- 1. For every positive integer n, give an example of a group Γ of order n and its representation V such that $\mathbb{C}[V]^G$ is *not* generated by invariants of degree less than n.
 - 2. Let $\Gamma \subset GL(V)$ be a finite subgroup. Prove that
 - a) $\dim_{\mathbb{C}(V)^{\Gamma}} \mathbb{C}(V) = \sharp \Gamma.$
 - b) $\mathbb{C}(V) = \mathbb{C}(V)^{\Gamma} \otimes_{\mathbb{C}[V]^{\Gamma}} \mathbb{C}[V].$ c) $\mathbb{C}(V)^{\Gamma} = \operatorname{Frac}(\mathbb{C}[V]^{\Gamma}).$
 - d) $\dim_{\operatorname{Frac}(\mathbb{C}[V]^{\Gamma})} \operatorname{Frac}(\mathbb{C}[V]^{\Gamma}) \otimes_{\mathbb{C}[V]^{\Gamma}} \mathbb{C}[V] = \sharp \Gamma.$
- 3. a) Prove that the wreath product $\mathfrak{S}_n \wr \mathbb{Z}/2\mathbb{Z} := \mathfrak{S}_n \ltimes (\mathbb{Z}/2\mathbb{Z})^n$ (the Weyl group of type B_n) in its natural n-dimensional representation V is a reflection group.
 - b) Find the generators of invariants in $\mathbb{C}[V]$ (in particular, their degrees).
- 4. The Weyl group of type B_n has an evident "sum" homomorphism onto $\mathbb{Z}/2\mathbb{Z}$. Its kernel K is the Weyl group of type D_n .
 - a) Prove that K in its n-dimensional representation V is a reflection group.
 - b) Find the generators of $\mathbb{C}[V]^K$ (in particular, their degrees).
 - 5. More generally, $G(a, 1, n) := \mathfrak{S}_n \wr \sqrt[q]{1}$ has an evident "product" homomorphism φ to
- the cyclic group $\sqrt[a]{1}$ of roots of unity. For a divisor p of a we define $G(a, p, n) \subset G(a, 1, n)$ as the subgroup consisting of all g such that $\varphi(g)^{a/p} = 1$ (so that $\sharp G(a, p, n) = a^n n!/p$). The group G(a, p, n) has a natural n-dimensional representation V.
 - a) Prove that G(a, p, n) is a complex reflection group in V.
 - b) Find the generators of $\mathbb{C}[V]^{G(a,p,n)}$ (in particular, their degrees). According to the Shephard-Todd classification, apart from the infinite series G(a,p,n),

there are 34 exceptional irreducible reflection groups (e.g. the group of symmetries of icosahedron).