Math 261: Midterm practise questions

1. (i) Say precisely what it means for the limit of $f(x)$ as x approaches a to be l (that is, $\lim_{x \to a} f(x) = l$).
 (ii) Prove, using the definition you provided above, that if

 $$ f(x) = \begin{cases}
 -3x + 6 & x \neq 3 \\
 0 & x = 3
 \end{cases} $$

 then

 $$ \lim_{x \to 3} f(x) = -3 $$

 (iii) Prove, using the definition you provided above, that if $f(x) = x^2$ then

 $$ \lim_{x \to 5} f(x) = 25. $$

 Solution.

 (i) For all $\epsilon > 0$, there exists $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - l| < \epsilon$.
 (ii) Take $\epsilon > 0$. Set $\delta = \epsilon/3$. Then, let $0 < |x - 3| < \delta$. In other words, $3 - \epsilon/3 < x < 3 + \epsilon/3$ and $x \neq 3$. Then, $-3(3 + \epsilon/3) + 6 < -3x + 6 < -3(3-\epsilon/3) + 6$ so $-3-\epsilon < -3x + 6 < -3+\epsilon$. This says that $|f(x) - (-3)| < \epsilon$ which is what we wanted.
 (iii) Take $\epsilon > 0$. Set $\delta = \min(\epsilon/11, 1)$. Then, if $0 < |x - 5| < \delta$, we have that $f(x) - 25 = x^2 - 25 = (x - 5)(x + 5) = (x - 5)(x - 5 + 10)$. So,

 $$ |f(x) - 25| \leq |x - 5|(|x - 5| + 10) < \delta(\delta + 10) \leq \frac{\epsilon}{11}(1 + 10) = \epsilon. $$

 This is what we needed.

 2. (i) Define what it means to say the function $f(x)$ is continuous at a.
 (ii) Prove (using ϵ and δ) that the function

 $$ f(x) = \begin{cases}
 x & x \in \mathbb{Q} \\
 0 & \text{else}
 \end{cases} $$

 is continuous at 0.

 Solution.

 (i) It means $\lim_{x \to a} f(x) = f(a)$.
 (ii) Take $\epsilon > 0$. Set $\delta = \epsilon$. Then, for $|x| < \delta$, we have that $|f(x)| = |x| < \delta$ for $x \in \mathbb{Q}$ or $|f(x)| = 0$ otherwise. Either way, $|f(x)| < \epsilon$. This proves that $\lim_{x \to 0} f(x) = 0$. But $f(0) = 0$ by definition. Hence, f is continuous at 0.
3. Answer the following true or false. If you can, give a very short justification for your answer.

(i) \(f(x + y) = f(x) + f(y) \).
(ii) \([(g + h) \circ f](x) = g(f(x)) + h(f(x)) \).
(iii) \(|x + y| \leq |x| + |y| \).
(iv) \(|x - y| \leq |x| - |y| \).
(v) \(|x| - |y| \leq |x - y| \).
(vi) If \(f(a) = f(b) \) then \(a = b \).

Solution.

(i) False. Consider \(f(x) = x^2 \). Then, \(f(4) = 16 \neq f(2) + f(2) \).
(ii) True. By the definitions, \([(g + h) \circ f](x) = (g + h)(f(x)) = g(f(x)) + h(f(x)) \).
(iii) True. We proved this in class.
(iv) False. Take \(x = 2, y = 3 \). Then LHS = 1, RHS = -1.
(v) True. Set \(x' = x + y, y' = y \) in (iii), so \(x = x' - y' \). Then, (iii) reads \(|x'| \leq |x' - y'| + |y'| \). Rearranging gives \(|x'| - |y'| \leq |x' - y'| \).
(vi) False. Take \(f(x) = x^2 \). Here, \(f(1) = f(-1) \), but \(1 \neq -1 \).

4. Find the following limits.

(i) \(\lim_{x \to \infty} \frac{2x^2 - \cos(x)}{x^2 + x + 1} \)

(ii) \(\lim_{x \to a} \frac{x^3 - a^3}{x - a} \).

(iii) \(\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} \)

(iv) \(\lim_{x \to \infty} (\sqrt{x^2 + 2x} - x) \).

Solution.

(i) \(\lim_{x \to \infty} \frac{2x^2 - \cos(x)}{x^2 + x + 1} = \lim_{x \to \infty} \frac{2x^2}{x^2 + x + 1} - \lim_{x \to \infty} \frac{\cos(x)}{x^2 + x + 1} \)

\(= \lim_{x \to \infty} \frac{2(x^2 + x + 1) - 2x - 2}{x^2 + x + 1} - 0 = 2 - \lim_{x \to \infty} \frac{2x + 2}{x^2 + x + 1} = 2 - 0 = 2. \)

(ii) \(\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to a} \frac{(x - a)(x^2 + ax + a^2)}{x - a} = \lim_{x \to a} (x^2 + ax + a^2) = 3a^2. \)
(iii)
\[
\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{\sqrt{x} - 2}{(\sqrt{x} - 2)(\sqrt{x} + 2)} = \frac{1}{\lim_{x \to 4} \sqrt{x} + 2} = \frac{1}{4}
\]
(iv)
\[
\lim_{x \to \infty} (\sqrt{x^2 + 2x} - x) = \lim_{x \to \infty} \frac{(\sqrt{x^2 + 2x} - x)(\sqrt{x^2 + 2x} + x)}{\sqrt{x^2 + 2x} + x} = \lim_{x \to \infty} \frac{2}{\sqrt{x^2 + 2x}} = \lim_{x \to \infty} \frac{2}{\sqrt{1 + 2/x} + 1} = \frac{2}{1 + 1} = 1.
\]

5. Find the following limits.

(i)
\[
\lim_{x \to \infty} \frac{3x^2 - x \sin(x) + x^2 \sin(x)}{x^2 + 4x + 3}
\]

(ii)
\[
\lim_{x \to a} \frac{1}{x} - \frac{1}{a},
\]

(iii)
\[
\lim_{x \to 4} \frac{x^2 - 16}{x - 4}
\]

(iv)
\[
\lim_{x \to \infty} (\sqrt{x^2 + 2x} - \sqrt{x^2 + 3x})
\]

Solution.

(i)
\[
\lim_{x \to \infty} \frac{3x^2 - x \sin(x) + x^2 \sin(x)}{x^2 + 4x + 3} = \lim_{x \to \infty} \frac{(x^2 + 4x + 3)(3 + \sin x) - (4x + 3)(3 + \sin x) - x \sin x}{x^2 + 4x + 3} = \lim_{x \to \infty} (3 + \sin x) - \lim_{x \to \infty} \frac{(4x + 3)(3 + \sin x) - x \sin x}{x^2 + 4x + 3} = \lim_{x \to \infty} (3 + \sin x) - 0
\]

which does not exist.

(ii)
\[
\lim_{x \to a} \frac{1}{x} - \frac{1}{a} = \lim_{x \to a} \frac{a - x}{ax} = -\lim_{x \to a} \frac{1}{ax} = -\frac{1}{a^2}.
\]
(iii)
\[\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \lim_{x \to 4} \frac{(x - 4)(x + 4)}{x - 4} \lim_{x \to 4} (x + 4) = 8. \]

(iv)
\[\lim_{x \to \infty} \frac{-x}{\sqrt{x^2 + 2x} + \sqrt{x^2 + 3x}} = -\lim_{x \to \infty} \frac{1}{\sqrt{1 + 2/x} + \sqrt{1 + 3/x}} = -\frac{1}{2}. \]

6. Suppose that \(f(x) > 7 \) for all \(x \) and that \(\lim_{x \to 11} f(x) = \ell \). Prove that \(\ell \geq 7 \). Is it possible that \(\ell = 7 \)?

Solution.
Suppose for a contradiction that \(\ell < 7 \). Let \(\epsilon = 7 - \ell > 0 \). By the definition of limit, there exists \(\delta > 0 \) such that \(0 < |x - 11| < \delta \) implies \(|f(x) - \ell| < \epsilon \). But that means that for such an \(x \), \(f(x) < \ell + \epsilon = 7 \) which contradicts the assumption that \(f(x) > 7 \) for all \(x \).

For the second part its possible. For example you could have
\[f(x) = \begin{cases} 7 + |x - 11| & x \neq 11, \\ 8 & x = 11. \end{cases} \]

7. Find a pair of successive integers so that \(4x^3 - 3x^4 + 1 \) has a zero between them. State the theorem that you are using.

Solution.
We use the Intermediate Value Theorem, which says that if \(f \) is continuous on \([a, b]\) and \(f(a) > 0, f(b) < 0 \) then there is an \(x \in [a, b] \) so that \(f(x) = 0 \).

In our case \(f(1) = 2 > 0 \) and \(f(2) = -15 < 0 \). So there is a 0 between 1 and 2.

8. Give an example of a function that is continuous on \((a, b)\), and bounded above on \((a, b)\) but so that it does not have a maximum value on \((a, b)\). Give the supremum of the values of the function on \((a, b)\).

Solution.
One example is
\[(0, 1) = (a, b), f(x) = x. \]

Then the supremum of the values is 1, but \(f(x) \) is never 1 on \((0, 1)\).