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We show that it suffices to prove this conjecture for simple groups.
Motivated by applications in computational complexity theory, we conjecture

that for finite simple groups, such a short presentation is computable in polynomial
time from the standard name of G, assuming in the case of Lie type simple groups

Ž m. Ž .over GF p that an irreducible polynomial f of degree m over GF p and a
Ž m.primitive root of GF p are given.

Ž .We verify this stronger conjecture for all finite simple groups except for the
three families of rank 1 twisted groups: we do not handle the unitary groups

Ž . 2 Ž . Ž . 2 Ž . Ž .PSU 3, q s A q , the Suzuki groups Sz q s B q , and the Ree groups R q2 2
2 Ž .s G q . In particular, all finite groups G without composition factors of these types2

ŽŽ < <.3.ha¨e presentations of length O log G .
Ž .For groups of Lie type normal or twisted of rank G 2, we use a reduced version

of the Curtis]Steinberg]Tits presentation. Q 1997 Academic Press
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1. INTRODUCTION

A presentation of a group is a description by generators and relations
which defines the group; we allow relations written as equations using
powers of the generators. For general background and a number of

w xspecific presentations, we refer to Coxeter and Moser CM72 .
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We define the length of a presentation to be the total number of
characters required to write all the relations. We write exponents in binary
and include the number of digits in this count. We shall only be interested
in the asymptotic order of magnitude of presentation lengths, so it makes
no difference whether or not we count parentheses, equal signs, and minus
signs; for definiteness, we shall not count them. We use log to denote base
2 logarithms. Each generator will count as a single symbol.

² m :EXAMPLE 1.1. The presentation x : x s 1 of the cyclic group of
Ž . Žorder m has length log m q O 1 since it takes at most 1 q log m digits

. Ž .to write the exponent m in binary . The presentation of PSL 2, p given in
Ž .Remark 7.2 has length O log p .

Remark 1.2. A natural alternative to counting each generator as a
single symbol is to assume that the generators are indexed symbols
x , . . . , x and to count the digits in these subscripts as part of the length.1 k
However, this would only increase the length of a presentation by a factor
of log k, an insignificant factor from our point of view since log k is
Ž < <.O log log G in the short presentations we are interested in.

Remark 1.3. We note that insisting that no exponents be used would
Žnot force an increase in the length by more than a factor of 4 asymptoti-

.cally , since we can introduce extra generators for the repeated squares of
expressions to be raised to large powers. To illustrate this, consider again
the cyclic group of order m. Written without exponents, the above presen-

² m : ² :tation x : x s 1 turns into x : xxx ??? x s 1 which has length
Ž .m q O 1 . But another presentation for the same group is the following:

² 2 Ž . e0 e1 ek :x , x , . . . , x : x s x 0 F i - k , x x ??? x s 1 , where each e is0 1 k iq1 i 0 1 k i
i Ž .0 or 1 and m s Ýe 2 expresses m in base 2 so k s log m . This? @i

Ž .presentation, written without exponents, has length at most 3k q k q 1
Ž . Ž . Žq O 1 F 4 log m q O 1 . The factor of 4 would become a factor of 5 if

we counted the number of generators as well as the total length of all the
.relations. The same method can be used to remove the exponents from

any presentation.

In this paper we shall give evidence to support the following conjecture.

Ž .Conjecture 1 Short Presentation Conjecture . There exists a constant
Ž C < <.C such that every finite group G has a presentation of length O log G .

We conjecture that C s 3 suffices.
We show that it suffices to prove the conjecture for simple groups.

THEOREM 1.4. If Conjecture 1 holds for all finite simple groups with some
Ž Cq 1 < <.C G 2, then e¨ery finite group G has a presentation of length O log G .

We postpone the proof of Theorem 1.4 to the last section and focus on
the case of simple groups in Sections 2 through 7. We shall verify the
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conjecture for most classes of finite simple groups. The groups we miss are
the rank 1 twisted groups of Lie type, i.e., the following three families: the

Ž . 2 Ž . Ž . 2 Ž .unitary groups PSU 3, q s A q , the Suzuki groups Sz q s B q , and2 2
Ž . 2 Ž .the Ree groups R q s G q .2

THEOREM 1.5. The short presentation conjecture holds, with C s 2, for
all finite simple groups, with the possible exception of the rank 1 twisted groups
of Lie type.

Part of the motivation for this work comes from the complexity theory of
w xalgorithmic problems in finite matrix groups BS84, Ba91, Ba92, Ba97 .

What those applications actually require is more than the mere existence
of short presentations for finite simple groups. The presentations must be
‘‘efficiently verifiable’’ in a well-defined sense. The reader interested only
in the group-theoretic aspects of these questions may skip the rest of this
section.

Ž < <.Every finite simple group G has a standard name of length O log G
Ž .see below .

DEFINITION 1.1. Assume that ‘‘standard names’’ are associated with the
members of a class FF of finite groups. We say that FF has efficiently
¨erifiable presentations if there exists a constant C and a deterministic

Ž .multitape Turing machine M accepting triples G, P, W of strings such
that

Ž .i whenever G is the standard name of some member of FF, there
Žexist P and W such that P is a presentation of G and M accepts W is the

.‘‘witness’’ of correctness of the presentation ;
Ž .ii if G is a standard name of some member of FF and P is not a

Ž .presentation of G, then M rejects no ‘‘false witness’’ exists ;
Ž .iii if G is the standard name of some member of FF, then M halts
Ž C < <.in O log G steps.

Informally this means that short presentations with short proofs of
Žcorrectness exist. Note that efficiently verifiable presentations are auto-

.matically short: M has at least to read P before accepting. The following
version of Conjecture 1 suffices for the applications we have in mind.

Ž .Conjecture 2 Efficiently Verifiable Presentation Conjecture . The class
of all finite simple groups admits efficiently verifiable presentations.

It would seem desirable to make the conjecture still more effective; one
might want to see presentations that are uniform in the sense that they are

Ž . Ž C < <.computable on a multitape Turing machine in time O log G , given the
standard name of G. One obstacle to this might be the following. In the
case of groups of Lie type, the standard name of G includes a prime power
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m Ž .q s p . An explicit representation of the field GF q , i.e., an irreducible
Ž .polynomial of degree m over GF p , is likely to be needed for the

Ž .OŽ1.computation. No deterministic algorithm, running in log q time, is
known at present to produce such a polynomial except under the extended

Ž w x. ŽRiemann hypothesis Adleman and Lenstra AL86 . Randomized algo-
rithms do exist for this purpose, and the verification that a given polyno-

Ž .OŽ1.mial is irreducible can be performed deterministically in log q time
w x .Ber70, CZ81, Rab80 . We shall not be concerned with this difficulty and
get around it by the following convention.

Ž .CONVENTION ) . In case of a group G of Lie type over the field
Ž m.GF p , we require that the standard name of G include an irreducible

Ž .polynomial of degree m over GF p .

This convention seems quite natural and amounts to saying that the
underlying field itself rather than its order has to be specified as part of
the name of the group. It is less natural, but it seems necessary in some

Žcases, that we have, in addition, a primitive root generator of the multi-
. Ž .plicative group of GF q at hand. Without this, we presently are not able

Ž . Ž . Žto turn a presentation of SL n, q into one of PSL n, q . However, this
step and its analogues for the other Lie type groups are the only places

.where we will need the primitive root. Unfortunately, no deterministic
Ž . Ž .OŽ1.algorithm is known to find a primitive root of GF q in time log q ,

Ž .even for the case m s 1 q s p a prime . Given these additional tools,
however, we believe that presentations can be computed efficiently from

Žthe names of the finite simple groups. For twisted groups the relevant
Ž 2 . Ž 3.field may be GF q or GF q in terms of the q given in the standard

name, and we assume that an irreducible polynomial and primitive root
.are given for this larger field.

Ž .Conjecture 3 Uniform Short Presentation Conjecture . There exists a
constant C and an algorithm which computes a presentation of each finite

Ž C < <.simple group G in time O log G , given the following input:

Ž .a the standard name of G;
Ž . Ž . mb for groups of Lie type over GF q , where q s p with p prime,
Ž . Ž .b1 an irreducible polynomial f of degree m over GF p and
Ž . Ž .b2 a primitive root of GF q .

More precisely, we conjecture that C s 2 suffices.

Ž Ž . Ž . Ž .w x Ž . Ž .Given f as in b1 , we represent GF q as GF p x r f ; and b2 is
understood to conform to this representation, i.e., the primitive root is

Ž .w x Ž .given by a polynomial in GF p x whose class mod f is the primitive
Ž .w x Ž . .root in GF p x r f .
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Each of the three conjectures is stronger than its predecessor: Conjec-
Ž .ture 3 implies Conjecture 2 even without assuming ) , because the

Ž . Ž . Žadditional input b1 and b2 may be contained in the witness W the
machine in Definition 1.1 may use its inputs G and W together to compute

.a presentation which it then compares with the given presentation P .
Thus it suffices to consider Conjecture 3. For clarity, the proofs will be
worded to stress the validity of Conjecture 1; the presentations obtained
will be so explicit that the algorithmic requirements in the other conjec-
tures will evidently be met.

THEOREM 1.6. The uniform short presentation conjecture holds, with
C s 2, for all finite simple groups, with the possible exception of the rank 1
twisted groups of Lie type.

The complexity theoretic application are of a qualitative nature. First
w xstated in BS84 , Conjecture 2 is known to imply that certain problems for

Žmatrix groups G over finite fields belong to the complexity class NP cf.
w x .GJ79 for information regarding this complexity class , where a group is
given by a list of generating matrices. These problems include nonmember-

w xship of a given matrix in G, verification of the order of G BS84 , and
Ž w xisomorphism of two such groups G, H cf. Ba92, Propositions 4.9 and 4.10

. Žfor this result of Luks . The proof that the membership problem belongs
to NP is elementary; it is an immediate consequence of the reachability

w x .lemma BS84 , stated in Section 8 of this paper. For a list of further
w xconsequences of Conjecture 2, see Ba92, Corollary 12.1 .

Conjecture 3 is expected to be useful in efficient algorithms for matrix
Ž w x.groups cf. Ba97 .

The algorithmic parts of the present paper deal only with simple groups.
We do not address algorithmic questions for the nonsimple groups in
Conjecture 1, nor the question of finding the standard name of a simple
group given in some other way.

2. GROUPS OTHER THAN LIE TYPE

� 4 � 4As customary, for two sequences of positive real numbers a and b ,n n
Ž . Ž .we use the expression a s Q b to denote that a s O b and b sn n n n n

Ž .O a .n
First we note that the sporadic groups do not matter for us. Even if we

use their full Cayley tables for presentations, this will not influence the
validity of the conjectures.

Example 1.1 takes care of cyclic groups G: their natural presentations
Ž < <.have length Q log G .
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A number of suitable presentations for the alternating groups G s An
w x Ž 2 .are given in CM72, Sect. 6.3 . All of them have length Q n s

ŽŽ < < < <.2 . w xQ log G rlog log G . We quote a presentation contained in Car23 .

Generators: x i s 1, . . . , n y 2 ,Ž .i

23 3Relations: x s ??? s x s x x s 1 1 F i - j F n y 2 .Ž . Ž .1 ny2 i j

3. CHEVALLEY GROUPS

The remaining finite simple groups are of Lie type. They fall into two
categories: the normal and the twisted types. We shall refer to the former
as Che¨alley groups. Presentations for the groups of Lie type were first

w x Ž .given by Steinberg Ste 62, Ste 81 cf. Sections 4 and 6 below .
In Sections 3 to 5 we consider the case of Chevalley groups, postponing

the discussion of the twisted types until Section 6. Each Chevalley group G
Žis associated with a finite field of order q and a parameter N the number

.of ‘‘positive roots’’ . Steinberg uses 2 Nq generators. The Curtis]Stein-
w xberg]Tits presentation Cur65 reduces this number somewhat, but its

Ž .length is still proportional to q, not log q cf. Section 4 . This is not
< <satisfactory from our point of view since log G is approximately 2 N log q.

We shall see, however, that it is a relatively simple matter to reduce the
presentation in terms of these generators, for groups of rank n G 2. The

Ž . w xrank 1 case, i.e., the groups PSL 2, q , was settled in Tod36 .
We will need some standard terminology involving Chevalley groups.

w xOur main references are Steinberg’s lecture notes Ste67 and Carter’s
w xbook Car72 .

ˆEach Chevalley group G has a central extension G called a unï ersal
ˆ ˆChe¨alley group. If Z denotes the center of G, then G s GrZ; moreover

ˆ ˆ Ž .G9 s G where 9 denotes the commutator subgroup . First we describe
presentations for the universal Chevalley groups, and then presentations of
the simple Chevalley groups are obtained by killing Z.

Let LL stand for one of the letters A, B, C, D, E, F, G. Let LL denoten
Žthe corresponding complex simple Lie algebra of rank n. For type A,

Ž .n G 1; for types B and C, n G 2 here B s C ; for type D, n G 4; for2 2
.type E, 6 F n F 8; for type F, n s 4; and for type G, n s 2. Types A, B,

C, and D are called classical, the others exceptional.
Ž .Let LL q denote the universal Chevalley group over the field of ordern

m Ž .q s p p prime , corresponding to LL . The number n is the rank of then
group.

Remark 3.1. In this classification, the classical simple groups appear as
follows. The left column indicates universal Chevalley groups in Lie
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notation; the middle column their central quotient, a classical simple
group; the right column their classical name.

A q PSL n q 1, q linearŽ . Ž .n

B q PV 2n q 1, q orthogonalŽ . Ž .n

C q PSp 2n , q symplecticŽ . Ž .n
qD q PV 2n , q orthogonalŽ . Ž .n

There is another class of simple orthogonal groups of even dimension,
yŽ .PV 2n, q . They, along with the unitary groups, correspond to twisted

types:
2A q PSU n q 1, q unitaryŽ . Ž .n

2 yD q PV 2n , q orthogonalŽ . Ž .n

where, however, n is not the rank of the twisted group.

ˆRemark 3.2. In almost all cases the universal Chevalley group G is the
unï ersal central extension of the simple group G, but there are a few cases

ˆ w xwhere G has nontrivial Schur multiplier Ste81 . For convenience, we treat
Žthese finitely many exceptions as sporadic groups they cannot affect our

.asymptotic results and exclude them in the following sections, because the
w xCurtis]Steinberg]Tits presentation is known Cur65 to describe a central

ˆ ˆ ˆextension of G, which therefore must be G if G has trivial Schur
multiplier. If the rank is 2, then the Curtis]Steinberg]Tits presentation is

ˆthe same as the Steinberg presentation for G, so we only need to exclude
ˆthe cases of rank G 3 where G has nontrivial Schur multiplier, namely

Ž . Ž . Ž . Ž . Ž . Ž .A 2 , B 2 ( C 2 , B 3 , D 2 , and F 2 .3 3 3 3 4 4
The same remark applies to the central extensions of twisted groups

2 Ž . 2 Ž .considered in Section 6, where we exclude A 2 and E 2 .5 6

4. PRESENTATIONS FOR THE UNIVERSAL CHEVALLEY
GROUPS OF RANK G 2

In order to simplify the notation, in Sections 4 and 5 we will change
Ž .notation and now let G stand for the universal Chevalley group LL q . Letn

F denote the set of roots of the simple Lie algebra LL . Let Fq be an
< q< < <positive system of roots; N s F and F s 2 N. Let d , . . . , d denote1 n

the degrees of the algebraically independent homogeneous polynomials
that generate the ideal of invariant polynomials of the Weyl group of LL .n

w xThen Ste67, Theorem 25, p. 130
n

N s d y 1 1Ž . Ž .Ý i
is1
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and

< < N diG s q q y 1 . 2Ž .Ž .Ł
Consequently,

2 N < < 2 Nqn 3 Nq - G - q F q . 3Ž .

These inequalities can also be checked directly from explicit order formu-
Ž w x.las e.g. Gor80, p. 490 .

4.1. The Steinberg and Curtis]Steinberg]Tits Presentations

� Ž . Ž .4Steinberg introduces the set x t : a g F, t g GF q of 2 Nq genera-a

tors for G and shows the following set of relations to be sufficient to
w xdefine G in the case n G 2 Ste67, Theorem 9, p. 72 .

A x t q u s x t x u t , u g GF q , a g F ;Ž . Ž . Ž . Ž . Ž .Ž .a a a

i jB x t , x u s x C t uŽ . Ž . Ž . Ž .Ła b iaqj b i , j , a , b
i , j)0

for a , b g F , a / "b , t , u g GF q .Ž .

w x y1 y1Here g, h denotes the commutator g h gh; the product is taken over
those values i, j ) 0 for which ia q j b is a root; therefore the product
never has more than four terms and the relevant values of i, j are not

Žgreater than 3; the coefficients C thus form a finite list independenti, j, a , b

.of n and q for given a , b. These coefficients are integers of absolute
Ž . w xvalue F 3 most often "1 and are explicitly computed in Ste67, Sect. 10 .

Ž . Ž .In all cases except G q , the terms in the product in B commute and2
Ž .thus their order does not matter. The case G q is described in detail in2

w xSte67, Sect. 10 .

A subset of the above generators and relations will suffice for a
Ž .presentation of G see Remark 3.2 , namely the Curtis]Steinberg]Tits

w xpresentation Cur65 , which can be described as follows.
For 1 F i - j F n, let F denote the rank 2 subsystem of F spanned byi j

Žthe ith and jth fundamental roots we are assuming a fixed choice of a
positive system of roots Fq, or equivalently a fixed base consisting of n

. �Ž .fundamental roots . Let C s D F , let F s a , b g F = F :i- j i j i j i j i j
4 Ža / "b , and let F s D F . Note that C is a subset of F and F is ai- j i j

.set of pairs of roots from C. Then use only those of Steinberg’s generators
Ž .x t for which a g C; and use only those of the above relations of typea

Ž . Ž . Ž .A for which a g C and those of type B for which the pair a , b is in
F.

In other words, the Curtis]Steinberg]Tits presentation involves only
Žthose relations that come from certain rank 2 subgroups of G namely the
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² Ž . Ž .:rank 2 subgroups G s x t : a g F , t g GF q corresponding toi j a i j
.pairs of fundamental roots, i.e., edges or nonedges in the Dynkin diagram .

w x Ž . Ž .EXAMPLE 4.1 Ste67, p. 72 . For n G 3, the group SL n, q s A qny1
Ž . Ž Ž ..is defined in terms of the generators x t 1 F i, j F n, i / j, t g GF qi j

by the following relations:

x t q u s x t x u ,Ž . Ž . Ž .i j i j i j

x t , x u s x tu if i , j, k are different,Ž . Ž . Ž .i j jk ik

x t , x u s 1 if j / k , i / l.Ž . Ž .i j k l

This presentation encodes the relations among the usual matrices I q tE ,i j
Ž .where E is the matrix whose i, j entry is 1 with all other entries 0.i j

Ž .The Curtis]Steinberg]Tits presentation of SL n, q uses only the gen-
Ž . < <erators x t with i y j F 2. Of the three types of relations given above,i j

Ž < < .use the first type for these same pairs i, j i.e., whenever i y j F 2 ; use
Žthe second type whenever i, j, k are three consecutive integers in some

.order ; and use the third type whenever i, j, k, l all differ by at most one
Žfrom some fixed value these, like the second type, come from rank 2

. < < < <subsystems F of type A as well as whenever i y j s 1 and k y li, iq1 2
Ž . Ž .s 1 these come from subsystems F of type A = A . This uses O nqik 1 1

Ž 2 2 .generators and O n q relations, whereas the original Steinberg presenta-
Ž 2 . Ž 4 2 . Ž .tion used O n q generators and O n q relations cf. Section 4.3 .

4.2. The Reduced Set

We further reduce the Curtis]Steinberg]Tits presentation as follows.
� 4 Ž . Ž .Let B s b , . . . , b be a basis of GF q over the prime field GF p . Use1 m

< < Ž . Ž .C m generators y b a g C, 1 F n F m , and definea n

A0Ž .
kny t [ y b whenever t s k b 0 F k - p .Ž . Ž . Ž .Ł Ýa a n n n n

n n

Ž . ŽWe define a group G , generated by the symbols y b a g C, 1 F n F0 a n

.m , subject to the following set of relations.
p

A1 y b s 1 a g C , 1 F n F m ;Ž . Ž . Ž .a n

A2 y b , y b s 1 a g C , 1 F n - m F m ;Ž . Ž . Ž .Ž .a n a m

i jB0 y b , y b s y C b bŽ . Ž . Ž . Ž .Ła n b m iaqj b i , j , a , b n m
i , j)0

a , b g F, 1 F n , m F m .Ž .Ž .



SHORT PRESENTATIONS 89

Ž Ž .Note: The right-hand side of B0 must be expanded, using the definition
Ž . Ž . ŽA0 , into an expression involving the generators y b a g C, 1 Fa n

. .n F m .

THEOREM 4.2. G ( G: each unï ersal Che¨alley group of rank n G 2 is0
Ž . Ž . Ž .defined by a presentation using just the relations A1 , A2 , and B0 .

Ž . Ž . Ž . ŽProof. Using A0 , the correspondence y t ¬ x t a g C, t ga a

Ž ..GF q defines a homomorphism f from G onto G. We have to show it0
is one-to-one.

It suffices to show that f is one-to-one on each of the rank 2 subgroups
corresponding to a pair of fundamental roots, because every relation in the
Curtis]Steinberg]Tits presentation occurs inside one of these rank 2
subgroups. More precisely, we proceed as follows:

Consider one of the rank 2 subsystems F . Let Fq be an arbitraryi j i j
Žpositive system of roots in F not necessarily the one induced by ouri j

q. Ž q.fixed positive system F . Let G F be the subgroup of G generated0 i j 0
� Ž . q 4by the set S s y b : a g F , 1 F n F m .a n i j

Ž q.Claim 4.3. f is one-to-one on G F .0 i j

Proof. Let a and a be the two fundamental roots in Fq. Then everyi j i j
member of Fq is a unique linear combination of a and a withi j i j

w xnonnegative integer coefficients Ste67, Appendix I, Proposition 9 . Order
Fq in increasing order of the sum of these coefficients and extend thisi j

Ž . Ž . Ž Ž .. Ž .ordering to S. Then, by A2 and B0 with A0 together with A1 , it
Ž q. <Fq

i j <follows readily that G F is a p-group of order at most q .0 i j
Ž q.On the other hand, the image of G F under f is a Sylow p-subgroup0 i j

Žwof the rank 2 subgroup of G corresponding to F Ste67, corollary afteri j
xLemma 54, p. 132; cf. Lemma 21, p. 31 , applied to the rank 2 Chevalley

q<F <i j. Ž Ž ..group G and thus its order is q cf. 2 . This proves Claim 4.3.i j

Ž . Ž .Now consider any relation B for a pair a , b g F . We claim that thei j
w Ž . Ž .x Ž i j.corresponding relation y t , y u s Ł y C t u holds ina b i, j) 0 iaqj b i, j, a , b

G . Indeed, since a / "b , there exists a positive system Fq in F such0 i j i j
that a , b g Fq. By Claim 4.3, any relation involving only these positivei j

Ž q.roots is satisfied simultaneously in G F and its image in G.0 i j
Ž . Ž .Thus, we have shown that all relations B for a , b g F hold in G .0

Ž . qSimilarly, each relation A for a g C occurs in some subsystem Fi j
Žalternatively, these relations also follow more directly from the relations
Ž . Ž . Ž ..A1 , A2 , and A0 .

Thus, we have shown that all relations of the Curtis]Steinberg]Tits
presentation for G also hold in G , completing the proof of Theorem 4.2.0
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4.3. Length of the Presentation

Ž . Ž . Ž . < <The presentation A1 , A2 , B0 involves C m generators. We show
< < Ž . Ž < < Ž 2 ..that C is O n as opposed to F s 2 N which is Q n . This can be

Žproved as follows. First observe that any rank 2 root system in particular
. Žany one of the subsystems F contains a bounded number of roots ati j

. Ž .most 12 . Next observe that there are only O n edges in the Dynkin
Ž .diagram for any root system F of rank n, i.e., only O n ‘‘nontrivial’’

subsystems F if we call a subsystem of type A = A ‘‘trivial.’’ Theni j 1 1
observe that the ‘‘trivial’’ subsystems F corresponding to nonedges in thei j

Ž Ž 2 .Dynkin diagram i.e., the O n different subsystems of type A = A ,1 1
.corresponding to pairs of root subgroups which centralize each other

� 4contribute nothing new to the set C s D F since F s "a , " ai- j i j i j i j
< <already occurs in the union of the ‘‘nontrivial’’ subsystems. Therefore C

Ž .is O n .
< < Ž 2 . < < < <Also observe that F is Q n , because each F and hence each F isi j i j

bounded.
< < Ž . Ž .The length of each of the C m relations A1 is log p q O 1 ; each of

Ž < < 2 . Ž . Ž .the O C m relations A2 has bounded length. The number of B0
< < 2 Ž 2 2 .relations is F m , which is Q n m ; the length of each is dominated by

Ž . Ž . Ž .the length of the expansion of y t according to A0 , i.e., O m log p .g

The total length of this presentation is therefore

< < < < 2 < < 2O C m ? log p q O C m q Q F m ? m log pŽ . Ž . Ž .
s Q nm log p q nm2 q n2 m3 log pŽ .

2 3 2 < <s Q n m log p s Q m log GŽ . Ž .
Ž Ž . Ž 2 ..using 3 and the fact that N is Q n . This proves

ŽCOROLLARY 4.4. Each unï ersal Che¨alley group G of rank n G 2 gï en
Ž ..by its standard name, using ) has an explicit presentation of length

2 < < 2 < < 3 < <O m log G F O m log G F O log G .Ž . Ž . Ž .
While we use the term ‘‘explicit’’ in an informal sense here, we certainly

Ž .mean to say that Conjecture 3 holds for these nonsimple groups, even
Ž . Ž .without assuming b2 primitive root as part of the input . The primitive

Ž .roots will be used in order to eliminate the center Section 5.2 .

5. DECREASING THE LENGTH AND ELIMINATING
THE CENTER

Ž . Ž .In this section we let u denote a generator of GF q over GF p , and
Ž . Ž .choose our basis B of GF q over GF p to consist of the first m powers
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ny1 Ž . Ž .of u . Thus we let b s u 1 F n F m , and our generators y b willn a n

Ž ny1.correspond to x u .a

Ž < <.5.1. O log G Presentation

Ž . w xFor a g C and t g GF q , t / 0, following Ste67, p. 27 , we let

w t s y t y yty1 y t 4Ž . Ž . Ž . Ž . Ž .a a ya a

and
y1h t s w t w 1 . 5Ž . Ž . Ž . Ž .a a a

Ž Ž . Ž . .Here again we implicitly use A0 to expand y t , etc. Steinberg provesa

that

� 4h tu s h t h u a g C , t , u g GF q y 0 6Ž . Ž . Ž . Ž . Ž .Ž .a a a

w xfollows from his relations Ste67, Theorem 9, p. 72 , hence it follows from
Ž .our reduced system of relations as well. Moreover, all of the h ta

commute; they generate a Cartan subgroup H of G.
Furthermore, the relations

y1 2Ža , b .rŽ b , b .h u x t h u s x u t 7Ž . Ž . Ž . Ž . Ž .b a b a

w Ž . xalso hold in the Chevalley group Ste67, Lemma 20 c , p. 29 , for any
Ž Ž .a , b g F, not necessarily distinct here a , b denotes the usual inner

Ž . Ž .product of roots, so that 2 a , b r b , b is always an integer of absolute
.value F 3 .

We now make use of these relations to further shorten our presentation
Ž .at the same time adapting it to allow the center to be easily eliminated .

< < Ž .We use C additional generators denoted h for a g C . We add thea

relations

H0Ž .
y1y1h s y u y yu y u y 1 y y1 y 1 a g C ;Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .a a ya a a ya a

Ž . Ž .note that the right-hand side is just h u , expanded according to 4 anda

Ž . Ž . Ž5 , and it must be further expanded according to definition A0 but
b s 1 and b s u so most of the above terms do not need any further1 2

. < <expansion ; after that expansion each of these C relations has length
Ž .O m log p . We also add the relations

H1Ž .
h , h s 1 a , b g C ;Ž .a b

H2Ž .
y1 2Ža , b .rŽ b , b .h y b h s y u b a , b g C , 1 F n F m .Ž . Ž .Ž .b a n b a n
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Ž . Ž .Here we expand the right-hand side of H2 using A0 if necessary.
d Ž .However, u b s b for any n and d such that 1 F n q d F m; in H2n nqd

Ž . Ž . < <this occurs with d s 2 a , b r b , b , hence d F 3, so, for each a , b ,
expansion is required only for a bounded number of values of n . Thus,

Ž .most of the relations H2 have bounded length.
Now with these additional relations we may omit many of the relations

Ž . Ž . Ž .from our earlier set A1 , A2 , and B0 , because most of those will follow
from a few of them together with conjugation by the various h usingb

Ž .H2 .

THEOREM 5.1. Each unï ersal Che¨alley group G of rank n G 2 has an
Ž < <.explicit presentation of length O log G using the following relations:

p � 4A19 y b s 1 a g C , n g 1, 2 ;Ž . Ž . Ž .a n

A29Ž .
� 4y b , y b s 1 a g C , n g 1, 2 , 1 F m F m ;Ž . Ž .Ž .a n a m

B09Ž .
i jy b , y b s y C b bŽ . Ž . Ž .Ła n b m iaqj b i , j , a , b n m

i , j)0

� 4a , b g F, n , m g 1, 2 ,Ž .Ž .
Ž . Ž . Ž .together with the relations H0 , H1 , and H2 abo¨e.

Ž . Ž . Ž .Proof. The relations A19 , A29 , and B09 are subsets of the relations
Ž . Ž . Ž .A1 , A2 , and B0 from Section 4.2, obtained by simply restricting the

Ž Ž .. Ž . Ž .values of n as well as m in B09 . The additional relations H0 ] H2
Ž .hold in the Chevalley group G as noted earlier in this section , thus to

Ž .prove that the above relations define G it suffices by Theorem 4.2 to
Ž . Ž . Ž .show that the remaining relations A1 , A2 , and B0 follow from the

ones above.
Ž . Ž . y1 Ž 2 . Ž .In the case a s b , H2 says that h y b h s y u b s y ba a n a a n a nq2

Ž . Ž . Ž .assuming that n q 2 F m . Thus, the relations A19 together with H2
Ž . Ž . Ž .imply all of the relations A1 , and similarly the relations A29 imply A2 .

Ž . Ž .Finally, the relations B09 imply all relations B0 , because all other pairs
Ž . � 4 � 4n , m can be obtained from the four pairs in 1, 2 = 1, 2 , using conjuga-
tion by hc1 hc2 , where the integers c and c are chosen as in the followingb a 1 2
lemma.

LEMMA 5.2. Let a and b be two roots from any root system, with
Ž .a / "b , and let n , m be an arbitrary pair of integers. Then there are

integers c , c such that1 2

c ? 2 a , b r b , b q 2c , 2c q c ? 2 b , a r a , aŽ . Ž . Ž . Ž .Ž .1 2 1 2

� 4 � 4g n y 1, n y 2 = m y 1, m y 2 .
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² : Ž . Ž . ² :Proof. Let a , b denote 2 a , b r b , b and similarly for b , a ,
Ž . Ž ² : ² :.and write ¨ c , c s c a , b q 2c , 2c q c b , a . Then we are1 2 1 2 1 2

� Ž . < 4looking at the lattice L s ¨ c , c c , c g Z . Because of the way they1 2 1 2
² : ² :arise from a root system, the numbers a , b and b , a are either both

Ž0, or else one of them is "1 and the other is 1, 2, or 3 times that one see
w x.Hum72, Table 1, Sect. 9.4, p. 45 . If they are both 0 the conclusion is
clear. Otherwise, replacing b by yb if needed, we may assume that
² :a , b s 1.

² : Ž . Ž . Ž . Ž . Ž .If b , a s 1, then ¨ 2, y1 s 0, 3 , ¨ y1, 2 s 3, 0 , and ¨ 1, y1 s
Ž . �Ž . < Ž .4y1, 1 . In this case L s x, y x q y ' 0 mod 3 .

² : Ž . Ž . Ž . Ž .If b , a s 2, then ¨ 2, y1 s 0, 2 and ¨ y2, 2 s 2, 0 , so this time
we can reach any pair of even integers.

² : Ž . Ž . Ž . Ž .Finally, if b , a s 3, then ¨ 2, y1 s 0, 1 and ¨ y3, 2 s 1, 0 , so
we can reach e¨ery pair of integers.

< < Ž .Thus we have a presentation for G using only 2 C s O n relations
Ž . Ž Ž .. Ž < < . Ž . Ž .A19 each of length O log p , only O C m s O nm relations A29
Ž . < < Ž 2 . Ž . Žeach of bounded length , and only 4 F s O n relations B09 each of

Ž . . < < Ž .length O m log p as before . In addition, we have C s O n relations
Ž . Ž . < < 2 Ž 2 .H0 , each of length O m log p , together with C s O n relations
Ž . Ž . < < 2 Ž 2 . Ž .H1 each of bounded length and C m s O n m relations H2 . As

Ž .noted above, the relations H2 have bounded length, except for a bounded
Ž . Ž .number of values of n for each pair a , b g C where H2 has length

Ž . Ž .O m log p because of the expansion A0 . Thus, the total length of all the
Ž . Ž 2 . Ž 2 . Ž 2 .relations H2 is O n m q O n ? m log p s O n m log p . Thus the

Ž . Ž . Ž . Ž . Ž . Ž .length of the entire presentation A19 , A29 , B09 , H0 , H1 , and H2 is

O n ? log p q nm q n2 ? m log p q n ? m log pŽ
2 2 2 < <qn q n m log p s O n m log p s O log G .Ž .. Ž .

5.2. Killing the Center

Ž Ž < <..Finally, we now add one or two more relations of length O log G to
eliminate the center Z and turn the presentation into one for the simple

Ž < < < <Chevalley group GrZ. Here Z F n q 1 is negligible compared to G , so
Ž < <.the total length of the resulting presentation is both O log GrZ and

Ž < <. .O log G . Now we shall make the additional assumption that the element
Ž .u used above is actually a primitive root of GF q .

Specifically, the center Z is contained in the Cartan subgroup H and
w xthus Car72, Sect. 12.1 consists of elements of the form

h t ??? h t 8Ž . Ž . Ž .a 1 a n1 n
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Ž Ž .. qrecall 5 , where a , . . . , a are the fundamental roots in F and the1 n
Ž .elements t g GF q * are chosen as discussed below. Since u is a primitivei

Ž Ž . k .root so every element of GF q * has the form u with 0 F k - q y 1
Ž k . Ž .k Ž . Ž .and h u s h u by 6 , we can express any element 8 in terms ofa a

Ž Ž .. Ž .our generators h recall H0 with a relation of length O n log q sa

Ž . Ž < <.O nm log p F O log G . Furthermore, Z is cyclic except in some cases of
Ž . Ž .type D q orthogonal groups where it may be noncyclic of order 4, so wen

Žcan eliminate Z by adding only one or two such additional relations but
even if we added one for each element of Z we would still have total

Ž < <..length O log G .
Ž .So it only remains to consider which values of t put 8 into the centeri

Z. These are easily found by matrix computations in specific cases; in
Ž w x. Ž .general see Car72, Sect. 12.1 , Z consists of exactly those elements 8

for which

n
2Ža , a .rŽa , a .i j i it s 1 for j s 1, . . . , n. 9Ž .Ł i

is1

Ž . Ž . 2 y1EXAMPLE 5.3. In the case A q the equation 9 are t t s 1,n 1 2
y1 2 y1 Ž . y1 2 it t t s 1 2 F i F n y 1 , and t t s 1; or, equivalently, t s tiy1 i iq1 ny1 n i 1
Ž . nq12 F i F n and t s 1. From this, given u , it is easy to find the1

Ž .appropriate t g GF q that produces a generator of Z. The other groups1
Ž .LL q can be handled in a similar manner.n

Ž . Ž .Since u is a primitive root of GF q , 9 amounts to a system of linear
equations. Namely, if we let z denote the integer for whichi

t s u z i and 0 F z F q y 2,i i

Ž .then 9 is replaced by the following system of n congruences:

n 2 a , aŽ .i j
z ' 0 mod q y 1 j s 1, . . . , n . 10Ž . Ž . Ž .Ý ia , aŽ .i iis1

Ž . ŽThis system can be solved mod q y 1 for the z this is especially easyi
Ž . Ž . .since most of the Cartan integers 2 a , a r a , a are 0 , and the solu-i j i i

Ž . Ž .tions give the at most n q 1 elements of the form 8 in Z. Using these
Ž .or enough to generate Z together with the set of relations in Theorem
5.1, we obtain a presentation of GrZ. This completes the proof of

ŽTHEOREM 5.4. Conjecture 3 holds and consequently Conjectures 1 and 2
.hold , with C s 1, for simple Che¨alley groups of rank G 2.
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6. TWISTED GROUPS OF RANK G 2

The twisted groups have presentations similar to those discussed above
for the untwisted groups. Details of Steinberg’s presentations for central

w xextensions of the twisted simple groups can be found in Gri73 . These
presentations can be reduced in length, and supplemented to eliminate the
center, in essentially the same way as described in the previous sections.
However, a few additional complications arise, especially for the odd-

Ž . 2 Ž .dimensional unitary groups PSU 2k q 1, q s A q and the Ree groups2 k
2 Ž . Ž 2 < <.F q , where we only obtain a presentation of length O log G , not4
Ž < <.O log G as in the other cases.

THEOREM 6.1. Conjecture 3 holds for the twisted simple groups of rank G
2 Ž . 2 Ž .2. It holds with C s 1, except perhaps for the groups A q and F q ,2 k 4

where it holds with C s 2.

This is proved in the following subsections.

6.1. Easier Twisted Groups
2 Ž . ŽFirst, we consider types A q with n odd the case of even n will ben

. 2 Ž . Ž . 2 Ž .discussed in Section 6.3 , D q for any n G 4 , and E q . In these casesn 6
Ž .the ‘‘twisted’’ root system F has type C where n s 2k q 1 , B , andkq1 ny1

F , respectively. In each of these cases the long roots of F correspond to4
root subgroups of order q, while the short roots correspond to root

2 Žsubgroups of order q and all the root subgroups are elementary abelian
.as in the untwisted case . Thus, in these cases we start with generators

Ž . Ž . Ž 2 .x t , where a g F, and t g GF q if a is long while t g GF q if a isa

short. The Steinberg relations are then as follows:

A x t q u s x t x uŽ . Ž . Ž . Ž .a a a

a g F , t , u g GF q or GF q2 for a long resp. short ;Ž . Ž .Ž .
BŽ .

x t , x uŽ . Ž .a b

1 for a q b f F ,¡
x e tu for a , b , a q b all short or all long,Ž .aqb a b~s
x e tu q tu for a , b short, a q b long,Ž .Ž .aqb a b¢x e tu x h tuu for a , a q 2b long, b , a q b short.Ž . Ž .aqb a b aq2 b a b

2Ž .Here u ¬ u denotes the involutory field automorphism of GF q , and
Ž .the coefficients e and h are "1 and depend only on a , b and F .ab a b
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As in the untwisted case, we only need a subset of the above relations
Ž w x .by Cur65 ; see Remark 3.2 , where we consider only roots a g C and, for
Ž . Ž .B , only pairs of roots a , b g F, where the subsets C : F and F :
C = C are defined as in Section 4.

We then shorten this presentation essentially as in Sections 4.2 and 5.
� 4 Ž 2 . Ž . ŽThis time we use a basis b , . . . , b of GF q over GF p where1 2 m

m. � 4 Ž .q s p , chosen so that its first half b , . . . , b is a basis of GF q over1 m
2 qq1Ž . Ž .GF p . Specifically, let u be a primitive root of GF q , so u s uu is a

ny1Ž . Ž .primitive root of GF q ; then, for 1 F n F m, let b s uu and bn mqn

s u b . As before we definen

A0Ž .
kny t [ y b whenever t s k b 0 F k - p ,Ž . Ž . Ž .Ł Ýa a n n n n

n n

Ž . Ž 2 .where t g GF q and 1 F n F m if a is long, but t g GF q and
1 F n F 2m if a is short.

Ž . ŽWe define a group G , generated by the symbols y b a g C, and0 a n

.1 F n F m for a long, 1 F n F 2m for a short , with additional genera-
Ž .tors h a g C and the following relations:a

Ž . Ž . p ŽA1 y b s 1 a g C, n s 1, 2, and also n s m q 1, m q 2 if aa n

.is short ;
Ž . w Ž . Ž .x Ž Ž .A2 y b , y b s 1 a g C, n as in A1 , 1 F m F m or 1 Fa n a m

.m F 2m for a long resp. short ;
Ž . Ž . Ž .B0 The relations B above for pairs a , b g F, except with x

replaced by y throughout and t, u taking only the values b , b , withn m

� 4 � 4 Žn , m g 1, 2 or 1, 2, m q 1, m q 2 as appropriate as before, the right-
Ž . Ž .hand sides of B0 must be expanded, using A0 , into expressions involving

Ž ..the generators y b ;a n

Ž . Ž . Ž . Ž .H0 h s h uu a g C , where the right-hand side of H0 isa a

Ž . Ž . Ž .expanded according to the definitions 5 , 4 , and A0 as before;
Ž . w x Ž .H1 h , h s 1 a , b g C ;a b

y1 2Ža , b .rŽ b , b .Ž . Ž . ŽŽ . . ŽH2 h y b h s y uu b a , b g C; 1 F n F m orb a n b a n

.1 F n F 2m for a long resp. short

Ž . Ž .As before we expand the right-hand side of H2 using A0 if necessary,
dŽ . Žbut uu b s b in most cases whenever n and n q d are either bothn nqd

.between 1 and m or both between m q 1 and 2m , thus, as before,
expansion is required only for a bounded number of values of n .

Ž .To see that the above relations hold in G, only H2 requires some
additional remarks. Each twisted group is defined as a subgroup of the

Ž 2 Ž . Ž 2 .corresponding untwisted Chevalley group e.g., A q ; A q , and simi-n n
.larly in the other cases . Furthermore, each ‘‘root subgroup’’ of the twisted
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group corresponds to parts of one or more root subgroups in the untwisted
Ž w x Ž .group cf. Car72, Sect. 13.6 ; for a short, our x t here corresponds toa

Ž . Ž . Ž . w Ž .x Ž .x t s x t x t in Carter’s notation Car72, 13.6.4 ii , and our h uS r r a

Ž . Ž . w x. Ž .corresponds to h u h u Car72, 13.7.2 . Thus the relations H2 can ber r
verified in G by straightforward calculations using the corresponding
relations for the untwisted group. However, we can also see that they must
have the simple form given above by reasoning as follows: The conjugate

Ž . Ž . Ž .y1 Ž Ž . .h u x t h u has the form x f u t for some function f , because ofb a b a

Ž .the way this occurs inside a larger untwisted group. In H2 we only need
Ž . Ž . Ž Ž 2 . .to know f u for u g GF q though u g GF q may occur in general ,

Žand this case has the same formula as in the untwisted cases i.e.,
Ž . 2Ža , b .rŽ b , b . Ž . Ž . .f u s u for u g GF q ; see 7 in Section 5.1 . This holds

because this formula is determined inside another untwisted Chevalley
group, namely the subgroup of our twisted group G obtained by restricting

Ž .all scalars to GF q . That gives an untwisted group with root system F
Ž Ž . 2 Ž . Ž 2 . Ž . 2 Ž . Ž 2 ..e.g., C q ; A q ; A q , or F q ; E q ; E q . Thiskq1 2 kq1 2 kq1 4 6 6

Ž .can be seen from the fact that it is the intersection of the untwisted
subgroups of fixed points of a pure graph automorphism and a pure field

Žautomorphism whereas the twisted group is only fixed by the composition
w x.of the graph and field automorphisms; cf. Ste67, p. 171 . Alternatively,
Ž .observe that restricting all scalars to GF q in the above Steinberg

presentation for the twisted group produces the Steinberg presentation for
the untwisted group with root system F.

Thus, all of the above relations hold in the twisted group G. Then, just
as in the previous sections, it is easy to prove that the group G defined by0
the above presentation is isomorphic to the group presented by the

ŽSteinberg relations above which is a central extension of the twisted
.simple group in question .

wThe center Z can be eliminated as before: Ste67, proof of Theorem
Ž . x35 b , p. 192; cf. Theorem 34 and following exercise, p. 187 shows that the

center of the twisted group G is contained in the center of the correspond-
ing untwisted universal Chevalley group. Therefore the elements of Z can
be expressed as in Section 5.2, in terms of generators for the Cartan

Ž Ž 2 ..subgroup of the untwisted group which is defined over GF q . But Z
lies inside G, so in fact it can be expressed in terms of generators for the

w x Ž .Cartan subgroup of G, namely Car72, 13.7.2 the elements h u for aa

Ž Ž . Ž . Ž .short as noted above, these h t correspond to h t h t in Carter’sa r r
. Ž . Ž Ž . Ž .notation and h uu for a long these h t correspond to those h ta a r

.which are contained in the twisted group if and only if t s t . Thus, for a
Ž .long, we may use our generators h from H0 above, but for a short wea

introduce additional generators hX and additional relationsa

Ž . X Ž . Ž .H09 h s h u a g C, a short ,a a
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Ž . Ž . Ž . Ž .with the right-hand side of H09 expanded according to 5 , 4 , and A0
as before. Then, using these generators hX for a short and h for a long,a a

we may kill the center as in Section 5.2.
Ž < <.Finally, observe that this presentation again has length O log G . This

follows essentially as before, with the following differences: the length of
< < < <the presentation involves C and F , which are determined by the root

2 N < < 3 Nsystem F, but the parameter N for which q - G - q is the number
of positive roots of the untwisted root system, which is now larger than F

< <since we are using F to denote the twisted root system. But F and N are
Ž 2 .both still Q n . Also, the presentation now involves 2m elements bn

Ž .instead of just m of them, and additional relations H09 of length similar
Ž .to H0 , but these differences only change the total length by a constant

Ž < <.factor. Therefore, the presentation still has length O log G .

6.2. Triality Twisted Groups
3 Ž .The group D q , with ‘‘twisted’’ root system F of type G , is handled4 2

similarly. Since F now has rank 2, we have C s F in this case. This time
Ž . Ž .we start with generators x t , where either a is long and t g GF q , or aa

Ž 3. sis short and t g GF q . We use t ¬ t to denote the field automorphism
Ž 3. Ž . s s 2

of GF q of order 3, and we use the notation Tr t s t q t q t for the
Ž 3. Ž .trace map Tr: GF q ª GF q . Then the Steinberg relations are:

A x t q u s x t x uŽ . Ž . Ž . Ž .a a a

a g F , t , u g GF q or GF q3 for a long resp. short ;Ž . Ž .Ž .
BŽ .

x t , x uŽ . Ž .a b

¡1 for a q b f F ,

x e tu for a , b , a q b long,Ž .aqb a b

x e Tr tu for a , b short, a q b long,Ž .Ž .aqb a b

2 2 2s s s s s sx e t u q t u x h Tr tt uŽ . Ž .ž / ž /aqb a b 2 aqb a b

2~ s ss =x d Tr tu u for a , b , a q b short,Ž .ž /aq2 b a b

2a q b , a q 2b long,
2 2s s s sx e tu x h t t u x d tt t uŽ . ž / ž /aqb a b 2 aqb a b 3aqb a b

2s s 2=x 2g tt t u for a , a q b , 2a q b short,ž /3aq2 b a b¢ b , 3a q b , 3a q 2b long.
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Again the coefficients e , h , d , g are "1 and depend only on aab a b a b a b

and b.

We shorten this presentation in a way completely analogous to the cases
Ž 3. s s 2

in Section 6.1. This time let u be a primitive root of GF q , so uu u is
Ž . Ž s s 2 .ny1a primitive root of GF q , and use the basis b s uu u , b s u b ,n mqn n

2 Ž . Ž . Ž .and b s u b for 1 F n F m . Then use relations A1 through H22 mqn n

Ž � 4just as above, except replacing 2m by 3m and 1, 2, m q 1, m q 2 by
� 4.1, 2, m q 1, m q 2, 2m q 1, 2m q 2 in the obvious places, and replac-

2s s Ž . Ž .ing uu by uu u in H0 and H2 .
3 Ž .In this case the universal central extension of D q is actually the4

3 Ž . wsimple group itself, since D q has trivial Schur multiplier KL90, Theo-4
x Xrem 5.1.4, p. 173 . Thus, we may omit the generators h and relationsa

Ž .H09 in this case. But even if we include them, counting as before, we find
Ž . Ž < <.that our presentation has length O log q s O log G .

6.3. Odd-Dimensional Unitary Groups
2 Ž . ŽThe groups A q with n even are somewhat harder these are then

Ž .. Žodd-dimensional unitary groups PSU n q 1, q . Let n s 2k k G 2 since
.we are only considering rank G 2 in this section . For many purposes the

root system of this twisted group is best viewed as BC , namely, the unionk
w xof a B and C system. However, following Griess Gri73 , we will just usek k

a C system F.k
An additional complication in this case is that the root subgroups are

not all abelian. Those corresponding to short roots of F are elementary
abelian of order q2, but those corresponding to long roots are nonabelian

3 Ž .of order q . We start with generators x t for a g F short and t ga
2 2Ž . Ž . Ž .GF q , and x t, u for a g F long with t, u g G q and u q u s e tt,a a

where e s "1 are constants depending on the root system and u ¬ ua

Ž 2 .again denotes the involutory field automorphism of GF q . For relations
Ž .A we have

Ž . Ž . Ž . Ž . Ž .A x t q u s x t x u as before for a short,a a a

but for a long we have

x t , u x ¨ , w s x t q ¨ , u q w q e ẗ ,Ž . Ž . Ž .a a a a

x t , u , x ¨ , w s x 0, e ẗ y ẗ .Ž . Ž . Ž .Ž .a a a a

A9Ž .

Ž w Ž .x w xSee Car72, 13.6.4 iv ; the version in Gri73 occasionally has .e instead
.of our "e .a
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Ž . Ž 2 Ž ..The relations B for this case G of type A q are as follows:2 k

BŽ .
x t , x uŽ . Ž .a b

1 for a , b short, a q b f F ,¡
x e tu for a , b , a q b short,~ Ž .aqb a bs¢x 0, e tu y tu for a , b short, a q b long,Ž .Ž .aqb a b

x t , u , x ¨ , wŽ . Ž .a b

11 for a , b long, a q b f F ,Ž .2s 1½ 1x e ẗ for a , b long, a q b short,Ž .Ž .Ž .aqb a b 22

x t , u , x ¨Ž . Ž .a b

1 for a long, b short, a q b f F ,¡
~x e u¨ x h ẗ , d u¨¨s Ž . Ž .aqb a b aq2 b a b a b¢ for a ,a q 2b long, b , a q b short.

ŽAgain the coefficients e , h , d are "1 and depend only on aab a b a b

.and b.
We will shorten these relations essentially as in Section 6.1, but some

Ž .differences arise. The reduction from F to C and F is as before. Let u
Ž 2 . � 4be a primitive root of GF q and let b : 1 F n F 2m be a basis definedn

in terms of u as in Section 6.1. Let j denote a fixed nonzero element of
2 Žqq1.r2Ž . ŽGF q for which j s yj if q is odd, then let j s u , while if q is

.even let j s 1 .
Ž .Then, for a long root a , the root subgroup elements of the form x 0, ua

Ž . Ž .can be written as x 0, tj with t g GF q ; these elements form a sub-a

Ž .group isomorphic to the additive group of GF q . Modulo that subgroup,
Ž 2 .the root subgroup is isomorphic to the additive group of GF q . More-

over, the commutator relations in the root subgroup are determined by the
Ž .GF q -bilinear map ẗ y ẗ , and hence are completely determined on a

Ž 2 . Ž .basis of GF q over GF p .
Ž 2 .For each long root a , let u denote a fixed element of GF q fora , 1

Ž .which u q u s e b b s e recall that b s 1 , and similarly leta , 1 a , 1 a 1 1 a 1
u be an element for which u q u s e b b s e uu .a , mq1 a , mq1 a , mq1 a mq1 mq1 a

Ž .Elements u and u with the desired trace can easily be computed.a , 1 a , mq1
Then define

2ny2 2ny2
u s uu u and u s uu uŽ . Ž .a , n a , 1 a , mqn a , mq1

for 2 F n F m.
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Ž . Ž .Thus, we have u q u s e b b for all n 1 F n F 2m , so x b , ua , n a , n a n n a n a , n

Ž Ž . .is an element of G cf. A00 below .
Now for our short presentation we use the following generators. For

Ž . Ž .each short root a g C we use 2m generators y b 1 F n F 2m . Fora n

Ž .each long root a g C we use 3m generators, namely y 0, b j fora n

Ž .1 F n F m and y b , u for 1 F n F 2m. In addition, our presentationa n a , n

will use generators h and hX for each a g C.a a

Ž .For short roots a g C we define as before

knA0 y t [ y bŽ . Ž . Ž .Ła a n
n

whenever t s k b g GF q2 0 F k - p , 1 F n F 2m ;Ž .Ž .Ý n n n
n

whereas for long roots a g C we define

knA09 y 0, u [ y 0, b jŽ . Ž . Ž .Ła a n
n

whenever ujy1 s k b g GF q 0 F k - p , 1 F n F m ;Ž . Ž .Ý n n n
n

knA00 y t , u [ y 0, ¨ y b , uŽ . Ž . Ž . Ž .Ła a a n a , n
n

2Ž . Ž .whenever t s Ý k b g GF q 0 F k - p; 1 F n F 2m and u q u sn n n n
2Ž .e tt, where b and u are as defined above and ¨ g GF q is thea n a , n

Ž Ž .knappropriate element to make this relation hold in G i.e., Ł x b , un a n a , n

Ž . Ž 2 . Ž .s x t, w for some w g GF q which has, from A9 , a known expressiona

in terms of the b , k , u , and e ; then let ¨ s u y w so thatn n a , n a

Ž . Ž . Ž . . Ž .x 0, ¨ x t, w s x t, u as desired ; the factor y 0, ¨ is itself expandeda a a a

Ž .according to A09 .

For each short root a g C we use the relations:
p

A1 y b s 1 n s 1, 2, m q 1, m q 2 ;Ž . Ž . Ž .a n

A2Ž .
y b , y b s 1 n s 1, 2, m q 1, m q 2, 1 F m F 2m .Ž . Ž .Ž .a n a m

On the other hand, for each long root a g C we use the following
relations:

p
A3 y 0, b j s 1 n s 1, 2, 3, 4 ;Ž . Ž . Ž .a n

A4Ž .
y 0, b j , y 0, b j s 1 n s 1, 2, 3, 4, 1 F m F m ;Ž . Ž .Ž .a n a m



BABAI ET AL.102

1 for p ) 2,p
A5 y b , u sŽ . Ž .a n a , n ½ y 0, e b b for p s 2Ž .a a n n

n s 1, 2, m q 1, m q 2 ,Ž .
Ž . Ž .where, for p s 2, y 0, e b b is expanded according to A09 ;a a n n

A6 y b , u , y b , u s y 0, e b b y b bŽ . Ž . Ž . ž /ž /a n a , n a m a , m a a n m n m

n s 1, 2, m q 1, m q 2, 1 F m F 2m ,Ž .
Ž .where again the right-hand side is expanded according to A09 ;

A7Ž .
y b , u , y 0, b j s 1 n s 1, 2, m q 1, m q 2, 1 F m F m .Ž . Ž .Ž .a n a , n a m

Ž .We use the following relations in place of B :

B0Ž .
1 for a , b short, a q b f F ,¡
y e b b for a , b , a q b short,Ž .aqb a b n m~y b , y b sŽ . Ž .a n b m
y 0, e b b y b bž /ž /aqb a b n m n m¢ for a , b short, a q b long

� 4n , m g 1, 2, m q 1, m q 2 ,Ž .
� 4y 0, b j , y 0, b j s 1 for a , b long n , m g 1, 2, 3, 4 ,Ž . Ž .Ž .a n b m

y 0, b j , y b , u s 1Ž . Ž .a n b m b , m

for a , b long n s 1, 2, 3, 4, m s 1, 2, m q 1, m q 2 ,Ž .
y b , u , y 0, b j s 1Ž . Ž .a n a , n b m

for a , b long n s 1, 2, m q 1, m q 2, m s 1, 2, 3, 4 ,Ž .
y b , u , y b , uŽ . Ž .a n a , n b m bm

11 for a , b long, a q b f F ,Ž .2s 1½ 1y e b b for a , b long, a q b shortŽ .Ž .Ž .aqb a b n m 22

� 4n , m g 1, 2, m q 1, m q 2 ,Ž .
y b , u , y bŽ . Ž .a n a , n b m

1 for a long, b short, a q b f F ,¡
~y e u b y h b b , d u b bs Ž . ž /aqb a b a , n m aq2 b a b n m a b a , n m m¢ for a , a q 2b long, b , a q b short

� 4n , m g 1, 2, m q 1, m q 2 ,Ž .
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1 for a long, b short, a q b f F ,¡
~y e b j b y 0, d b j b by 0, b j , y b sŽ . Ž . ž /ž /aqb a b n m aq2 b a b n m ma n b m ¢ for a , a q 2b long, b , a q b short

n s 1, 2, 3, 4, m s 1, 2, m q 1, m q 2Ž .

Ž Ž . Ž . Ž .as before, the right-hand sides of B0 are expanded using A0 , A09 , and
Ž . .A00 where necessary .

Ž . Ž . Ž .To define the elements h t , for short roots a we can use 4 and 5a

Ž .see Section 5.1 as before, while for long roots a we use the variation

y1 y1 y1w t , u s y t , u y ytu , u y tu u , u 11Ž . Ž . Ž . Ž .Ž .a a ya a

and

y1h t s w ¨ , tj w 0, j , 12Ž . Ž . Ž . Ž .a a a

2Ž . Ž .where t, u g GF q with u q u s e tt as usual, and, in 12 , ¨ can bea
2Ž . Ž . wtaken as any element of GF q for which e ¨¨ s j t y t Ste81, 5.3, 5.8,a

x Ž .and 5.6 ; in particular, ¨ s 0 if t g GF q .
Given this, the remaining relations we need are the following:

H0 h s h uu a g C ;Ž . Ž . Ž .a a

H09 hX s h u a g CŽ . Ž . Ž .a a

Ž .where the right-hand sides are expanded as discussed above ;

H1 h , h s 1 a , b g C ;Ž . Ž .a b

Ž . Ž .2 a , b r b , by1H2 h y b h s y uu bŽ . Ž . Ž .ž /b a n b a n

a , b g C , a short, 1 F n F 2m ,Ž .
Ž . Ž .4 a , b r b , by1h y 0, b j h s y 0, uu b jŽ . Ž .ž /b a n b a n

a , b g C , a long, 1 F n F m ,Ž .
Ž . Ž . Ž . Ž .2 a , b r b , b 4 a , b r b , by1h y b , u h s y uu b , uu uŽ . Ž . Ž .ž /b a n a , n b a n a , n

a , b g C , a long, 1 F n F 2m ,Ž .

Ž . Ž .where the right-hand sides are expanded according to A0 , A09 , and
Ž . ŽA00 when necessary, but as before because of our choices of b andn

.u expansion is needed only for a bounded number of values of n .a , n
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Ž .The fact that the relations H2 hold in the twisted group G can be seen
Ž .essentially as in Section 6.1. For a long, our x t, u corresponds toa

Ž . Ž . Ž . Ž . w Ž .xx t, u s x t x t x u in Carter’s notation Car72, 13.6.4 iv , so itsS r r rqr
Ž . Ž Ž . Ž . .conjugate by h w has the form x f w t, f 9 w u for some functions fb a

Ž . Ž .and f 9. As before, for H2 we only need these functions for w g GF q ,
Ž .where they are determined inside a smaller untwisted group and f w has

Ž . Ž .2the same form as before. Finally, note that f 9 w s f w in this situation
Ž Ž . Ž . Ž ..for w, f w , f 9 w g GF q , because u q u s e tt and the same relationa

Ž . Ž .must hold between f 9 w u and f w t.
As before, the above relations imply the rest of the Steinberg relations

Ž Ž .for the twisted group G again using Lemma 5.2 to show that H2
produces all other relevant values of n , m from the ones indicated in the

Ž . Ž .relations A1 through B0 , and then proving essentially as in Section 4.2
that, in each rank 2 subgroup, the Sylow p-subgroup has the appropriate

Ž . .order, hence all relations B follow .
Ž < <.Finally, observe that most of the above relations have length O log G

Ž . Ž . Žas before, but each relation A6 has length O m log p and not necessar-
. Ž .ily bounded length because of the expansion A09 , and there are more
Ž . 2than m relations A6 , leading to a factor of m in the length of the

Ž < <.presentation: the length does not appear to be O log G . Nevertheless the
Ž 2 < <.above presentation certainly has length O log G , and this remains true

Žwhen the center is killed as before exactly as in Example 5.3, using the
X .generators h .a

2 Ž .6.4. The Ree Groups F q4

2 Ž .Finally, the remaining twisted groups of rank G 2 are the groups F q4
of characteristic 2. Here the ‘‘twisted root system’’ is not one of the usual
root systems, but has 16 ‘‘roots,’’ corresponding to the 16 vertices 1, . . . , 16
of a regular 16-gon. These alternate long and short around the 16-gon,
with odd indices short and even ones long. Also q s 22 eq1 for some

Ž 2 Ž .integer e we may assume e G 1 here, treating Tits’ group F 2 9 as4
. 2 Žsporadic . Let f be the field automorphism such that 2f s 1 i.e.,

f 2 e Ž ..t s t for t g GF q .
w xThe presentation from Griess Gri73 for this group is the following: the

Ž . Ž .generators are x t for each of the 16 roots a , where t g GF q . Thea

Ž . Žrelations A are of two sorts, depending on whether a is short odd
. Ž .numbered or long even numbered . If a is long, then the corresponding

root subgroup is elementary abelian of order q, i.e., isomorphic to the
Ž .additive group of GF q , so its relations are as before. If a is short, then

² Ž . < Ž .:the corresponding root subgroup x t t g GF q is isomorphic to aa

Ž 2 . Ž . 2 Ž .Sylow 2-subgroup of order q of a Suzuki group Sz q s B q . Its2
Ž .2center consists of the elements x t , and is isomorphic to the additivea
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Ž .group of GF q , as is the central quotient group. Only a basis of the field
Ž . Ž .GF q over GF 2 is needed for a presentation of this 2-group. The

Ž .relations A for short a are

2 2fq1 2fA x t x u s x t q u x ¨ , where ¨ s tu ,Ž . Ž . Ž . Ž . Ž .a a a a

2 2fq1 2f 2fx t , x u s x ¨ , where ¨ s tu q t u ,Ž . Ž . Ž .a a a

2x t , x u s 1,Ž . Ž .a a

2 2 2x t x u s x t q u .Ž . Ž . Ž .a a a

Ž 2fq1Note that an element ¨ for which ¨ has a desired value can easily be
Ž . .computed using a primitive root of GF q .

Ž .The relations of type B are the following, together with those obtained
from them by transforming the subscripts using the Weyl group of order 16

Ž .generated by a ª a q 2 and a ª ya modulo 16 .

B x t , x u s 1,Ž . Ž . Ž .1 2

x t , x u s x tu ,Ž . Ž . Ž .1 3 2

2 2fq1x t , x u s x ¨ , where ¨ s tu ,Ž . Ž . Ž .1 4 3

x t , x u s 1,Ž . Ž .1 5

2 22fx t , x u s x ¨ x t u x w ,Ž . Ž . Ž . Ž . Ž .1 6 3 4 5

where ¨ 2fq1 s t 2fq1u and w2fq1 s tu2f ,
3fq1 2f 2f 2fq1x t , x u s x t u x t u x tu x tu ,Ž . Ž . Ž . Ž . Ž . Ž .1 7 2 3 5 6

22fq2 2fq1 4fq2 2fq1x t , x u s x t u x t u x t uŽ . Ž . Ž . Ž . Ž .1 8 2 3 4

32fq1 2f 2fq2 2fq1= x t u x t u x tu ,Ž . Ž . Ž .5 6 7

x t , x u s 1,Ž . Ž .2 4

x t , x u s 1,Ž . Ž .2 6

2f 2fx t , x u s x t u x tu .Ž . Ž . Ž . Ž .2 8 4 6

Ž . Ž .Using a suitable basis for GF q over GF 2 , this can be reduced to a
Ž 2 < <.presentation of length O log G by the method in Section 6.3; we omit

the details.
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7. GROUPS OF RANK 1

Ž . Ž .The rank 1 universal Chevalley groups are the groups A q s SL 2, q ;1
Ž . Ž .their central quotients PSL 2, q are the corresponding simple if q ) 3

Ž .Chevalley groups. Presentations for the groups G s PSL 2, q were found
w x Ž m.by Todd Tod36 using m q 2 generators recall that q s p ; the length

Ž 2 . Ž 2 < <. Ž .of his presentation is Q m log p q m F O log G . Assuming ) , Todd’s
Ž .presentations are explicit see below , proving Conjecture 3 for this case,

thereby completing the proof of Theorem 1.6.

Ž .Remark 7.1. It is easy to modify any presentation of PSL 2, q to one
Ž .of SL 2, q at a cost of at most doubling the length.

Ž m.We quote Todd’s presentation of PSL 2, p for the case of odd p. Let u
Ž m. m my1 ibe a primitive root of GF p ; let u s Ý a u be the irreducibleis0 i

Ž . Ž . mq 1polynomial over GF p satisfied by u 0 F a F p y 1 . Then u si
my 1 i Ž .Ý b u , where b s a a and b s a a q a i s 1, . . . , m y 1 .is0 i 0 my1 0 i my1 i iy1

Generators Todd’s notation : U, R , S is0, . . . , m y 1 .Ž . Ž .i

m 2 2Ž p y1.r2 3 pRelations: R sU s UR s US s S s 1Ž . Ž .0 i

i s 0, . . . , m y 1 ,Ž .
S S s S S i , j s 0, . . . , m y 1 ,Ž .i j j i

RS s S R i s 0, . . . , m y 3 ,Ž .i iq2

3S RU s 1,Ž .1

RS s Sa0 Sa1 ??? Samy 1 R ,my 2 0 1 my1

RS s Sb0 Sb1 ??? Sbmy 1 R .my 1 0 1 my1

When p s 2, Todd’s presentation is of similar nature. A shorter presenta-
w x Žtion for this case was found by Sinkov Sin39 who also mentioned that

something similar could be done to shorten Todd’s presentation for odd
. Ž m. Ž m.p . Sinko¨ ’s presentation for G s SL 2, 2 s PSL 2, 2 is the following:

Generators: x , y , z
m 22 22 y1 2 3 iRelations: x s y s z s xz s yz s x , y s 1Ž . Ž .

i s 1, . . . , m y 1 ,Ž .
x m s yxy amy 1 x ??? y a1 xy a0 ,

Ž Ž ..where the a are defined as above a g GF 2 . The length of thisi i
Ž . Ž < < < <. Ž 2 < <. Žpresentation is Q m log m s Q log G log log G F O log G . Further-

Ž . Ž < <.more, this presentation can be shortened to length Q m s Q log G , by
adding generators x and relations x s xx so we can use x in place ofi i iy1 i
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x i in the above commutator relations, giving each commutator relation
.bounded length.

Remark 7.2. We remark that the case q s p has attracted a lot of
Ž < <.attention; a number of presentations of length O log G are listed in

w xCM72, Sect. 7.5 . Refining a presentation of Behr and Mennicke, Sunday
w x Ž .Sun72 found the following simple presentation p is an odd prime :

23p 2 4 Ž pq1.r2PSL 2, p s x , y : x s y s xy s x yx y s 1 .Ž . Ž . Ž .¦ ;
Remark 7.3. More recently Campbell, Robertson, and Williams

w xCRW90 have found shorter presentations than Todd’s and Sinkov’s for
Ž m.PSL 2, p . Their presentations can be written so as to have length

Ž < <. ŽQ log G for all p and m without needing to add generators as in
.Sinkov’s presentation mentioned above .

w xRemark 7.4. We remark that Steinberg Ste81 has also found presenta-
Ž .tions for the Lie type groups of rank 1 including the twisted ones , but

those presentations are of a different form than in the rank G 2 case
Ž Ž .discussed in the previous sections the commutator relations B do not

.arise since there is only one positive root . His presentations have the
following general form.

ŽLet U be a maximal unipotent subgroup i.e., a Sylow p-subgroup, which
.is just a root subgroup since the rank is 1 , let H be a Cartan subgroup so

that UH is a Borel subgroup, let r be an involution conjugating U to the
² : ² :negative root subgroup, and let N s H r . Then H s h is cyclic

Žisomorphic to a subgroup of known index 1, 2, or 3 in the multiplicative
Ž . Ž 2 . . ² :group of the field GF q , or GF q in the unitary case and N s H r

Žhas a very simple presentation it is dihedral except in the unitary case
² < k 2 y1 yq:.when it has a presentation of the form h, r h s 1, r s 1, r hr s h .

Ž w x.Then a presentation for G can be obtained cf. Ste81, Sect. 4 by starting
with presentations for U and N, then giving the action of h on U, and

² :finally giving all relations of the form w s u¨u9 with w g h r, u, u9 g U,
y1 Ž < <and ¨ g r Ur there are U y 1 such relations, exactly one for each

w x.nontrivial u g U Ste81, Lemma 4.3 .
Ž . Ž .In the case of A q s PSL 2, q these relations can be shortened to1

Ž 2 < <.length O log G by building in conjugation by h: there are at most two
² :orbits of h on the nontrivial elements of U, so all q y 1 of the relations

w s u¨u9 can be deduced from at most two of them, by conjugating by h.
It is easy to see that this leads to a short presentation very similar to

Ž .Todd’s above for PSL 2, q .
Ž2 Ž . 2 Ž .However, in the case of the twisted rank 1 groups A q , B q , and2 2

2 Ž .. ² :G q , h has at least q orbits on U, and it is not clear how to deduce2
all those relations from a bounded number of them. Thus, Conjecture 1
remains open for these three types of simple groups.
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8. SHORT PRESENTATIONS FOR ALL FINITE GROUPS

In this section, we prove Theorem 1.4. It will be important to reach
rapidly any element of a group from any set of generators. This is always
possible by the next lemma.

Let G be a group, and A and T two subsets of G. A straight line
Ž .program, computing A from T , is a sequence S s w , . . . , w of elements1 s

Žof G such that A ; S we use the same symbol S to denote the set
� 4.w , . . . , w , and each member w of S is either a member of T , or a1 s i
product w w for some j, k - i, or wy1 for some j - i. The length of S isj k j
s. If t of the elements in the sequence S belong to T , then the reduced

Ž .length of S is s y t we do not count accesses to the generators .
Ž < .The cost of A relative to T , cost A T , is the shortest reduced length of

Ž � 4straight line programs computing A from T. For a single element A s g
Ž� 4 < . Ž < .we abbreviate cost g T as cost g T . If T does not generate A, the cost

.is `. We note that for any sets A, B, C : G we have

< < <cost A C F cost A B q cost B C .Ž . Ž . Ž .
w xThe following lemma appears in BS84 .

Ž .LEMMA 8.1 Reachability Lemma . Let G be a finite group, T a set of
Ž < . Ž < <.2generators, and g g G. Then cost g T - 1 q log G .

w xIn fact, the proof given in BS84 yields the following stronger version.

LEMMA 8.2. Let G be a finite group and T a set of generators. Then there
exists a set A ; G such that:

Ž . Ž < . 2 < <i cost A T - log G ; and
Ž . Ž < . < <ii for any g g G, cost g A - 2 log G .

2 < <Thus, after a preprocessing, which costs - log G , every element can
Ž .be reached at only logarithmic cost. Let setup G denote the maximum,

over all sets T of generators, of the cost of this preprocessing. We thus
have

2 < <setup G - log G . 13Ž . Ž .
Ž . Ž < .Let further reach G be the maximum, over g g G, of cost g A after

proper preprocessing. Then

< <reach G - 2 log G . 14Ž . Ž .
We prove the following, more specific, form of Theorem 1.4.

THEOREM 8.3. If each composition factor H of the finite group G has ai
Ž C < <.presentation of length O log H for some C G 2, then G has a presentationi

Ž Cq 1 < <.of length O log G .
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Proof. We shall use the terms ‘‘short’’ and ‘‘efficient’’ in a formal sense.
Ž .A set A of generators is efficient if it satisfies the bound 14 . A straight

line program which computes an efficient set of generators is short if it
Ž .satisfies the bound 13 . A straight line program computing an element

Ž .from an efficient set of generators is short if it satisfies the bound 14 .
ŽLet G s G dG d ??? dG s 1 be a composition series in G note that0 1 m

< <. Ž .m F log G and let H denote the simple factor group G rG . Leti iy1 i
Ž . Ž .Gen H and Rel H denote the sets of generators and relations, respec-i i

Ž C < <.tively, of a presentation of H having length O log H .i i
Ž . Ž . < Ž . <Let Gen H : Gen H denote a subset of cardinality Gen H F0 i i 0 i

< < Ž .log H such that Gen H generates H .i 0 i i
Ž .Let L be a lifting of Gen H to G , with L denoting its subseti i iy1 0, i

Ž . Ž . Ž .which lifts Gen H . Each relation r s r u , . . . s 1 from Rel H is0 i 1 i
Ž . Žthus lifted to a relation r w , . . . s z for some z g G where w g L1 r r i 1 i
Ž . .is the lifting of u g Gen H , etc. .1 i

Let M s L j ??? j L . Clearly, M generates G .i 0, iq1 0, m i i
Let S be a short straight line program in G computing an efficient seti i

of generators of G from M . We may assume that S includes M . Seti i i i
S s D S .i i

Ž . Ž .For each w g L let D w s . . . ,w be a short straight line programi
� Ž . 4computing w from S . Let D s D D w : w g L and D s D D .iy1 i i i i

Ž . Ž . Ž .For each r g Rel H , let P r s . . . , z be a short straight linei r

� Ž . Ž .4program computing z from S . Let P s D P r : r g Rel H , andr i i i
P s D P .i i

Let w g L and z g L for some j ) i. Since G is normal in G ,0, i 0, j i iy1
y1 Ž . Ž y1 .the conjugate w zw belongs to G . Let Q w, z s . . . , w zw be a shorti

y1 � Ž .straight line program computing w zw from S . Let Q s D Q w, z :i i, j
4w g L and z g L and Q s D Q .i j i- j i, j

Finally, let T s S j D j P j Q. Of course, S itself generates G, but it
is this highly redundant set of generators that will yield our short presenta-
tion of G.

Ž .We associate a symbol x t with each t g T ; these symbols will be the
generators in our presentation of G. There will be three kinds of relations
in the presentation:

R1. If some t g T arose as t s ¨w or t s wy1 in the course of one
Ž . Ž . Ž .of the straight line programs S , D w , P r , or Q w, z referred to above,i

Ž . Ž . Ž . Ž . Ž .we include the relation x t s x ¨ x w or x t x w s 1, respectively.

Ž . Ž .R2. For each r g Rel H , lifted to r w , . . . s z as above, wei 1 r

Ž Ž . . Ž .include the relation r x w , . . . s x z .1 r

R3. For w g L and z g L , i - j, we include the relation0, i 0, j
Ž y1 . Ž .y1 Ž . Ž .x w zw s x w x z x w .
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ˆLet G be the group defined by these relations. We clearly have a
ˆ Ž .homomorphism f : G ª G onto G mapping x t to t g T. We claim f is

ˆ< < < <one-to-one. It suffices to show that G F G .
ˆ ˆ � Ž . 4Let G be the subgroup of G generated by the set x t : t g Mi i

ˆw Ž . xidentifying these symbols x t with the corresponding elements in G . We
ˆ ˆfirst observe that G s G because the relations R1 make all the other0

ˆ ˆgenerators redundant. Second, G is normal in G because of thei iy1
ˆ ˆrelations R3. Finally, the factor group G rG is generated by its ele-iy1 i

ˆ� Ž . 4 Ž .ments x t G : t g L since L contains L , and these generatorsi i i 0, i
ˆ ˆŽ . < < < <satisfy the relations corresponding to Rel H . Therefore G rG F Hi iy1 i i

ˆ< < < <and thus G F G .
It remains to estimate the length of this presentation.
R1 falls into four classes, corresponding to the straight line programs

comprising S, D, P, and Q, resp. Ignoring a possible doubling of the
length when a straight line program is converted into relations, the
respective lengths are bounded by the quantities

C S F setup G F m ? setup max ,Ž . Ž . Ž .Ý i
i

C D F Gen H reach G F reach max Gen H ,Ž . Ž . Ž . Ž . Ž .Ý Ýi i i
i i

C P F Rel H reach G F reach max Rel H ,Ž . Ž . Ž . Ž . Ž .Ý Ýi i i
i i

< < < < 2 < <C Q F log H log H reach G F log G reach max ,Ž . Ž . Ž .Ý i j i
i-j

Ž . Ž . Ž .where setup max s max setup G , and reach max is defined analo-i i
gously.

The contribution of R2 is the sum over all i of the total lengths of the
Ž .relations in Rel H .i

Ž 2 < <.The contribution of R3 is O log G , negligible compared to our bound
Ž .on C Q .

< Ž . < < Ž . <Now observe that Gen H and Rel H are bounded by the totali i
Ž . Ž C < <.length of the relations in Rel H , which is O log H by hypothesis.i i

Ž . Ž .Using that bound, together with the bounds 13 and 14 on the ‘‘setup’’
< <and ‘‘reach’’ functions, and the inequalities m F log G and 2 F C, we

conclude that G has a presentation of length

2 C 3 Cq1< < < < < < < < < <O m log G q log G log H q log G F O log G .Ž .Ý iž /ž /
i
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In particular, we have

COROLLARY 8.4. If the finite group G has no composition factor which is
a rank 1 twisted group of Lie type, then G admits a presentation of length
Ž 3 < <.O log G .

COROLLARY 8.5. E¨ery sol̈ able group G has a presentation of length
Ž 3 < <.O log G .

We note that the exponent 3 here is best possible, even for nilpotent
groups:

Ž .PROPOSITION 8.6. Let minpres G denote the length of the shortest
Ž .presentation of the group G. For a positï e integer N, let minpres N s

� Ž . < < 4 nmax minpres G : G s N . Then, for N s p a prime power,

minpres N ) crlog2 p log3Nrlog log N ,Ž . Ž . Ž .
where c is a positï e absolute constant.

w xProof. Higman Hig60 gave the following lower bound for the number
Ž n. nA p of pairwise nonisomorphic groups of order p :

A pn ) pŽ2r27ye n.n3
, 15Ž . Ž .

where e depends on n but not on p and lim e s 0. On the othern nª` n
Žhand, the number of groups admitting presentations of length k including

. kparentheses and other special characters is - k . Thus, for k s 4 ?
Ž n.minpres p we have

k k ) A pn . 16Ž . Ž .
Ž . Ž .A comparison of 15 and 16 proves Proposition 8.6.

The possibility of improving the reachability lemma remains open.

Ž 2 < <.Problem 8.7. Is it possible to improve the O log G bound of the
reachability lemma for solvable groups G?
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