(1) Define the derivative $f'(a)$. Calculate (from the definition) the derivative of $f(x) = 1/x$.

(2) Let

$$f(x) = \begin{cases}
 x^2 \sin(1/x) & x \neq 0 \\
 0 & x = 0.
\end{cases}$$

Find $f'(0)$.

Show all your work! There are 15 problems at 10 points each.
3) Calculate the derivatives of the functions below. You may use that the derivative of $\sin(x)$ is $\cos(x)$.

(a) $(x^2 + x)^{30}(x^3 - x)^{40}$

(b) $\sin(x^2 + \sin(x^2 + \sin(x)))$

(c) $\frac{x^4 + x^2}{\sin(x)}$

(d) $(x^2 + x^{-2})^3$

4) Suppose $f : [0, 1] \to [0, 1]$ is a continuous function defined on the closed interval $[0, 1]$. Prove $f(x) = x$ for some $x \in [0, 1]$.
(5) Prove that if \(f'(a) \) exists, then \(f \) is continuous at \(a \).

(6) Use the **Chain rule** and the **Product rule** to prove the **Quotient rule**: [If \(f'(a), g'(a) \) exists and \(g(a) \neq 0 \) then

\[
(f/g)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}.
\]
(7) Find a pair of successive integers so that \(4x^3 - 3x^4 + 1\) has a zero between them. State the theorem that you are using.

(8) Prove by induction that

\[
1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}.
\]
(9) Find the following limits. In case the limits are ∞ or $-\infty$, indicate.

(a) \[\lim_{x \to 0} \frac{x^2 + x^3}{x} \]

(b) \[\lim_{x \to 0} \frac{x}{x^2 + x} \]

(c) \[\lim_{x \to \infty} \frac{x^2 + 3x^3}{5x^3 + x \sin(x) + 2} \]

(d) \[\lim_{x \to \infty} \sqrt{x^2 + 9x} - \sqrt{x^2 + x} \]

(10) Find an example of two functions f and g, neither of which is continuous on all of \mathbb{R} but such that their composite $f \circ g$ is continuous on all of \mathbb{R}.
(11) Give an example of a function continuous on all of \(\mathbb{R} \) and differentiable at every point except at integers. A careful graph is sufficient. Give a graph of the derivative of the function you produced.

(12) Give an example of a function that is continuous on \((a, b)\), and bounded above on \((a, b)\) but so that it does not have a maximum value on \((a, b)\). Give the supremum of the values of the function on \((a, b)\).

(13) Suppose that \(f \) and \(g \) are even functions. Prove that \(f \cdot g \) is an even function. Suppose that \(f \) and \(g \) are odd functions. Prove that \(f \cdot g \) is even.
(14) Give a direct proof, using ε and δ that $\lim_{x\to 4} \sqrt{x} = 2$.

(15) Answer true or false for each of the below. Supply a short justification if possible.
(a) If $(f + g)'(a)$ exists, then $f'(a)$ and $g'(a)$ exist.
(b) If f is continuous at a then f is differentiable at a.
(c) If f is even and g is odd, then $f \cdot g$ is odd.
(d) If f is continuous and bounded above, then f has a maximum value.
(e) If a set A is bounded above, then it has a maximum element.
(f) If $f(x)$ is a polynomial, then $f(x) = 0$ for some x.
(g) If $A \subseteq \mathbb{Q}$ has an upper bound, then $\sup(A)$ may not be in \mathbb{Q}.
(h) If $f(x)$ is an odd degree polynomial, then $f(x) = 0$ for some x.