TEMPERATURE AND COMFORT STUDY

The temperatures of 6 offices were plotted to determine the effect of the mechanical and passive systems. The data collected was compared with the outdoor temperatures.

FUTURE STUDY RECOMMENDATIONS:
- Conduct the study in different office buildings to further validate the results.
- Collect data over a longer period to observe seasonal variations.

CONCLUSION:
Although the current study had limitations, the results provide insights into the effectiveness of passive and mechanical systems in maintaining comfortable temperatures.

INTENDED DESIGN & FOCUS OF THIS STUDY

OFFICE CONFIGURATION STUDY

The study compared the comfort levels of offices with different configurations. The results suggest that certain configurations may lead to more comfortable temperatures.

FUTURE STUDY RECOMMENDATIONS:
- Conduct the study with more offices to validate the findings.
- Compare the results with the energy consumption data.

CONCLUSION:
The study highlights the importance of considering office configurations in the design phase to ensure thermal comfort.

OFFICE AIR FLOW OBSERVATIONS

The study observed air flow patterns in different offices. The results indicate that proper air flow is crucial for maintaining comfortable temperatures.

FUTURE STUDY RECOMMENDATIONS:
- Conduct the study with more sophisticated air flow measuring devices.
- Analyze the air flow patterns under different office configurations.

CONCLUSION:
The study underscores the need for careful planning of air flow systems to ensure adequate ventilation.

LILLIS BUSINESS COMPLEX OFFICES: A STUDY OF PASSIVE INTEGRATION

The study investigated the effectiveness of passive systems in maintaining comfortable temperatures. The results suggest that passive systems can significantly reduce the need for mechanical cooling.

FUTURE STUDY RECOMMENDATIONS:
- Conduct the study with more sophisticated monitoring equipment.
- Compare the results with the energy consumption data.

CONCLUSION:
The study highlights the potential of passive systems in reducing energy consumption and improving thermal comfort.