Generation of Linear Groups'

William M. Kantor*

1. Introduction

Let G be a finite, primitive subgroup of GL(V)= GL(n,D), where V is an
n-dimensional vector space over the division ring D. Assume that G is generated
by “nice” transformations. The problem is then to try to determine (up to
GL(V)-conjugacy) all possibilities for G. Of course, this problem is very vague.
But it is a classical one, going back 150 years, and yet very much alive today.
The purpose of this paper is to discuss both old and new results in this area, and
in particular to indicate some of its history. Our emphasis will be on especially
geometric situations, rather than on representation-theoretic ones.

For small n, all transformations may be considered “nice” (Sections 2 and 4).
For general n, the nicest transformations are reflections and transvections (or,
projectively, homologies and elations); these occupy Sections 3 and 5. Finally,
Section 6 touches on several other types of “nice” transformations.

We will generally regard as equivalent the study of subgroups of GL(n,D)
and of the projective group PGL(n, D). It should, however, be realized that this
point of view was occasionally not taken by some of the authors cited here.

In general, we will not list the groups in the classifications discussed; nor will
we discuss further properties of the groups obtained.

Further historical information may be found in Wiman (1899b) and van der
Waerden (1935).

9. Characteristic 0: Small Dimensions

While the subject of this paper began in the case of finite D, we will start with
the possibly more familiar characteristic 0 case. In this section, D will be
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commutative of characteristic 0—in which case we may take D = C—and n will
be small. By a fundamental result of Jordan (1878, 1879), for each n the number
of types of primitive subgroups of SL(n,C) is finite.

All finite subgroups of SL(2,C) were first determined by Klein in 1874 (Klein
(1876, 1884)). His method was very geometric, based upon regarding the ex-
tended complex plane as a sphere in R*. Of course, the groups he found all arise
from regular polygons and regular polyhedra.

Jordan, who had been working on SL(2,C), turned to SL(3,C) (Jordan
(1878)). However, he missed two examples (later found by Klein (1879) and
Valentiner (1889)). His approach was not at all geometric. He derived informa-
tion about G by a case-by-case analysis of a diophantine equation he had used
successfully in the proof of his general finiteness theorem. (This equation arises
by expressing |G| as a sum in terms of the orders of suitable—and especially,
maximal—abelian subgroups of G and of the indices of their normalizers, great
care being taken with intersections of pairs of such subgroups.) He used the same
methods soon afterwards (Jordan (1879)) in order to (attempt to) correct his
previous work on SL(3,C), and in order to obtain very preliminary results
concerning SL(4,C). His diophantine approach was later used a number of
times, especially in the case of finite fields (Moore (1904), Wiman (1899a),
Dickson (1900), Mitchell (1911a, 1913), Huppert (1967)).

Valentiner (1889) devised a similar diophantine method in his attempt at
SL(3,C). In addition, he proceeded somewhat geometrically, but erred in his
treatment of homologies of order 3 (Mitchell (1911b)), thereby missing one
example. (He was apparently unaware of Jordan’s work on the same problem,
where this example is listed.) Valentiner’s treatment seems to have otherwise been
correct: Wiman (1896) stated that Valentiner’s error was easily corrected, and
that all examples were known. For further historical discussion up to this point,
as well as for properties of these groups, see Wiman (1899b).

Blichfeldt (1904, 1907) was the first to publish a complete proof for SL(3,C).
His methods were nongeometric: they involved a careful analysis of eigenvalues
in order to obtain precise information concerning |G|. A purely geometric proof
was later obtained by Mitchell (1911a). In fact, since it is easy to show that a
primitive subgroup of PSL(3,C) contains homologies (compare Mitchell (1911a),
p. 215), a geometric proof is implicitly contained in Bagnera (1905); for the same
reason, Mitchell’s proof depends upon homologies (cf. Section 3).

Eigenvalue and order considerations also dominate the determination by
Blichfeldt (1905) (also 1917) of all finite primitive subgroups of SL(4,C). At
about the same time, Bagnera (1905) gave a geometric solution to this problem
when G contains homologies; the case when G does not contain homologies was
handled later by Mitchell (1913), thereby providing an alternative, geometric
proof of Blichfeldt’s result.

At this point, the subject seems to have died, probably because much more
sophisticated methods were needed. It was finally revived again by Brauer
(1967), who handled SL(5,C). The cases n=6, 7, 8, and 9 have now been
completed, by Lindsay (1971), Wales (1969, 1970), Doro (1975), Huffman and
Wales (1976, 1978), and Feit (1976). In these results, geometry essentially
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- disappears. It is replaced by representation theory (ordinary and modular) and
by simple group classification theorems.

3. Characteristic 0: Reflections

| Recall that a reflection is a diagonalizable transformation having eigenvalue 1
| with multiplicity n — 1. The corresponding eigenspace is its axis; the remaining
]-dimensional eigenspace is its center. A homology 1is just a reflection viewed
projectively (i.e., as acting on PG(n — 1,D)). Classification problems concerning
reflections or homologies are thus essentially the same, and will generally be
identified.

Finite subgroups of GL(n,R) generated by reflections are a very familiar
topic. For a discussion of them and their history, we defer to Coxeter (1948) and
Bourbaki (1968). However, it is worth mentioning that the classification and
study of these groups occupy 2 far more central role in mathematics than the
other groups discussed in this survey. They are the crystals (or rather,
“apartments”) from which Tits’ theory of buildings grows (Tits (1974), Carter
(1972)), and hence are central in the theories of algebraic groups (Tits (1966))
and of finite groups (Chevalley (1955), Carter (1972)). Further incredibly varied
but fundamental occurrences of them are discussed at length in Hazewinkel et al.
1977).

The determination of all finite primitive subgroups of GL(n,C) generated by
reflections is due primarily to Mitchell (1914a). Namely, he dealt with the cases
n > 5, the smaller values of n having been handled earlier (as described in
Section 2). His method was short, elegant, and very geometric. It involved
building up groups, homology by homology and dimension by dimension.
Namely, suppose that W is a subspace of V, spanned by some of the homology
centers for G, and for which the induced group generated by these homologies is
known—and, hopefully, primitive. Mitchell picked a homology h moving W,
with center ¢, and studied the group induced on (W, ¢). (Since a homology fixes
every subspace containing its center, both the known group and h send (W,c) to
itself.)

However, Mitchell’s result apparently went largely unnoticed. He was clearly
far ahead of his time: he handled the complex case several years before all real
reflection groups were independently determined by Cartan and Coxeter (cf.
Coxeter (1948, p. 209), and Bourbaki (1968, p. 237)). Only very recently has
another complete proof of his result appeared (Cohen (1976)). Important special
cases have, however, been re-proved (Shepard (1952, 1953); Coxeter (1957),
(1974)); namely, those leading to regular complex polytopes.

Shephard and Todd (1954) took the (projective) groups generated by
homologies obtained by Klein (1876), Blichfeldt (1904, 1907), Bagnera (1905),
and Mitchell (1914a,b), and listed all complex reflection groups giving rise to
them. The case n >3 is implicit in the above papers (and is freely used
in Mitchell’s proof); the case n= 2 is more involved. This list will not be
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reproduced here. Instead, we will simply make a few comments about the largest
example which is not already a real reflection group.

A group G =6 PQ™(6,3)- 2, having |Z(G)| =6, |G: G’| =2, and G’/ Z(G)
= PQ~(6,3), arises as a subgroup of GL(6,C) generated by involutory reflec-
tions. It was discovered by Mitchell (1914a), who wrote down coordinates for its
reflecting hyperplanes. Geometric properties of the action on the corresponding
projective space PG(5,C) were studied by Hamill (1951) and Hartley (1950). Its
reflection centers (dual to the reflecting hyperplanes) determine the Z[w]-lattice A
of Coxeter and Todd (1953) (where w is a primitive cube root of unity). This
lattice consists of all (x;) € Z[w]® such that 3}x; = 0 (mod 3) and x; = x; (mod )
for all i, j (where 8§ = & — w? satisfies #” = —3); A is equipped with the usual
hermitian inner product inherited from C®. Its automorphism group is G,
generated by the reflections in GL(6,C) preserving A; these are the reflections
with centers <A) for A € A of norm 6. This group induces 27 (6,3)-2 on A/GA,
where A/ A is the natural GF(3)-module for O ~ (6, 3). The 126 reflections in G
induce 126 reflections of the orthogonal space A/fA. The remaining 126
reflections of that space are induced by using semilinear automorphisms of A;
for example, — cr induces one of them, where ¢ denotes complex conjugation on
A, while r is the reflection with center {(1,1,1,1,1,1)>. On the other hand, the
hermitian product on A induces one on the GF(4)-space A/2A, and reflections
in G induce 126 transvections (defined in Section 5) belonging to SU(6,2). This
produces an embedding PQ~ (6,3) - 2 < PSU(6,2), which is crucial to the exis-
tence of the sporadic finite simple groups found by Fischer (1969). Also, the
lattice A@A is a sublattice of the Leech Z[w]-lattice, described in Conway
(1971). Similarly, the direct sum of three copies of the 8-dimensional real lattice
of type Ej is a sublattice of the Leech lattice itself (Conway (1971)); while the
corresponding real reflection group, when embedded in O *(8,3), also plays a
significant role in Fischer’s constructions.

The study of small-dimensional complex groups, and of large-dimensional
groups generated by reflections, seems to have (temporarily) ended with Blich-
feldt (1917) and Mitchell (1914a,b). Mitchell’s attitude towards this is indicated
on pp. 596-7 of Mitchell (1935). First he states that “comparatively few groups
of interest appear to be known in more than four variables.” This leads to a
discussion of work of Burnside (1912) concerning real reflection groups. Mitchell
then turns to his own work on complex reflection groups: “In spite of the more
general character of this problem as compared with that solved by Burnside, no
restrictions being placed on the character of the coefficients, the results were
chiefly negative.” Only one new example arose (the 6-dimensional one just
discussed). Thus, Mitchell was looking for new groups, or at least new linear
groups, and was not entirely happy with the outcome of this work.

It is unfortunate, both for geometry and group theory, that Mitchell (or
someone else of his generation) did not pursue reflections further. Certainly, if D
is commutative of characteristic 0, then D may be assumed to be a subfield of C.
However, reflection groups over the quaternions H do indeed yield new exam-
ples. One 3-dimensional example is (projectively) a simple group discovered in
1967. Its discovery 50 years earlier might have revived the then nearly dead
theory of finite groups.
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The determination of all finite primitive subgroups of GL(n,H) generated by
reflections was made by Cohen (1980), although some of this had been done
earlier by Wales and Conway. The groups G obtained which are not complex
reflection groups can be described as follows, ifn>3:

(i) n=3,G=Z,x PSUG3,3);

(i) n=3, G=2- HJ (where HJ denotes the Hall-Janko simple group, pre-
dicted by Janko in 1967 and constructed by Hall as a permutation group of
degree 100 on the cosets of a subgroup PSU(3,3); cf. Hall and Wales
(1968);

(iii) n =4, G/Z(G) has an elementary abelian normal subgroup of order 28,
modulo which it is one of 3 subgroups of £ (6,2) (note the similarity to
some 4-dimensional complex groups);

(iv)y n=4, G/Z(G)= (45X As X A )X S; (a wreathed product; compare the
situation (45 X A5)X S, for the real reflection group [3,3, 5]); and

(v) G=Z,x PSU(5,2).

In each case, all reflections turn out to be involutory. Tits has shown that
example (ii) is related to a quaternionic version of the real Leech lattice.

Cohen’s proof is definitely nongeometric. Quaternionic n-space can be re-
garded as complex 2n-space (in many ways). When this is done, quaternionic
reflections become complex transformations having a (2n — 2)-dimensional ei-
genspace. Results of Huffman and Wales (Huffman (1975); Huffman and Wales
(1975); Wales (1978)), to be discussed soon, then provide a list of complex
groups; these must be checked to see which arise from quaternionic groups.

It would be desirable to have a new geometric proof of Cohen’s result. The
present proof is not elegant, using machinery of an overly sophisticated sort. A
new proof would presumably proceed along the lines of Mitchell’s approach. The
case n =2 merely requires knowledge of the finite subgroups of SL(4,C). The
case n=3 is probably the hardest and most interesting one, in view of the
examples. Starting from these cases, Mitchell’s approach should have a good
chance of success.

In the papers just cited, Huffman and Wales extended Mitchell’s work in quite
a different direction. They determined all finite primitive subgroups of GL(n,C)
which are generated by transformations having (n — 2)-dimensional eigenspaces.
The resulting list is too long to reproduce here, but is probably worthy of
geometric investigation. It may not be possible to give a direct proof of their
result. Their proof relies very heavily on representation theory (ordinary and
modular), and on very deep simple group classification theorems. Little geometry
is involved. It is precisely for this reason that an alternative approach is needed
to Cohen’s quaternionic results.

However, there is an obvious advantage to applying group-theoretic classifica-
tion theorems in geometry: results can be obtained which may otherwise be
difficult to prove, or which may later be proved more elegantly. For example,
consider the problem of determining all finite primitive reflection groups G in
GL(n, D), for D an arbitrary noncommutative division ring of characteristic 0. If
n = 1, this is just the famous problem solved by Amitsur (1955) (and indepen-
dently and almost simultaneously by J. A. Green). If n =2 and G is solvable, the
problem seems to involve even more difficult number theory than Amitsur used.
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But if n >3, and if simple group classification theorems are thrown at the
problem, no new nonsolvable examples arise. Similarly, the Cayley-Moufang
projective plane appears not to admit any new examples of finite groups,
generated by involutory reflections, which fix no point, line, triangle, or proper
subplane, other than >D,(2).

We have only been discussing the classification of reflection groups. There is,
of course, a large body of literature concerning their properties. Their invariants
have been of interest for a century (see, e.g., Klein (1876, 1884), and Shephard
and Todd (1954), and the papers by Hiller and Solomon in these Proceedings).
So have their associated polytopes in the real and complex cases (Coxeter (1948,
1957, 1974); Shephard (1952, 1953)). The case of quaternionic polytopes has
recently been begun by Hoggar (1978) (see also his paper in these Proceedings).
For remarkable extremal properties of real, complex, and quaternionic examples,
see Delsarte, Goethals and Seidel (1975, 1977), Hoggar (1978), and Odlyzko and
Sloane (1979).

4. Finite D: Small Dimensions

The detailed study of the subgroups of PSL(2,D) was begun by Galois in 1832
with the case of a prime field D (cf. Galois (1846), pp. 411-412, 443-444). For
prime g, all subgroups of PSL(2,q) were first determined by Gierster (1881).
Burnside (1894) worked on the case of arbitrary ¢. Finally, all subgroups of
PSL(2,q) were determined for all ¢ independently by Moore (1904) and Wiman
(1899a). We refer to Kantor (1979b) and references given there for further
historical remarks concerning 2-dimensional groups.

The group PSL(3, q) brings us back to Mitchell. The first attempt at determin-
ing its subgroups was made by Burnside (1895) in case g and (¢°+q+1)/
(3,9 + 1) are both prime; but he missed the groups PSO(3,q). Dickson (1905)
later enumerated all subgroups of order divisible by ¢, when g is prime, using an
explicit knowledge of all conjugacy classes of g-groups. Both authors relied on
group theory and matrices, not on geometry. Veblen suggested to his student
Mitchell that he provide a geometric solution to the problem for PSL(3,5)
(where, incidentally, ¢*>+ g+ 1 is prime). Mitchell solved the problem for
PSL(3,9), first for odd prime ¢, then for arbitrary odd ¢ in his thesis “The
subgroups of the linear group LF(3, p"),” written in 1910; the solution appears
in Mitchell (1911a). (Another student of Veblen’s, U. G. Mitchell, determined the
subgroups of PSL(3,4) in his thesis entitled “Geometry and collineation groups
of the finite projective plane PG(2,2%),” also written in 1910.) H. H. Mitchell
went even further in his paper: he dealt with PSL(3,C) at the same time as
PSL(3,9). His approach was very geometric, and highly original. (A very
different approach, based on modular characters and simple group classification
theorems, was given by Bloom (1967).) It should, in fact, be noted that Mitchell
solved problems which Jordan (1878, 1879), Valentiner (1889), Burnside (1895),
and Dickson (1905) could not. The maximal subgroups of PSL(3,9), q even,
were later determined by Hartley (1926) in his thesis written under Mitchell. By
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Mitchell (1911a), |G| must be even here, so Hartley naturally concentrated on
the elations G must contain (cf. Section 5).

Mitchell’s only other major papers on linear groups were Mitchell (1913),
where all subgroups of PGL(4,C) and PGL(4,q) are determined which do not
contain nontrivial homologies and have order not divisible by the characteristic
of the field; Mitchell (1914a), which was discussed in Section 2; and Mitchell
(1914b), in which all maximal subgroups of the symplectic groups Sp(4,q) were
found for odd g. All four papers rely heavily on geometry. The most important
ones are certainly the ones on reflection groups and PSL(3,q). The work of
Mitchell and Hartley on PSL(3,¢) has been quoted often in recent papers on
finite groups, besides providing some motivation for Piper’s work on elations of
finite projective planes (Piper (1965, 1966b)).

The groups PSL(n,q), n=4 or 5, have been the object of several recent
papers. Mwene (1976) and Wagner (1979) enumerated all maximal subgroups
when ¢ is even and n is 4 and 5, respectively. The same was done, independently,
by Zalesskii (1977). Zalesskii and Suprenenko (1978) handled the case PSL(4,9)
when the prime p dividing ¢ is greater than 5, and Mwene (1980) discussed the
general case for odd characteristic. PSL(5, q) was handled by Zalesskii (1976) for
p>5, and completed for p > 3 by DiMartino and Wagner (1981). All these
papers rely heavily on modular representation theory and simple group classifica-
tion theorems. See Kantor and Liebler (1982) for further discussion and applica-

tions of these results.

5. Finite D: Homologies and Elations

Mitchell (1914a) observed that his work on complex groups generated by
homologies applied equally well when the field was GF(q), so long as ¢ is
relatively prime to the order of the group. When this condition fails, so does
complete reducibility, and the problem becomes considerably harder. As a
further indication of its difficulty, note that Mitchell’s problem turned out to be a
finite one: only finitely many primitive examples exist. However, when D
= GF(q) and g > 2, infinitely many examples arise, such as orthogonal groups,
unitary groups, and PGL(n,q) itself. In addition, complex examples produce
examples for suitable odd g, simply by passing modulo a suitable prime ideal. Of
course, all of the above remarks apply to Section 4 as well.

Primitive subgroups of PGL(n,q) containing a homology of order greater than
2 were determined independently by Wagner (1978) and by Zalesskii and
Serezkin (1977). Homologies of order 2 were handled by Serezkin (1976) when ¢
is not a power of 3 or 5. The general case of groups containing involutory
homologies was settled by Wagner (1980-1981). All of these papers are highly
geometric. The general case was also dealt with independently and nongeometri-
cally by Zalesskii and Serezkin (1980).

Wagner’s approach is based on that of Mitchell (1914a). It is direct and
reasonably elementary (but long). More than half of the work is devoted to fields
of characteristic 3 or 5. The results may be summarized as follows.

|
j
i
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Suppose that G contains involutory homologies, but no homologies of higher
order and no nontrivial elations (defined below). Then either

(i) G & PQ*(n,q') with GF(q') C GF(g);

(i) G=S,,,and (g,n+2)# 1;
(iii) G arises from a complex reflection group; or
(iv) G= PSL(3,4) -2, n=4, and GF(9) C GF(q).

Example (iv) arises from the embedding PSL(3,4)-2 < PSU(4,3) - 2, which
in turn arises from the complex 6-dimensional reflection group discussed in
Section 3. The embedding PSL(3,4) < PSU(4,3) was discovered by Hartley
(1950) by considering the action of that reflection group on PG(5,C). An
alternative proof can be given, by observing that SL(3,4) is induced on any
totally isotropic 3-space of the unitary space A/2A which is fixed by none of the
transvections in the group. This embedding is the basis for the construction by
McLaughlin (1969) of his sporadic simple group.

Homologies are not the only collineations inducing the identity on a hyper-
plane of a projective space. The other type of collineations behaving in this
manner are the elations. They have order 1 or p if D has characteristic p 7 0. The
corresponding linear transformations are transvections; such a transformation ¢
satisfies ( — 1)> =0 and dim V(¢ — 1) < 1. Then, with respect to some basis, ¢
has the form

t= . for some a € D;
0 1

if a is allowed to be arbitrary, then the resulting transvections form a group
= D™, called a root group. (This is a special case of root groups of Chevalley
groups; cf. Carter (1972).)

McLaughlin (1967, 1969a) determined all irreducible subgroups of GL(n,D)
generated by root groups, for any field D. His approach is elegant and geometric.

The primitive subgroups of PSL(n,q) generated by elations have also been
determined, primarily by Piper (1966b, 1968, 1973) and Wagner (1974) (and,
independently, by Zalesskii and Serezkin (1976) for odd g). Their arguments are
beautifully geometric. Unfortunately, in one characteristic 2 situation simple

group classifications were also used (Kantor (1979a)). For n > 4, the possibilities
are as follows:

(i) PSL(n,q’), PSp(n,q’), and PSU(n,q’), where GF(q') C GF(q);
(i) PO *(n,q’), where ¢’ is even and GF(q’) C GF(q);
(iii) S, ,, where n and g are even; and
(iv) P$2(6,3) -2, where n = 6 and GF(4) C GF(q).

Of course, example (iv) arises from Mitchell’s 6-dimensional complex reflec-
tion group. An entirely geometric proof of the above result would again be
desirable.

Elations appear in several situations. Ever since Galois, they have been
involved in the proof of the simplicity of linear groups—not just of PSL(n,q),
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* but also of PSp(2n,q) and PSU (n,q) (Jordan (1870), Dickson (1900), Huppert
- (1967), as well as implicitly in Carter (1972)). Elations and homologies were used
throughout the study of subgroups of PSL(3,q) by Mitchell (1911a) and Hartley
(1926). Elations were equally important for PSL(4,q) and PSL(5,q); for exam-
ple, if g is even, then the Sylow 2-subgroups of a subgroup of PSL(5,9)
containing no nontrivial elations have nilpotence class at most 2, a fact which
was crucial for Mwene (1976), Wagner (1979), and Zalesskii (1977). Elations also
arose in the determination of the 2-transitive permutation representations of
PSL(n,q), PSp(2n,q), and PSU(n,q) (Curtis, Kantor, and Seitz (1976)); in
particular, McLaughlin’s result was essential for PSp(2n,2). Elations (and invo-
lutory reflections) arise throughout the classification of Fischer (1969); and
Fischer’s work was, in fact, used at one point in the determination of the
primitive groups generated by elations. The latter determination was fundamen-
tal in bounding from below the degree (among other things) of a primitive
permutation representation of PSL(n,q), PSp(2n,q), or PSU(n,q) (Patton
(1972), Cooperstein (1978), Kantor (1979b)).

6. Other Transformations

We conclude with a brief discussion of subgroups G of GL(V)= GL(n,q)
generated by other “nice” types of transformations.

(i) Call t € GL(V) quadratic if (1 —1)>=0. Clearly, |¢] is 1 or the prime p
dividing ¢. Transvections are quadratic, and if p = 2 then so are all involutions.
If ¢ is quadratic and ¢ # 1, then the subspace Cy(2) of fixed vectors contains the
intersection [V,1]= {vt —v|v € v} of all fixed hyperplanes. Thus, quadratic
transformations can be regarded as generalizations of transvections.

Thompson (1970) classified all irreducible groups generated by quadratic
transformations if p > 3, at the same time determining all possible modules for
each group obtained. The groups are SL(n,q"), Sp(n.q), SU(n,q"), Q*(n,q"),
Gy(9"), 3D(q), F{q): E(q), ’E«(q’), and EL(q'), where ¢’ | g. (The last six classes
of groups are defined in Carter (1972): they are Chevalley and twisted groups.)
Some sporadic simple groups arise when p = 3; this case has been the subject of
a great deal of work by Ho (cf. Ho (1976) and the references given there).
Thompson’s theorem provided part of the impetus for the remarkable result of
Aschbacher (1977) (where no module is present). The latter result to a certain
extent supersedes Thompson’s, and was a main tool in Ho (1976).

(ii) Dempwolff (1978, 1979) has classified all irreducible subgroups of SL(n,2)
generated by involutions ! for which dim C,(¢) =n—2. His proof uses simple
group classification theorems.

(iii) Kantor (1979a) determined all irreducible subgroups of orthogonal groups
Q* (n,q) which are generated by “long root elements.” These are analogues of
transvections, provided by the theory of Chevalley groups. While they are
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quadratic transformations, it is the characteristic 2 case that provides the most
interesting examples.

The corresponding type of problem for all other Chevalley groups has been
settled by Cooperstein (1979, 1981).

Of greater importance is the work recently begun by Seitz concerning the
structure of subgroups of Chevalley groups. When specialized to the case of
SL(n, g), one of the preliminary applications of his methods (Seitz (1979)) is the
determination of all subgroups of SL(n,q) containing all diagonal matrices when
g > 11 and q is odd. His methods depend upon algebraic groups, not geometry.
Further results on generation of yet another type are found in Seitz (1982).

(iv) Singer cycles are elements of GL(n,q) of order ¢” — 1. Their geometric
significance was first noticed by Singer (1938). They arise in the special case
k =1 of the following construction.

Let k| n, and write s = n/k. Then a k-dimensional vector space over GF g9
is also an n-dimensional vector space over GF(q). Thus, GL(k, q°) < GL(n,q). In
particular, GF(¢")* = GL(1,4") < GL(n,q).

Kantor (1980) showed that any subgroup of GL(n,q) generated by Singer
cycles is a group GL(k,q*) (for some k and s = n/k) obtained in the above
manner. This time, simple group classification theorems are in no way involved
in the proof. The proof is geometric, and is based upon the determination
(geometrically) of all collineation groups acting 2-transitively on the points of a
finite projective space (Cameron and Kantor (1979)).
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