Math 647: Group theory review questions

These questions are intended to give you an idea of the sort of thing I’m likely to ask on the midterm. I will hand out solutions in class before the midterm – these problems will not be graded!

1. Define the following:
 (i) solvable group;
 (ii) free group on the set X;
 (iii) normal subgroup;
 (iv) faithful action.

2. State the following theorems:
 (i) Jordan-Hölder theorem;
 (ii) 1st Sylow theorem;
 (iii) Cauchy’s theorem;
 (iv) Lattice isomorphism theorem.

3. True or False? Prove or give a counterexample.
 (i) For any groups G, H, $\text{Aut}(G \times H) \cong \text{Aut} G \times \text{Aut} H$.
 (ii) If $G/Z(G)$ is solvable, then G is solvable.
 (iii) Every group of order p^2q (p, q primes) is nilpotent.
 (iv) If H, K are two subgroups of G of index 2, then $H = K$.

4. Let p, q be distinct primes. How many elements of order p are there in the following groups:
 (i) \mathbb{Z}_{pq};
 (ii) $\mathbb{Z}_p \times \mathbb{Z}_p$;
 (iii) $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$;
 (iv) \mathbb{Z}_{p^∞}.

5. Prove there is no simple group of order 640.

6. Let $|G| = p^n$, p prime. Prove that $Z(G) \neq 1$.

7. Let p, q be distinct odd primes. Prove that any group of order p^2q^2 is solvable.

8. Prove that $D_n/Z(D_n) \cong D_{n/2}$ if n is even. What if n is odd?

9. Let $X \subseteq Y$. Let F be free on X, G be free on Y. Prove that F is isomorphic to the subgroup of G generated by X.

10. Calculate $|G|$ if $G = \langle a, b, c | a^2 = b^3 = e, ab = c, bc = cb \rangle$.

11. Let G be the group of all rotational symmetries of a regular tetrahedron. Prove $G \cong A_4$.

12. Find all composition series with no trivial factors for the following groups:
 (i) D_3;
 (ii) A_4;
 (iii) $S_3 \times \mathbb{Z}_2$;
 (iv) D_6.