Exercise sheet 2

Let F be an infinite field.

1. Consider the algebra $S_{n,1}$. Write down Schur’s product rule for multiplication of $\xi_{i,j}$ and $\xi_{h,l}$ in this special case. Deduce that $S_{n,1}$ is isomorphic to the algebra of all $n \times n$ matrices over F.

2. Let $S^\#$ be the subspace of $S_{n,r}$ spanned by $\xi_{i,j}$ for all $i, j \in I(n,r)$ with $i_1 \leq j_1, \ldots, i_r \leq j_r$. Prove directly using Schur’s product rule that $S^\#$ is a subalgebra of $S_{n,r}$.

3. Prove that $\dim S_{n,r} = \binom{n^2 + r - 1}{r}$.

4. Let w be the permutation $(1 \ n)(2 \ n-1)(3 \ n-2) \cdots \in \Sigma_n$. Calculate the length of w as defined in the reading. Convince yourself that this is the unique longest element of Σ_n.

5. This question depends on reading the definition of the dominance order on row standard tableaux, as defined in the reading. List all row standard λ-tableaux of weight μ, for $\lambda = (3, 2)$ and $\mu = (2, 1, 2)$. Then work out the diagram for the dominance ordering on the resulting tableaux.

6. The goal in this question is to construct in general an embedding of the algebra $S_{n,r}$ into a matrix algebra.

 (i) Let $F_n = F\langle x_{i,j} \mid 1 \leq i, j \leq n \rangle$ denote the free non-commutative F-algebra in n^2 indeterminates. Prove that the unique algebra maps defined by

 $$\Delta : F_n \to F_n \otimes F_n, x_{i,j} \mapsto \sum_{k=1}^{n} x_{i,k} \otimes x_{k,j}$$

 and

 $$\varepsilon : F_n \to F, x_{i,j} \mapsto \delta_{i,j}$$

 make F_n into a well-defined bialgebra.

 (ii) Let K_n be the ideal of F_n generated by \{ $x_{i,j} - x_{j,i} \mid 1 \leq i \neq j \leq n$ \}. Prove that K_n is a coideal, hence that the quotient algebra F_n/K_n is a bialgebra.

 (iii) Prove that $F_n/K_n \cong A_n$ as bialgebras.

 (iv) Let $F_{n,r}$ and $K_{n,r}$ denote the degree r parts of each, so that $F_{n,r}/K_{n,r} \cong A_{n,r}$ as coalgebras by (iii). Explain why the dual algebra $A_{n,r}^*$ is a naturally embedded subalgebra of the dual algebra $F_{n,r}^*$.

 (v) Compute the product rule between basis elements of the algebra $F_{n,r}^*$, for the basis of $F_{n,r}$ dual to the basis of $F_{n,r}$ consisting of all monomials. Deduce that $F_{n,r}^*$ is isomorphic to the F algebra of all $N \times N$ matrices over F, where $N = n^r$.

 (vi) Combining (iv) and (v), we have an embedding of $S_{n,r}$ into the full matrix algebra. This is usually called the natural representation of $S_{n,r}$.

7. Let V be the natural $GL_n(F)$-module F^n of column vectors.

 (i) Decompose V as a direct sum of weight spaces. Since V is polynomial of degree 1, the weights appearing should be in the set $\Lambda(n, 1)$.

1
(ii) Now do the same as (i) for the r-fold tensor power $V^\otimes r$ of V, $GL_n(F)$ acting in the usual way on the tensor product.

(iii) The tensor space $V^\otimes r$ is a polynomial degree r representation of $GL_n(F)$. Write down the corresponding structure map of $V^\otimes r$ regarded as a right $A_{n,r}$-comodule.

(iv) Hence determine a formula for the explicit action of a basis element ξ_{ij} of $S_{n,r}$ on a basis of $V^\otimes r$.

(v) Actually, $V^\otimes r$ is the natural representation in 3(vi) in a different realization.