Math 648: Exercise sheet 1

Due F Jan 14.

I. Reread sections 1, 2, 3 of chapter II to compare what we’re doing now for PIDs with what was done there for \(\mathbb{Z} \). Then read section 7 of chapter IV where Hungerford gives proofs of the main results we’re working on. The proofs there are slightly shorter but more technical than ours...

II. IV, §7:1,2,3.

III. Do the following questions:

(i) Prove that every submodule of a finitely generated module over a PID is finitely generated.

(ii) Let \(A = \begin{bmatrix} -4 & -6 & 7 \\ 2 & 2 & 4 \\ 6 & 6 & 15 \end{bmatrix} \). Using the algorithm from class, find invertible matrices \(X \) and \(Y \) over \(\mathbb{Z} \) such that \(XAY \) has the form \(\text{diag}(d_1, d_2, d_3) \) with \(d_1 | d_2 | d_3 \).

(iii) Give an example of two matrices over \(\mathbb{Z} \) which are not equivalent over \(\mathbb{Z} \), but which are equivalent as matrices over \(\mathbb{Q} \).

(iv) Let \(R \) be a PID and \(A \) be an \(n \times n \) matrix over \(R \). Prove that \(A \) is invertible if and only if \(A \) is equivalent to the identity matrix.

(v) Find the elementary divisors of the matrix \(\begin{bmatrix} 2 & 1+i & 1-i \\ 8+6i & -4 & 0 \end{bmatrix} \) working over the ring \(\mathbb{Z}[i] \) of Gaussian integers.

(vi) Show that the matrix \(A = \begin{bmatrix} 2x & 0 \\ x & 2 \end{bmatrix} \) is not equivalent over \(\mathbb{Z}[x] \) to a diagonal matrix.

(Hint: consider the ideals \(J_i(A) \)).

(vii) Let \(R \) be a commutative, unital ring. Is it true \(R \) is indecomposable viewed as an \(R \)-module? What if \(R \) is a PID?

(viii) Let \(M \) be the set of all infinite sequences \((z_1, z_2, \ldots)\) of \(z_i \in \mathbb{Z} \). Regard \(M \) as a \(\mathbb{Z} \)-module with coordinate-wise addition and scalar multiplication defined by \(r(z_1, z_2, \ldots) = (rz_1, rz_2, \ldots) \) for \(r \in \mathbb{Z} \). Prove that \(M \cong \mathbb{Z} \oplus M \) as a \(\mathbb{Z} \)-module. Why could this never happen for finitely generated \(\mathbb{Z} \)-modules?