ).

Theorem 5.5.1. ([43, Thm. 2.4.1]) Let (E,F ) be a 1-spherical pair with Hom(E,F ) = V ,
and let g ∈ PGL(V ) be the corresponding element defined in Sec. 5.1. Then the algebra
R = RTF ,E is isomorphic to the Rees algebra of a filtered algebra (A,F•A) equipped with
an isomorphism grF (A) ' E(V, g)op ' E(V ∨, g∗). In addition, Hom6=0(E0, Ei) = 0 for
i > 0.

Sketch of proof. It will be notationally convenient for a while not to use the trivialization
of Hom1(F, F ), so let us set L := Ext1(F, F ). Recall that the second of the pairings
(5.1.2) gives an identification Hom1(F,E) ' V ∨ ⊗ L.

It is not hard to find explicit twisted complexes representing Ei. Namely, Ei, for i ≥ 1,
is represented by the twisted complex
(5.5.2)

Hom1(F,E)Li−1⊗F δi
> Hom1(F,E)Li−2⊗F δi−1

> . . .
δ2
> Hom1(F,E)⊗F δ1

> E.

Here the differentials δi with i > 1 are induced by the evaluation maps L ⊗ F → F [1],
while the differential δ1 : Hom1(F,E)⊗ F → F [1] is also the evaluation map.

The complex hom(E0, Ei) = hom(E,Ei) has form(
i−1⊕
j=0

Hom1(F,E)Lj ⊗ Hom0(E,F )

)
⊕ Hom0(E,E)→ Hom1(E,E),

with the differential given by d(idE) = 0,

d(e⊗ ξ⊗j ⊗ x) = mj+2(e, ξ, . . . , ξ, x).

Recall that the map m2 : Hom1(F,E) ⊗ Hom(E,F ) → Hom1(E,E) = LE can be
identified with the map End(V ) → S : a 7→ tr(ga). Thus, we immediately see that for
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i ≥ 1 one has Hom6=0(E0, Ei) = 0, while Hom0(E0, Ei) fits into an exact sequence

0→ Endg(V )L⊕ Hom0(E,E)→ Hom0(E0, Ei)→

(
i⊕

j=2

End(V )Lj

)
→ 0,

where we use the identification Hom1(F,E) ' V ∨L.
In particular, the element t ∈ Hom0(E0, E1) is represented by idE ∈ Hom0(E,E) ⊂

hom(E,E1), so that we have a decomposition

Hom(E0, E1) ' Endg(V )⊕ k · t.
One checks directly that the map of left multiplcation by t,

hom(E0, Ei)
T i
F (t)·
> hom(E0, Ei+1)

is given by the obvious embedding of complexes.
This implies that t is a nonzero divisor and that for each i ≥ 1 we have an exact

sequence

0→ Hom(E0, Ei−1)
t·
> Hom(E0, Ei)

πi
> End(V )⊗ Li,

where πi is induced by the natural projection

πi : hom0(E0, Ei)→ V ∨Li ⊗ Hom(E,F ) ' End(V )⊗ Li.
Using our explicit description of Hom(E0, Ei), we see that for i ≥ 2, the map πi is
surjective, while for i = 1 its image is Endg(V )⊗ L.

One can check easily that the maps (πi) define an algebra homomorphism R →
E(V, g)op. As we have seen above, it is surjective, with the kernel tR. Since the al-
gebra E(V, g)op is generated by degree 1 elements, we deduce that the same is true for
R.

Finally, we check directly that for every x ∈ R1 one has tx = xt, hence, the element t
is central in R. It follows that R is the Rees algebra of a filtered algebra A with

grF (A) ' R/tR ' E(V, g)op.

�

It turns out that the above correspondence gives an equivalence between the moduli
space of A∞-structures,M∞(sph, n) (see Theorem 5.4.1) and an appropriate moduli space
of filtered algebras. Namely, we have the following construction in the opposite direction
to that given by Theorem 5.5.1. Starting with a filtered algebra (A,F•) equipped with
an isomorphism grF A ' E(V, g)op, we consider the corresponding Rees algebra R(A) and
the corresponding abelian category qgrR(A), defined as the quotient of the category of
finitely generated graded right R(A)-modules by the subcategory of torsion modules. The
latter category should be viewed as the category of coherent sheaves on a noncommutative
Proj scheme associated with R(A) (see [2]). Now we define a pair (EA, FA) of 1-spherical
objects in the derived category of qgrR(A) as follows: EA is simply the object O corre-
sponding toR(A) viewed as a right module over itself. Next we can view Rn[z] as a graded
module over End(Rn)[z], and hence, as a graded right module over E(Rn, g)op ' R(A)/(t).
We take FA to be the object corresponding to Rn[z] viewed as a right R(A)-module. One
can check that these objects are 1-spherical, with Hom(EA, FA) ' V .
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Theorem 5.5.2. For n ≥ 2, let us consider the functor Mfilt(n) associating with a
commutative ring R the following data: an element g ∈ GLn(R) and an isomorphism
class of filtered R-algebras (A,F•) equipped with an isomorphism

grF A ' E(Rn, g)op.

Then for n ≥ 3, there is an isomorphism of functors

M∞(sph, n) 'Mfilt(n).

In the case n = 2 we have an isomorphism of modified functors

M∞(sph, 2)[tr−1] 'Mfilt(n)[tr−1]

where we impose the condition that tr(g) is invertible.
Furthermore, under this correspondence the 1-spherical pair corresponding to an A∞-

structure on S(V, g) is equivalent to the 1-spherical pair (EA, FA) in qgrR(A).

We will not give a complete proof of this theorem here. Checking that the two maps
between the moduli functors are mutually inverse is quite nontrivial (see [43]).

5.6. Filtered algebras and spherical orders. Let A be an algebra over k with an
increasing algebra filtration F0 ⊂ F1 ⊂ . . . equipped with an isomorphism

(5.6.1) grF (A) ' E(V, g)op

for some g ∈ GL(V ), and let Z ⊂ A be its center. We equip Z with the induced filtration.
Recall that if R is a commutative Noetherian domain with the quotient field K then

an R-order in a central simple K-algebra D is an R-subalgebra B ⊂ D, finitely generated
as an R-module, such that K ⊗R B = D.

Lemma 5.6.1. The algebra A is Noetherian and finite over its center Z, which is a
1-dimensional domain, finitely generated as k-algebra. Also, A is an order in a central
simple algebra over the quotient field of Z.

Proof. Since the algebra E(V, g) is generated by degree 1 elements, we deduce that A
is generated by F1A. Given a nonzero ideal I ⊂ A, let I0 ⊂ End(V ) be the set of all
elements x such that xtn appears as an initial form of an element of I for some n. Then
I0 is a nonzero ideal, hence, I0 = End(V ). Hence, for a pair of nonzero ideals I, J ⊂ A
we have I0J0 6= 0, so IJ 6= 0, which shows that A is prime. We have dimFiA/Fi−1A = n2

for i > 1, so the GK-dimension of A is one. Now the results of [53] and [47] imply that A
and Z are Noetherian, A is finite over Z, and Z has dimension 1.

Note that the center of grF (A) ' E(V, g)op is either k[z2, z3] ⊂ k[z], in the case when
tr(g) 6= 0, or k[z], when tr(g) = 0. Thus, grF (Z) is a graded k-subalgebra in k[z], i.e., a
group algebra of a subsemigroup in natural numbers. This easily implies that the algebra
R(Z) is a domain, finitely generated as a k-algebra. Next, the fact that grF (A) ' E(V, g)op

is torsion free as a module over grF (Z) ⊂ k[z] implies that A is torsion free as a Z-module.
Let K be the quotient field of Z. Then A⊗ZK is a finite-dimensional prime algebra over
K with the center K, so it is a central simple algebra over K. �

Next, we would like to extend A to a sheaf of algebras over a projective curve com-
pactifying Spec(Z). The first obvious choice is to consider the Rees algebras R(A) =
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⊕
m≥0 FmA andR(Z) =

⊕
m≥0 FmZ and to consider the corresponding Proj-construction.

However, the resulting structures are not always easy to analyze. Namely, the problem
arises when grF (Z) is contained in k[td] for some d ≥ 2. It turns out that a better behaved
construction is provided by the stacky version of Proj, which we denote by Projst.

Namely, for any commutative non-negatively graded k-algebra B =
⊕

n≥0Bn, where
B0 = k, one can define a stack

Projst(B) := Spec(B) \ {B+}/Gm,

where B+ is the augmentation ideal. Assuming in addition that B is finitely generated,
we have an equivalence of the category Coh(Projst(B)) with the category qgr(B). Note
that we have a natural line bundle O(1) on Projst(B) such that elements of Bn can be
viewed as global sections of O(n).

Now starting with an algebra A as above we define a stacky curve C by

C := ProjstR(Z).

Let us denote by t the element 1 ∈ R1(Z) = F1A∩Z. Note that t is a non-zero-divisor,
and R(A)/tR(A) ' grF (A), R(Z)/tR(Z) ' grF (Z). Since grF (A) ' E(V, g)op if finitely
generated as a grF (Z)-module (see the proof of Lemma 5.6.1), we deduce that R(A) is
finitely generated as an R(Z)-module. Thus, localizing R(A) we get a sheaf of coherent
OC-algebras A on C.

We can view the element t as a section of the line bundle OC(1). Note that the open
subset t 6= 0 in C is isomorphic to Spec(Z) (so it is a usual affine curve), while the divisor
t = 0 is isomorphic to Projst(grF (Z)). Let d ≥ 1 be the maximal such that grF (Z) ⊂ k[zd].
Then Projst(grF (Z)) is the stacky point Spec(k)/µd. In particular, d = 1 if and only if C
is the usual curve.

More precisely, recall that we define Projst(Z) as the quotient of the surface S =
Spec(R(Z))\{0} by the natural Gm-action. We can view t as a map S → A1 and the fiber
over 0, D ⊂ S is a closed Gm-orbit with the stabilizer µd. Since D = Spec(grF (Z)) \ {0}
is smooth, the surface S is smooth near D. By the argument of Luna’s étale slice theorem
(see [26]), there exists a smooth µd-invariant locally closed curve Σ ⊂ S through the point
z = 1 of D such that the induced map of stacks Σ/µd → S/Gm is étale.

It turns out that the above construction is a bijection between the isomorphism classes of
filtered algebras (A,F•) with an isomorphism (5.6.1) and isomorphism classes of noncom-
mutative orders over stacky curves of a special kind. Let us give the relevant definitions.

Definition 5.6.2. A neat pointed stacky curve over k is an integral 1-dimensional proper
stack C over k with a stacky point of the form p = Spec(k)/µd, such that C is smooth
near p, and C \ {p} is an affine scheme. In addition we assume that the coarse moduli
space C is a projective curve satisfying H0(C,O) = k, and there exists an étale morphism
of the form f : U/µd → C, where U is a smooth affine curve with a µd-action and k-point
q, such that µd acts faithfully on the tangent space to q and f(q) = p.

Definition 5.6.3. Let A be an order over a neat pointed stacky curve C, i.e., a coherent
OC-algebra, torsion free as an OC-module, whose stalk at the generic point of C is a
central simple algebra over k(C). We say that A is spherical if A is a 1-spherical object
in the perfect derived category of right A-modules, Perf(Aop),
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Every neat pointed stacky curve has a dualizing sheaf ωC , which is locally free near
the stacky point, and we have the following criterion for checking whether an order is
spherical.

Proposition 5.6.4. Let A be an order over a neat stacky curve C. Then A is spherical
if and only if h0(C,A) = 1 and there is an isomorphism of left A-modules

(5.6.2) A ' Hom(A, ωC),

where ωC is the dualizing sheaf on C (equivalently, one can ask for an existence of an
isomorphism of right A-modules above). In particular, A is spherical if and only if Aop
is spherical.

Furthermore, if A is spherical then h0(C,A) = h1(C,A) = 1 and for a nonzero mor-
phism τ : A → ωC (which is unique up to rescaling) the pairing

(5.6.3) A⊗A → ωC : (x, y) 7→ τ(xy)

is perfect in the derived category (on both sides).

Sketch of proof. Assume that A is 1-spherical in Perf(A). Then H1(A) ' Ext1
A(A,A)

is 1-dimensional. Hence, by Serre duality, the space Hom(A, ωC) is 1-dimensional. Let
τ : A → ωC be a nonzero generator. It is easy to see that for a vector bundle V over C,
the canonical pairing

HomA(A⊗ V ,A)⊗ Ext1
A(A,A⊗ V)→ Ext1

A(A,A)

get identified with the natural composed map

(5.6.4) Hom(V ,A)⊗H1(A⊗ V)→ H1(A⊗A)→ H1(A),

where the second arrow is induced by the multiplication onA. By assumption, this pairing
is perfect. Now it it easy to check that (5.6.4) fits into a commutative diagram

(5.6.5)

Hom(V ,A)⊗H1(A⊗ V) > H1(A)

Hom(V ,Hom(A, ωC))⊗H1(A⊗ V)
∨

> H1(ωC)

H1(τ)
∨

where the bottom arrow is the Serre duality pairing combined with the isomorphism

Hom(V ,Hom(A, ωC)) ' Hom(A⊗ V , ωC),

and the left vertical arrow comes from the morphism of left A-modules

ν = ντ : A → Hom(A, ωC) : a 7→ (x 7→ τ(xa)).

Since both horizontal arrows give perfect pairing and H1(τ) is an isomorphism, we deduce
that the map

Hom(V ,A)→ Hom(V ,Hom(A, ωC)),

induced by ν, is an isomorphism for all vector bundles V . It follows that ν is an isomor-
phism.

To deduce that the morphism

ν ′ : A → Hom(A, ωC) : a 7→ (x 7→ τ(ax))
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is also an isomorphism, we use the fact that the biduality morphism

A → Hom(Hom(A, ωC), ωC)

is an isomorphism (which can be proved using the fact that H0(C,A) = k). �

We say that a spherical order A is symmetric if the pairing (5.6.3) (which is uniquely
defined up to a scalar) is symmetric. The importance of spherical orders is due to the
fact that they give to cyclic A∞-structures (see Proposition 5.6.8 below).

Proposition 5.6.5. Fix a field k and a vector space V over k of dimension n ≥ 2. Let
us consider the following two groupoids:
(1) filtered algebras (A,F•) with a fixed isomorphism grF A ' E(V, g)op for some g ∈
PGL(V ) (here morphisms exist only when the corresponding elements g ∈ PGL(V ) are
equal);
(2) data (C, p, v,A, τ, φ), where C is a neat pointed stacky curve with the unique (smooth)
stacky point p = Spec(k)/µd, such that A is a spherical order over C with the center
OC, v is a nonzero tangent vector at p; and φ : A|p ' ρ∗ End(V )op is an isomorphism of
algebras (where ρ : Spec(k)→ p is the natural map).

Then the map associating to (C, p, v,A, τ) the algebra A = H0(C \ p,A) with its nat-
ural filtration extends to an equivalence of groupoids (1) and (2). Furthermore, under
this correspondence the 1-spherical pair associated with (A,F•) is equivalent to the pair
(A, (ρ∗V )p).

Sketch of proof. We already explained the construction of an order A associated with
a filtered algebra (A,F•). Conversely, the algebra A is recovered from the order A as
A = H0(C \ {p},A), and the filtration F• is given by the order of pole at p.

To check that an order A associated with a filtered algebra (A,F•) is spherical we use
an equivalence of categories

Coh(Aop) ' qgrR(A),

which is obtained by applying the general formalism of noncommutative geometry (see
[2]) to the abelian category Coh(Aop) with the autoequivalence M 7→M(1) and the object
A. It is easy to check that under this equivalence, the pair (A, (ρ∗V )p) corresponds to the
1-spherical pair (EA, FA) in the derived category of qgrR(A). In particular, we deduce
that A is a spherical object in Perf(A). �

Example 5.6.6. Let Ccusp be a cuspidal curve of arithmetic genus 1 over a field k, q a
singular point, p a smooth point. Note that the normalization map is a homeomorphism,
so we can identify Ccusp with P1 as a topological space. We assume that p corresponds
to ∞ ∈ P1, while q corresponds to 0 ∈ P1. For an n-dimensional vector space V and
g ∈ GL(V ), let us define an order Acusp

g over Ccusp as the subsheaf of algebras Acusp
g ⊂

End(V )⊗OP1 , consisting of the elements that have an expansion a(z) = c · I + a1z + . . .
near 0 ∈ P1, with c ∈ k and tr(ga1) = 0. Note that Acusp

g is a sheaf of OP1-algebras
precisely when tr(g) = 0.

It is easy to check Acusp
g is precisely the order corresponding to the algebra E(V, g)op,

with the filtration is induced by the grading. Under the correspondence of Theorem 5.5.2,
this filtered algebra corresponds to the trivial A∞-structure on S(V, g).

80



Combining Proposition 5.6.5 with the correspondence of Sec. 5.5 we obtain the following
result.

Corollary 5.6.7. Let k be a field, g ∈ GLn(k), where n ≥ 2. Assume that either n ≥ 3
or tr(g) 6= 0. Then every minimal A∞-structure on the algebra S(kn, g) can be realized by
A∞-endomorphisms of the generator A⊕ ρ∗V of Perf(A), for a spherical order A over a
neat pointed stacky curve (C, p) such that A|p ' ρ∗ End(V ). The order is symmetric if
and only if g is a scalar multiple of identity.

Using this realization by spherical orders we can prove the following result about cyclic
A∞-structures.

Proposition 5.6.8. Let k be a field of characteristic zero. Then every minimal A∞-
structure on the algebra S(kn, id) is gauge equivalent to a cyclic A∞-structure.

Proof. We use the fact that for a symmetric spherical order A over C, a nonzero morphism
τ : A → ωC induces a symmetric pairing A → A → ωC which is perfect in derived
category (see Proposition 5.6.4(ii)). Recall that we want to construct a cyclic minimal
A∞-structure on Ext∗(G,G), where G = A⊕ ρ∗V . Let L be a sufficiently positive power
of an ample line bundle on C. Then twisting G through the spherical object L−1 ⊗ A
gives an A-module P fitting into an exact sequence

0→ P → HomA(L−1 ⊗A, G)⊗ L−1 ⊗A → G→ 0

Since local projective dimension of G is 1, this immediately implies that P is locally pro-
jective. Furthermore, since the spherical twist can be defined on a dg-level, we can replace
G by P when studying the minimal A∞-structure on Ext∗A(G,G) ' Ext∗A(P ,P) obtained
by the homological perturbation. In this way the problem is reduced to showing that the
minimal A∞-structure on H∗(C,EndA(P ,P)) obtained by the homological perturbation
can be chosen to be cyclic. This can be done similarly to Corollary 1.6.9. �
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