Exercise sheet 3

These mindless questions are intended to consolidate the confusing combinatorial definitions in the reading!!

1. Let $(i,j) = ((2,2,3,4,1),(1,1,3,3,4)) \in I^2(n,r)$. Write down:
 (i) the row standard tableau a corresponding to (i,j) under our fixed bijection $I^2(n,r) \to T^+_{n,r}$;
 (ii) the shape λ of a;
 (iii) the weight μ of i;
 (iv) the row standard μ-tableau b corresponding to the double index (j,i);
 (v) the row standard tableau corresponding to the double index (iw,jw) if $w = (123) \in S_5$.

2. Let $n = 2, r = 3$ and list the sets $T^+_{n,r}$ and $T^{++}_{n,r}$. Hence verify explicitly in this example that
 \[|T^+_{n,r}| = |\{(a,b) \in T^{++}_{n,r} \times T^{++}_{n,r} | a \text{ and } b \text{ have the same shape}\}|. \]

3. The weight of a tableau a is defined to be the weight $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \Lambda(n,r)$ where λ_i is the number of times the number i appears in a. List all standard $(3,2,1)$-tableaux of weight $(2,2,2)$.

4. Take $\lambda \in \Lambda^+(n,r)$. Prove that the only standard λ-tableau of weight λ is the tableau 1_λ.

5. Let a be a standard λ-tableau of weight μ. Prove from the definitions that $\lambda \geq \mu$ in the dominance order.

6. Prove that $S^\#_{n,r}$ has basis consisting of all ϕ_a for all $a \in T^+_{n,r}$ such that every entry in row i of a is $\leq i$. What is the analogous condition on ϕ_a to lie in $S^\#_{n,r}$?

7. Let $\Theta_{n,r}$ denote the set of all $n \times n$-matrices with non-negative integer entries summing to r.
 (i) Convince yourself that the map $f : T^+_{n,r} \to \Theta_{n,r}, a \mapsto (a_{i,j})$ where $a_{i,j}$ is the number of entries equal to i in the jth row of a equal to j, is a bijection.
 (ii) Show that $a \geq b$ on the dominance order on $T^+_{n,r}$ if and only if
 \[\sum_{i=1}^s \sum_{j=1}^t a_{ij} \geq \sum_{i=1}^s \sum_{j=1}^t b_{ij} \]
 for all $s, t = 1, \ldots, n$.
 (iii) Interpret the shape (respectively, the weight) of a tableau a as the ‘column sum’ (respectively, the ‘row sum’) of the matrix $f(a)$.

8. List the distinguished S_n/S_λ-coset representatives explicitly for $n = 6, \lambda = (3,2,1)$. Then determine the Bruhat ordering on the resulting coset representatives.