Finite geometry for a generation

W. M. Kantor*

Dedicated to J. A. Thas on his fiftieth birthday

There are a number of results concerning the generation of a collineation group by two of its elements. A. A. Albert and J. Thompson [1] were the first to exhibit two elements generating the little projective group $\text{PSL}(d, q)$ of $\text{PG}(d - 1, q)$ (for each d and q). According to a theorem of W. M. Kantor and A. Lubotzky [8], "almost every" pair of its elements generates $\text{PSL}(d, q)$ as $qd \to \infty$ (asymptotically precise bounds on this probability are obtained in W. M. Kantor [7]). Given $1 \neq g \in \text{PSL}(d, q)$, the probability that $h \in \text{PSL}(d, q)$ satisfies $\langle g, h \rangle = \text{PSL}(d, q)$ was studied by R. M. Guralnick, W. M. Kantor and J. Saxl [3], and its behavior was found to depend on how $qd \to \infty$. Yet another variation that has been proposed is "$1\frac{1}{2}$"-generation: if $1 \neq g \in \text{PSL}(d, q)$ then some $h \in \text{PSL}(d, q)$ satisfies $\langle g, h \rangle = \text{PSL}(d, q)$. This note concerns a stronger version of this notion:

Theorem. For any $d \geq 4$ and any q, there is a conjugacy class C of cyclic subgroups of $\text{PSL}(d, q)$ such that, if $1 \neq g \in \text{PSL}(d, q)$, then $\langle g, C \rangle = \text{PSL}(d, q)$ for more than

$$\left(1 - \frac{1}{q} - \frac{1}{q^d-1}\right)^2 |C|$$

elements $C \in C$. In particular, there are more than $0.4|C|$ such elements if $q > 2$.

While this does not look at all like a geometric theorem, the proof is entirely geometric. The same type of result holds when $d = 2$ or 3 (and is easy), as well as for all the classical groups. The proof by W. M. Kantor [4] for the latter groups is still reasonably geometric, but is harder than the situation of the theorem.

Let V be the vector space underlying $\text{PG}(d - 1, q)$. The following is a simple observation concerning the set $\text{Fix}(g)$ of fixed points (in $\text{PG}(d-1, q)$) of a collineation g:

*Research supported in part by the NSF.
Received by the editors in February 1994

AMS Mathematics Subject Classification: Primary 51J05, Secondary 20F05

Keywords: group generators, linear groups.

Lemma 1. Let $g \in \text{PSL}(V)$ have prime order.

(i) If $|g| \mid q$ then, for some point z and hyperplane Z fixed by g, z lies in every hyperplane fixed by g.

(ii) If $|g| \not| q$ then $\text{Fix}(g) \subseteq A \cup B$ for nonzero subspaces A and B such that $V = A \oplus B$ and each hyperplane fixed by g contains A or B.

Proof. Let \hat{g} be a linear transformation inducing g.

(i) We may assume that $|\hat{g}| = |g|$. Since $|\hat{g}| \mid q$, $\text{Fix}(g)$ is the set of points in the null space of $\hat{g} - I$, and this subspace is nonzero and proper in V. Let Z be any hyperplane containing $\text{Fix}(g)$. Dually, the intersection of the set of fixed hyperplanes is nonzero, is fixed by g, and hence contains a nonzero point z fixed by g.

(ii) This time $\text{Fix}(g)$ is the union of eigenspaces of \hat{g} whose corresponding eigenvalues are in $GF(q)$. The span of these eigenspaces is their direct sum. Hence, let B be any such (nonzero) eigenspace of smallest dimension, and let A be a complement to B containing all remaining eigenspaces; if there are no such nonzero eigenspaces then there are no fixed points, and B can be chosen to be an arbitrary point. □

Let C be a cyclic subgroup of $\text{PSL}(d, q)$ of order $q^{d-1} - 1$ that splits V as $V = x \oplus X$ for a non-incident point x and hyperplane X (i.e., antiflag) of $\text{PG}(d - 1, q)$, where C is transitive on the sets of points and hyperplanes of X. Let \mathcal{C} denote the conjugacy class $C^{\text{PSL}(d, q)}$ of C. In view of the transitivity of $\text{PSL}(d, q)$ on the antiflags of $\text{PG}(d-1, q)$, each antiflag is fixed by the same number of members of \mathcal{C}.

Lemma 2. Assume that $d \geq 4$ and $\text{PSL}(d, q) \neq \text{PSL}(4, 2)$. If $C \leq J \leq \text{PSL}(d, q)$, where J moves both x and X, then $J = \text{PSL}(d, q)$.

Proof. Since C is transitive on both the points and hyperplanes of V/x, J is transitive on the set of those hyperplanes not disjoint from $\Omega := x^J$, and also on the set of those lines not disjoint from Ω. In particular, all hyperplanes not disjoint from Ω meet Ω in the same number of points; and the same is true for the lines not disjoint from Ω. Since J moves the only point fixed by C, $|\Omega| > 1$. It follows that Ω is either the complement of a hyperplane or consists of all points (this simple result uses the fact that $d \geq 4$, and is proved on the bottom of p. 68 of W. M. Kantor [5]). Since J moves the only hyperplane fixed by C, Ω must consist of all points.

Thus, J is transitive on the set of points of $\text{PG}(d - 1, q)$, and hence also on the set of incident point-line pairs. By a result of W. M. Kantor [6], J is 2-transitive on points. Now a theorem of P. J. Cameron and W. M. Kantor [2] implies that $J = \text{PSL}(d, q)$. □

The case $\text{PSL}(4, 2) \cong A_8$ of the theorem will be left to the reader, and hence is excluded here. Fix $1 \neq g \in \text{PSL}(d, q)$, where $|g|$ is prime. Call $C \in \mathcal{C}$ “good” if $\langle g, C \rangle = \text{PSL}(d, q)$.

(i) Suppose that $|g| \mid q$. Let z, Z be as in lemma 1(i). By lemma 2, if $C \in \mathcal{C}$ is chosen so that its unique fixed point x and hyperplane X satisfy $x \notin Z$ and $z \notin X$, then $\langle g, C \rangle = \text{PSL}(d, q)$. The number of antiflags x, X behaving in this manner is
$q^{d-1}(q^{d-1} - q^{d-2})$, and all such antiflags are fixed by the same number of members of C. Consequently, the proportion of good members of C is at least

$$\frac{q^{d-1}(q^{d-1} - q^{d-2})}{[(q^d - 1)/(q - 1)]q^{d-1}} > \frac{11}{22}.$$

(ii) Suppose that $|g|$ does not divide q. Let A and B be as in lemma 1(ii), where A is a subspace $\text{PG}(a-1, q)$ and B is a subspace $\text{PG}(b-1, q)$ with $a + b = d$ and $a \geq b$. Let \mathcal{N} be the number of antiflags x, X such that $x \notin A \cup B$ and $X \nsubset A, B$. Then the proportion of good members of C is at least

$$\frac{\mathcal{N}}{[(q^d - 1)/(q - 1)]q^{d-1}} = \frac{\left[\frac{q^d - 1}{q - 1} - \frac{q^d - a - 1}{q - 1} - \frac{q^d - b - 1}{q - 1}\right](q^{d-1} - q^{a-1} - q^{b-1})}{[(q^d - 1)/(q - 1)]q^{d-1}} \geq \frac{q^d - q - q^{d-1} + 1}{q^{d-1} - 1} \frac{q^{d-1} - 1 - q^{d-2}}{q^{d-1}}.$$

The right hand side is always $> \left(1 - \frac{1}{q} - \frac{1}{q^2}\right)^2$; if $q \geq 3$ then it is at least $(52/80)(17/27) > 0.4$. This proves the theorem.

Remark. If q is fixed and $d \to \infty$, and if g is always chosen to be a perspectivity in (i) or (ii), then the desired probability $\to (1 - 1/q)^2$.

References

W. M. Kantor
Department of Mathematics
University of Oregon
Eugene OR 97403
USA