Math 647: Exercise sheet 4

Due F Oct 29.

I. Look over §§6–8 from chapter two of Hungerford.
II. Hungerford §II.5. 6, 11, 13.
III. If G is a group, its commutator subgroup G' is defined as the subgroup generated by the elements $\{ghg^{-1}h^{-1} | g, h \in G\}$.
 (i) Show that G' can be characterized as the unique smallest normal subgroup of G such that the factor group G/G' is Abelian.
 (ii) If G is a non-Abelian group of order p^3, prove that $Z(G) = G'$.
 (iii) Calculate G' in case $G = S_n$ for all $n \geq 2$.
IV. We have shown in class that there are no simple groups of order p^k or pq, where p, q distinct primes. (You should remember how). Now use the Sylow theorems to prove:
 (i) There are no simple groups of order $4p$ for p an odd prime.
 (ii) There are no simple groups of order pqr where p, q, r are distinct odd primes.
 (iii) There are no simple groups of order $2pq$ where p, q are distinct odd primes.
 (iv) Now prove that there are no non-Abelian simple groups of order less than 60.
 (v) We have shown that A_5 is a non-Abelian simple group of order 60. Prove that any simple group of order 60 is isomorphic to A_5. (Hint: show that a simple group of order 60 has exactly 5 Sylow 2-subgroups.)
V. Hungerford §II.6. 4.
VI. Hungerford §II.7. 8.
VII. Let G_n be the group with generators $\{s_1, s_2, \ldots, s_{n-1}\}$ subject to the relations $s_i^2 = e, s_is_j = s_js_i$ for $|i - j| > 1$ and $s_is_{i+1}s_i = s_{i+1}s_is_{i+1}$. Let S_n denote the symmetric group, and t_i denote the basic transposition $(i \ i+1)$ in S_n.
 (i) Prove that the t_i satisfy the same relations as the s_i.
 (ii) Embed S_{n-1} into S_n as the subgroup consisting of all permutations fixing n. Prove that $\{1, t_{n-1}, t_{n-2}t_{n-1}, \ldots, t_1t_2 \ldots t_{n-1}\}$ is a set of S_n/S_{n-1}-coset representatives.
 (iii) By considering the subgroup G_{n-1} of G_n generated by s_1, \ldots, s_{n-2} only and using induction, prove that $G_n \cong S_n$.

1