Math 648: Exercise sheet 2

Due F Jan 21.
Read the “notes on linear algebra”.
IV, §6, 4,5,6
My questions. Always, R is a PID.
(i) Let M be a finitely generated R-module with invariant factor sequence d_1, \ldots, d_s. Prove that M cannot be generated by less than s elements.
(ii) Find the invariant factor sequence AND the primary decomposition for the following R-modules:
(a) an n-dimensional vector space V over a field k, with $R = k$.
(b) the same vector space as in (a) but with $R = k[x]$, where x acts on V by $xv_i = v_{i+1}$, where v_1, \ldots, v_n is a k-basis of V and $v_{n+1} = 0$.
(c) \mathbb{Z}_{2000} with $R = \mathbb{Z}$.
(iii) Let M be a finitely generated R-module with $p^aM = 0$ for some prime $p \in R$ and some $a \geq 1$. Suppose that $x \in M$ has order exactly p^a. Show that $M = N \oplus Rx$ for some submodule N of M.
(iv) Let p be a prime and A be a non-trivial cyclic group of p-power order. Prove that the equation $px = 0$ has p solutions in A. More generally, prove that if A is the direct sum of s non-trivial cyclic groups of p-power order then the equation $px = 0$ has p^s solutions.
(v) Let k be a finite field of characteristic p. Let $k^* = k \setminus \{0\}$, viewed as a finite Abelian group. Using (iv), prove that each primary component of k^* is cyclic. Deduce that k^* is cyclic.
(vi) Let p be a prime and A be a finite Abelian group with invariant factor sequence $p^{a_1}|\ldots|p^{a_s}$. Let B be a subgroup of A. Prove that B is a direct sum of cyclic groups of orders p^{b_1}, \ldots, p^{b_s} where $0 \leq b_1 \leq \cdots \leq b_s$ and $b_i \leq a_i$ for each i. p-group.