
Fields Institute Communications
Volume 00, 0000

On Orthogonal Polynomials in Several Variables

Yuan Xu
Department of Mathematics

University of Oregon
Eugene, Oregon 97403-1222

Abstract. We report on the recent development on the general theory of
orthogonal polynomials in several variables, in which results parallel to the
theory of orthogonal polynomials in one variable are established using a vector-
matrix notation.

1 Introduction

The main theme of this paper is the general theory of orthogonal polynomials
in several variables, which deals with those properties shared by all systems of
orthogonal polynomials. Thus, we shall not discuss the theory of particular systems
and their applications.

Let Πd be the set of polynomials in d variables on Rd, and let Πd
n be the subset

of polynomials of total degree at most n. A linear functional L defined on Πd is
called square positive if L(p2) > 0 for all p ∈ Πd, p 6= 0. Such a linear functional L
induces an inner product on Πd, defined by 〈P,Q〉 = L(PQ). Two polynomials are
said to be orthogonal with respect to L if their inner product is zero.

Given a square positive linear functional, we may apply the Gram-Schmidt
orthogonalization process on the multiple sequence of monomials xα1

1 . . . xαd

d , x =

(x1, . . . , xd) ∈ Rd and αi ∈ N0, to generate a sequence of orthogonal polynomials.
In order to do so, however, it is necessary to order the multiple sequence in a simple
one. There are many ways to do so; in general, different orderings will lead to differ-
ent orthogonal systems. Thus, there is no unique system of orthogonal polynomials
in several variables. Moreover, any system of orthogonal polynomials obtained by
an ordering of the monomials is necessarily unsymmetric in the variables x1, . . . , xd.
These are essential difficulties in the study of orthogonal polynomials in several vari-
ables; they are mentioned in the introductory section of Chapter XII in the Higher
Transcendental Functions (Erdélyi, et al. [1953, p. 265]). On the same page of the
book it is also stated that “there does not seem to be an extensive general theory of
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orthogonal polynomials in several variables”. A brief account of the general prop-
erties of orthogonal polynomials known up to then is summarized in Chapt. XII of
Erdélyi, et al. [1953].

More recent accounts of general theory of orthogonal polynomials in several
variables can be found in Krall and Sheffer [1967], Mysovskikh [1976] and Suetin
[1988]. We will report on progress made in the past few years, from which a pos-
sible extensive general theory may emerge. In the center of this new development
is a vector-matrix notation which helps us to overcome the difficulty caused by the
non-uniqueness of orthogonal polynomials. For each n > 0 the set of polynomials
of degree n that are orthogonal to all polynomials of lower degree froms a vector
space Vn of dimension greater than one. The non-uniqueness of orthogonal polyno-
mials means that there is no unique way of choosing a basis for V d

n . In their work
of extending the characterization of the classical orthogonal polynomials as eigen-
functions of second order differential operators from one to two variables, Krall and
Sheffer [1967] suggested one way to overcome the difficulty; they remarked that if
the results can be stated “in terms of V d

0 , V
d
1 , . . . , V

d
n , . . . rather than in terms of a

particular basis in each V d
n , a degree of uniqueness is restored”. Kowalski [1982a]

and [1982b] used a vector-matrix notation to prove an analog of Favard’s theorem,
but he seemed unaware of the paper of Krall and Sheffer. His theorem is simpli-
fied in Xu [1993a] using a modified vector-matrix notation. The latter notation is
inspired by and very much reflects the principle of Krall and Sheffer; it has been
adopted in further studies of the author Xu [1993b], [1994a-e] and [1994h], upon
which the present report is based.

The paper is organized as follows. The next section is devoted to the notations
and preliminaries. In Section 3, we discuss the three-term relation satisfied by
vectors of orthogonal polynomials and the results around it. The three-term relation
leads us naturally to define a family of block Jacobi matrices, which can be studied
as a commuting family of self-adjoint operators; this connection is covered in Section
4. The zeros of orthogonal polynomials are defined as common zeros of a family
of polynomials, they are related to numerical cubature formulae. In Section 5 we
discuss the basic properties of common zeros and cubature formulae; deeper results
are covered in Section 6. Finally, in Section 7 we discuss the preliminary results
dealing with asymptotics and Fourier orthogonal expansion involving orthogonal
polynomials in several variables.

2 Notations and preliminaries

We use the standard multiindex notation. Let N0 be the set of nonnegative
integers. For α = (α1, . . . , αd) ∈ Nd

0 and x = (x1, . . . , xd) ∈ Rd we write xα =
xα1

1 · · ·xαd

d . The number |α| = α1 + · · · + αd is called the total degree of xα. For

n ∈ N0, we denote by Πd the set of all polynomials in d variables and by Πd
n the

subset of polynomials of total degree at most n; i.e.,

Πd
n =

{

∑

|α|≤n

aαxα : aα ∈ R, x ∈ Rd
}

.

We denote by rd
n the number of monomials of degree exactly n which is equal to

the cardinality of the set {α ∈ Nd
0 : |α| = n}; it follows that

dimΠd
n =

(

n+ d

d

)

and rd
n =

(

n+ d− 1

n

)

.
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For n ∈ N0 and x ∈ Rd, we denote by xn = (xα)|α|=n a vector of size rd
n, where the

monomials are arranged according to the lexicographical order of {α ∈ Nd
0 : |α| =

n}.
A multisequence s : Nd

0 7→ R will be written in the form s = {sα}α∈Nd
0
. Such

a sequence is called positive definite if for every tuple (β(1), . . . , β(r)) of distinct
multiindices β(j) ∈ Nd

0, 1 ≤ j ≤ r, the matrix (sβ(i)+β(j))i,j=1,... ,r has positive
determinant. With each real d-sequence s one can associate a linear functional on
Πd defined by L(xα) = sα. If s is positive definite, we call the associated linear
functional square positive. Since

L(P 2) =
∑

α,β

sα+βaαaβ where P (x) =
∑

α

aαxα,

it follows that L is square positive if, and only if, L(P 2) > 0 for all P ∈ Πd not
identically zero. We remark that we do not deal with semi square positive which
requires only L(P 2) ≥ 0; see Fuglede [1983] and Berg [1987] for discussion. Let
M = M(Rd) denote the set of nonnegative Borel measures µ, defined on the σ-
algebra of Borel sets, with an infinite support on Rd such that

∫

Rd

|xα| dµ(x) < +∞ , ∀ α ∈ Nd
0 .

For any µ ∈ M the moments of µ are defined as the real numbers sα =
∫

Rd xαdµ. A
d-sequence s = (sα) is called a moment sequence if there exists at least one measure
µ whose moments are equal to sα for all α ∈ Nd

0. If s is a moment sequence, the
corresponding linear functional L is called a moment functional, which has an
integral representation

L(f) =

∫

Rd

f(x) dµ(x) , µ ∈ M . (2.1)

Two measures in M are called equivalent if they have the same moments. If the
equivalent class of measures having the same moments as µ consists of µ only,
the measure µ is called determinate. If L is a moment functional of a determined
measure, then the integral representation is unique. It is known that L is a moment
functional if it is positive, which means that L(P ) ≥ 0 whenever P ≥ 0. For d = 1,
L being positive is equivalent to L(P 2) ≥ 0. For d > 1, however, they are no longer
equivalent, which is, in fact, the cause of many problems in the multidimensional
moment problem (cf. Berg [1983], Berg and Thill [1991] and Fuglede [1983]).

A square positive linear functional L induces an inner product 〈·, ·〉 on Πd

defined by

〈P,Q〉 = L(PQ), P,Q ∈ Πd.

For convenience, we shall always assume that L(1) = 1. Two polynomials P and Q
are said to be orthogonal with respect to L, if 〈P,Q〉 = 0. With respect to such an
L we apply the Gram-Schmidt orthogonalization process on the monomials {xα}
arranged as {xn}∞n=0 to derive a sequence of orthonormal polynomials, denoted by

{Pn
k }

rd
n

k=1
∞
n=0, where the superscript n means that Pn

k ∈ Πd
n. We now introduce the

vector notation that is fundamental in the development below:

Pn(x) =
[

Pn
1 (x), Pn

2 (x), . . . , Pn
rd

n
(x)
]T
. (2.2)
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Using this notation, the orthonormality property of {Pn
k } can be described as

L(PnPT
m) = δm,nIrd

n
, (2.3)

where In denotes the n×n identity matrix. For convenience, we sometimes call Pn

orthonormal polynomials with respect to L. When L has an integral representation
(2.1) with dµ = W (x)dx, we call Pn orthonormal polynomials with respect to W
instead of to L. In terms of monomial vectors xn, we can write Pn as

Pn = Gnxn +Gn,n−1x
n−1 +Gn,n−2x

n−2 + . . . (2.4)

where Gn,i : rd
n × rd

n−i are matrices. We call Gn = Gn,n the leading coefficient of
Pn, which can be seen to be invertible since L is square positive.

For each k ≥ 0, let V d
k ⊂ Πd

k be the set of polynomials spanned by Pk, that is,
spanned by the components of Pk, together with zero. Then V d

k is a vector space
of dimension rd

k which is orthogonal to all polynomials in Πd
k−1. Clearly

Πd
n =

n
⊕

k=0

V d
k and Πd =

∞
⊕

k=0

V d
k ,

and V d
k are mutually orthogonal. As we mentioned before, the sequence of orthonor-

mal polynomial is not unique. Actually, it is easy to see that each orthogonal matrix
Q of order rd

k gives rise to an orthonormal basis QPk of V d
k and every orthonormal

basis of V d
k is of the form QPn. One can also work with other bases of Vk that are

not necessarily orthonormal. In particular, one basis consists of polynomials P̃ k
α of

the form

P̃ k
α = xα +Rk−1

α , |α| = k, Rk−1
α ∈ Πd

k−1.

This basis is sometimes called monomial basis; in general, L(P̃ k
α P̃

k
β ) 6= 0, although

P̃ k
α are orthogonal to all polynomials of lower degrees. It is easy to see that the

matrix Hn = L(P̃nP̃T
n ) is positive definite and P̃n = H

−1/2
n Pn. Because of the

relation, most of the results below can be stated in terms of the monomial basis.
We should mention that one can define orthogonal polynomials with respect to
linear functionals that are not necessarily square positive. However, the square
positiveness is necessary for obtaining orthonormal polynomials.

For a square positive linear functional expressible by (2.1), we can consider
the orthogonal expansion of a function f ∈ Ldµ. Using the vector notation Pn,
the Fourier orthogonal expansion of f with respect to a sequence of orthonormal
polynomials {Pn

k } is given by

f ∼

∞
∑

n=0

aT
n (f)Pn, an(f) =

∫

f(x)Pn(x)dµ (2.5)

where an is a vector of Rrd
n . If we replace aT

nPn by projVn
f , then the expansion

can be viewed as in terms of the V d
n and is independent of the particular basis of

V d
n . In fact, the n-th reproducing kernel of the orthonormal polynomials, defined

by

Kn(x,y) =

n−1
∑

k=0

rd
k
∑

j=0

P k
j (x)P k

j (y) =

n
∑

k=0

PT
n (x)Pn(y), (2.6)
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is easily seen to depend on V d
k rather than a particular basis of V d

k . The n-th partial
sum Snf of the expansion can be written in terms of Kn(·, ·) as

Snf =
n−1
∑

k=0

aT
k (f)Pk =

∫

Kn(·,y)f(y)dµ. (2.7)

From time to time, we may use results for orthogonal polynomials in one vari-
able for motivation or comparison. We follow the standard notation in one variable
(cf. Szegő [1975] and Chihara [1978]). The orthonormal polynomial of degree n on
R is denoted by pn. The three-term relation satisfied by pn is denoted by

xpn = anpn+1 + bnpn + an−1pn−1, x ∈ R, (2.8)

where an and bn are called the coefficients of the three-term relation.

3 Three-term relation

Our development of a general theory of orthogonal polynomials in several vari-
ables starts from a three-term relation in a vector-matrix notation very much like
in the one variable theory.

Three-term relation. For n ≥ 0, there exist matrices An,i : rd
n × rd

n+1 and

Bn,i : rd
n × rd

n, such that

xiPn = An,iPn+1 +Bn,iPn +AT
n−1,iPn−1, 1 ≤ i ≤ d, (3.1)

where we define P−1 = 0 and A−1,i = 0.

In fact, since the components of xiPn are polynomials of degree n+ 1, they can be
written in terms of linear combinations of Pn+1, . . . ,P0; the orthonormal property
of Pn implies that only the coefficients of Pn+1, Pn and Pn−1 are nonzero. The
result is the relation (3.1). Moreover, the matrices in the three-term relation are
expressible as

An,i = L(xiPnPT
n+1) and Bn,i = L(xiPnPT

n ). (3.2)

As a consequence, the matrices Bn,i are symmetric. If we are dealing with orthog-

onal polynomials, P̃n, which are not necessarily orthonormal, then the three-term
relation takes the form

xiP̃n = An,iP̃n+1 +Bn,iP̃n + CT
n,iP̃n−1, 1 ≤ i ≤ d, (3.3)

where Cn,i : rd
n × rd

n−1 is related to An,i by

An,iHn+1 = HnCn+1,i, where Hn = L(P̃nP̃T
n ).

Moreover, comparing the highest coefficient matrices at both sides of (3.1), it follows
that

An,iGn+1 = GnLn,i, 1 ≤ i ≤ d, (3.4)

where Ln,i are matrices of size rd
n × rd

n+1 which are defined by

Ln,ix
n+1 = xix

n, 1 ≤ i ≤ d.
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Clearly, rankLn,i = rd
n, and rankLn = rd

n+1, where Ln = (LT
n,1| . . . |L

T
n,d)

T . For
example, for d = 2 we have

Ln,1 =







1 © 0
. . .

...
© 1 0






and Ln,2 =







0 1 ©
...

. . .

0 © 1






.

From the relation (3.4) and the fact that Gn is invertible, it follows readily that
the matrices An,i satisfy

Rank conditions. For n ≥ 0, rankAn,i = rd
n for 1 ≤ i ≤ d, and

rankAn = rd
n+1, An = (AT

n,1, . . . , A
T
n,d)

T . (3.5)

The importance of the three-term relation is readily seen in the following analog
of Favard’s theorem of one variable. We extend the notation (2.2) to an arbitrary

sequence of polynomials {Pn
k }

rd
n

k=1.

Theorem 3.1 (Xu [1993a]). Let {Pn}
∞
n=0, P0 = 1, be a sequence in Πd. Then

the following statements are equivalent:
1. There exists a linear functional which is square positive and which makes

{Pn}
∞
n=0 an orthonormal basis in Πd;

2. there exist matrices An,i : rd
n × rd

n+1 and Bn,i : rd
n × rd

n such that
(1) the polynomial vectors Pn satisfy the three-term relation (3.1),
(2) the matrices in the relation satisfies the rank condition.

An earlier version of this theorem is stated in Kowalski [1982b] with respect to
the three-term relation (3.3) using the notation xPn = [x1PT

n | . . . |xdPT
n ]T , where it

is stated under an additional condition in part 2:
(3) for an arbitrary sequence D0, D1, . . . , Dn of matrices satisfying DkAk

= I, the recursion

J0 = [1], Jk+1 = Dk(Ck+1,1J
T
k | . . . |Ck+1,1J

T
k )T , k = 0, 1, . . . ,

produces nonsingular symmetric matrices Jk.
In Xu [1993a], the theorem is stated in the present form with respect to the three-
term relation (3.3), where it is proved that the condition (3) is equivalent to that
rankCn = rd

n, here Cn = (Ck,1| . . . |Ck,d). The theorem in its present form for
orthonormal polynomials is stated in Xu [1994a] for the first time.

The theorem is an analog of Favard’s theorem in one variable, but it is not
as strong as the classical Favard’s theorem. It does not state, for example, when
the linear functional L in the theorem will have an integral representation. We
will address this question in the following section. For now, we concentrate on the
three-term relation (3.1). It is an analog of the three-term relation in one variable;
the fact that its coefficients are matrices reflect the complexity of the structure for
d ≥ 2.

In one variable, the sequence of orthogonal polynomials {pn} can also be viewed
as a solution of the difference equation

yn+1 = a−1
n (xyn − bnyn − an−1yn−1), (3.6)

with initial values p0 = 1 and p1 = a−1
1 (x − b0). In particular, the three-term

relation is also called recurrence relation, since pn can be computed recursively
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through such an relation. It follows trivially that all solutions of (3.6) satisfy the
three-term relation (2.8).

To derive an analog of (3.6) in several variables, we first note that the rank
condition (3.5) implies that there exists a matrix DT

n : rd
n+1 × d rd

n, which we write

as DT
n = (DT

n,1| . . . |D
T
n,d) where Dn,i are of size rd

n × rd
n+1, such that

DT
nAn =

d
∑

i=1

DT
n,iAn,i = Ird

n+1
. (3.7)

We note that such a Dn is not unique, as can be seen from the singular value
decomposition of An. Multiplying the three-term relation (3.1) from the left by
DT

n,i and summing up the d relations, we derived that Pn satisfies a recurrence
relation

Pn+1(x) =

d
∑

i=1

DT
n,ixiPn(x)−

(

d
∑

i=1

DT
n,iBn,i

)

Pn(x)

−

(

d
∑

i=1

DT
n,iA

T
n−1,i

)

Pn−1(x) (3.8)

where P−1 = 0, P0 = 1. For any given sequences An,i and Bn,i, the relation
(3.8) can be used to define a sequence of polynomials. However, in contrast to one
variable, polynomials so defined may not satisfy the three-term relation (3.1), since
(3.8) cannot be split into d relations (3.1) in general. The question is answered by
the following theorem.

Theorem 3.2 (Xu [1994c]) Let {Pk}
∞
k=0 be defined by (3.8). Then {Pk}

∞
k=0

satisfies the three-term relation (3.1) if, and only if, Bk,i are symmetric, Ak,i satisfy
the rank condition (3.5), and together they satisfy the commuting conditions

Ak,iAk+1,j = Ak,jAk+1,i , (3.9a)

Ak,iBk+1,j +Bk,iAk,j = Bk,jAk,i +Ak,jBk+1,i , (3.9b)

AT
k−1,iAk−1,j +Bk,iBk,j+Ak,iA

T
k,j

= AT
k−1,jAk−1,i +Bk,jBk,i +Ak,jA

T
k,i (3.9c)

for i 6= j, 1 ≤ i, j ≤ d, and k ≥ 0, where A−1,i = 0.

In one variable, one can start with a sequence of positive numbers an and an arbi-
trary sequence of real numbers bn, use (3.6) to generate a sequence of polynomials,
which is then automatically a sequence of orthogonal polynomials by Favard’s the-
orem. For d ≥ 2, such an approach is no longer feasible according to Theorem 3.2,
since it is very difficult to tell when matrices will satisfy the commuting conditions
(3.9). The reason why we call the equations in (3.9) commuting conditions will
become clear in the next section. The necessity of these conditions follows easily
from the fact that there are two ways to compute L(xixjPnPT

n ), L(xixjPnPT
n+1)

and L(xixjPnPT
n+2) using the three-term relation. The sufficiency part is long and

quite complicated, we refer to Xu [1994c].
In view of (3.6), we can also look at Pn as the solution of the multiparameter

difference equations

xiYk = Ak,iYk+1 +Bk,iYk +AT
k−1,iYk−1 , 1 ≤ i ≤ d, k ≥ 1, (3.10)
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with the initial values

Y0 = 1, Y1 = A−1
0 (x −B0). (3.11)

For d = 1, the difference equation (3.6) has two linearly independent solutions.
One is {pn}, which corresponds to the initial values y0 = 1 and y−1 = 0, another
is usually denoted by {qn}, which corresponds to the initial values y0 = 0 and
y−1 = 1. The polynomials qn are usually called the associated polynomials, or
polynomials of the second kind. They play an important role in areas such as prob-
lem of moments, spectral theory of the Jacobi matrices, and continuous fractions
(cf. Akheizer [1965]). For the multiparameter difference equations, one may easily
guess that there will be d+1 linearly independent solutions. However, the following
theorem says that Pn is essentially the only possible solution.

Theorem 3.3 (Xu [1994e]) If the multiparameter difference equation (3.10)
has a solution P = {Pk}

∞
k=0 for the particular initial value (3.11), then all other

solutions of (3.10) are multiples of P with the possible exception of the first compo-
nent. More precisely, if Y = {Yn}

∞
n=0 is a solution of (3.11), then Yn = hPn for all

n ≥ 1, where h is a function independent of n.

The theorem comes out somewhat surprising, especially in view of the important
role played by the associated polynomials in one variable. It indicates that it is
much harder to extract information from the three-term relation (3.1) for d ≥ 2.

Among other consequences of the three-term relation, we mention an extension
of the Christoffel-Darboux formula of one variable. Let Kn(·, ·) be the reproducing
kernel defined in (2.6). Then we have (Xu [1993a])

Christoffel-Darboux formula: For n ≥ 1, 1 ≤ i ≤ d,

Kn(x,y) =
[An−1,iPn(x)]T Pn−1(y) − PT

n−1(x)[An−1,iPn(y)]

xi − yi
. (3.12)

It is interesting to note that although the right hand side of the formula seems
to depend on i, the left hand side shows that it does not. Because of (2.6), the
Christoffel-Darboux formula is important in the study of Fourier orthogonal series.
It also plays an important role in the study of the common zeros of orthogonal
polynomials.

4 Block Jacobi Matrices

For d = 1, the linear functional in Favard’s theorem is known to be given by
an integral with respect to dφ, where φ is a non-decreasing function with infinite
support. There are several ways to establish this result, one of them uses the
spectral theorem of self-adjoint operators. With the three-term relation (2.8) of
one variable we associate a tridiagonal matrix J , customarily called the Jacobi
matrix, with an on the main diagonal and bn on the two subdiagonals, that acts
as an operator on ℓ2 (cf. Stone [1932]). This matrix has been studied extensively
in operator theory and it plays a very important role in the study of orthogonal
polynomials in one variable.
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For d ≥ 1, the coefficients of the three-term relation (3.1) can be used to define
a family of block tridiagonal matrices (Xu [1994a]),

Ji =













B0,i A0,i ©
AT

0,i B1,i A1,i

AT
1,i B2,i

. . .

©
. . .

. . .













, 1 ≤ i ≤ d. (4.1)

We call them block Jacobi matrices. These matrices can be viewed as a family
of linear operators which act via matrix multiplication on ℓ2. The domain of Ji

consists of all sequences in ℓ2 for which matrix multiplication yields sequences in ℓ2.
Under proper conditions, the matrices Ji form a family of commuting self-adjoint
operators, which will yield via spectral theorem that L in Theorem 3.1 has an
integral representation. In order to proceed, we need some notion from the spectral
theory of self-adjoint operators in a Hilbert space (cf. Riesz and Nagy [1955]).

Let H be a separable Hilbert space. Each self-adjoint operator T in H associates
with a spectral measure E on R such that T =

∫

xdE(x). E is a projection valued
measure defined for the Borel sets of R such that E(R) is the identity operator
in H and E(B ∩ C) = E(B) ∩ E(C) for Borel sets B,C ⊆ R. For any f ∈ H
the mapping B → 〈E(B)f, f〉 is an ordinary measure defined for the Borel sets
B ⊆ R and denoted 〈Ef, f〉. A family of operators {T1, . . . , Td} in H commutes,
by definition, if their spectral measures commute, i.e. Ei(B)Ej(C) = Ei(C)Ej(B)
for any i, j = 1, . . . , d and any two Borel sets B,C ⊆ R. If T1, . . . , Td commute,
then E = E1⊗· · ·⊗Ed is a spectral measure on Rd with values that are self-adjoint
projections in H. In particular, E is the unique measure such that

E(B1 × · · · ×Bd) = E1(B1) · · ·Ed(Bd)

for any Borel sets B1, . . . , Bd ⊆ R. The measure E is called the spectral measure
of the commuting family T1, . . . , Td. A vector Φ0 ∈ H is a cyclic vector in H with
respect to the commuting family of self-adjoint operators T1, . . . , Td in H if the
linear manifold {P (T1, . . . , Td)Φ0, P ∈ Πd} is dense in H. The spectral theorem
for T1, . . . , Td states

If T1, . . . , Td are a commuting family of self-adjoint operators with a cyclic vec-
tor Φ0, then T1, . . . , Td are unitarily equivalent to the multiplication operators
X1, . . . , Xd ,

(Xif)(x) = xif(x) , 1 ≤ i ≤ d ,

defined on L2(Rd, µ), where the measure µ is defined by µ(B) = 〈E(B)Φ0,Φ0〉
for the Borel set B ⊂ Rd.

The unitary equivalence means that there exists a unitary mapping U : H →
L2(Rd, µ) such that UTiU

−1 = Xi, 1 ≤ i ≤ d.
We apply the spectral theorem on the operators J1, . . . , Jd on ℓ2 defined by

the block Jacobi matrices. The connection to orthogonal polynomials in several
variables is as follows. Let {ψn}

∞
n=0 be the canonical orthonormal basis for ℓ2. We

rewrite this basis as {ψn}
∞
n=0 = {φk

j }
rd

k

j=1
∞
k=0 according to the lexicographical order,

and introduce the formal vector notation Φk = [φk
1 , . . . , φ

k
rd

k

]T , k ∈ N0. Then, if the

spectral theorem can be applied, the unitary mapping U maps Φn to Pn and the
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relation
∫

Pn(x)PT
m(x) dµ(x) = 〈Φn,Φ

T
m〉 , where µ(B) = 〈E(B)Φ0,Φ0〉

establishes the integral representation of L. The main task is therefore to show
that J1, . . . , Jd are commuting and self-adjoint. In Xu [1994a] this is done under
the assumption that J1, . . . , Jd are bounded operators, which also implies that
the support set of the spectral measure is bounded. Moreover, it is shown that
J1, . . . , Jd are bounded if, and only if,

sup
k≥0

‖Ak,i‖2 < +∞ , sup
k≥0

‖Bk,i‖2 < +∞ , 1 ≤ i ≤ d , (4.2)

where ‖ · ‖2 is the matrix norm induced by the Euclidean norm for vectors. Thus,
one can strengthen Favard’s theorem as follows.

Theorem 4.1 (Xu [1994a]) Let {Pn}
∞
n=0, P0 = 1, be a sequence in Πd. Then

the following statements are equivalent:
1. There exists a determinate measure µ ∈ M with compact support in Rd

such that {Pn}
∞
n=0 is orthonormal with respect to µ.

2. The statement 2) in Theorem 3.2 holds together with (4.2).

For bounded self-adjoint operators T1, . . . , Td, the commuting of the spectral
measures is equivalent to the formal commuting TiTj = TjTi. For block Jacobi
matrices, the formal commuting can be easily verified as equivalent to the conditions
in (3.9), which is why we call (3.9) commuting conditions. However, there are
examples (cf. Nelson [1959]) of unbounded self-adjoint operators with a common
dense domain such that they formally commute but their spectral measures do not
commute. Fortunately, a sufficient condition for the commuting of operators in
Nelson [1959] can be applied to J1, . . . , Jd, which leads to

Theorem 4.2 (Xu [1993b]) Let {Pn}
∞
n=0, P0 = 1, be a sequence in Πd that

satisfies the three-term relation (3.1) and the rank condition. If

∞
∑

k=0

1

‖An,i‖2
= ∞, 1 ≤ i ≤ d, (4.3)

then there exists a determinate measure µ ∈ M such that {Pn} is orthonormal with
respect to µ.

It is worthwhile to point out that there is a close resemblance between the
above set-up and the operator theoretic approach for moment problems, see Berg
[1987] and Fuglede [1983]. For d = 1, the condition (4.3) is well-known; it implies
the classical result of Carleman on the determinate of moment problem Akheizer
[1965, p. 86]. For discussion of (4.3) in several variables we refer to Xu [1993b]. For
further results concerning the block Jacobi matrices see Xu [1994b]; in particular,
Dombrowski’s formula for orthogonal polynomials of one variable (cf. Dombrowski
[1990]) is extended to several variables in Xu [1994b]. The operator approach
to the orthogonal polynomials in several variables also appears in Gekhtman and
Kalyuzhny [1994].

For d = 1, the perturbation theory of self-adjoint operators can be applied
to study the spectrum of Jacobi matrices, from which one can derive important
results about the spectral measure. This is made possible by Weyl’s theorem,
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which states that the essential spectrum of a self-adjoint operator does not change
when a compact operator is added (cf. Riesz and Nagy [1955, p. 367]), and by
the fact that the difference of two Jacobi matrices with respect to a large class of
measures is a compact operator. The latter fact follows from the following limit
relations on the coefficients of the three-term relation (2.8),

lim
n→∞

an = 1/2, lim
n→∞

bn = 0, (4.4)

which is satisfied by a wide class of measures, including all α ∈ M such that α′ > 0
a.e. and suppα = [−1, 1]. Moreover, the perturbation theorem shows that the
relation (4.4) is a characteristic property of the class of measures in view of the
spectrum. For the importance of the limit relation, we refer to Nevai [1979] and
[1986] and the references given there. However, there seems to be no analog that
plays the role of (4.4) in several variables. In fact, since the sizes of the coefficient
matrices in the three-term relation (3.1) tend to infinity as n goes to infinity, one
can only deal with the limit of ‖An,i‖ or the limit of some other unitarily invariant
characters, such as detGn or ‖G‖, which are related to An,i. It’s highly unlikely
that a limit relation as such will determine the spectrum of a family of block Jacobi
matrices, which can be any geometric region in Rd. In this respect, one interesting
question is to understand the interrelation among the block Jacobi matrices of the
same commuting family, since whether the essential spectrum is, say, a simplex or
a ball has to be reflected as some interrelations.

So far, there is little work done in this direction. This is partly due to the
problem within the operator theory. In fact, there are several definitions of joint
spectrum for a family of commuting operators. Moreover, it is not clear whether
there is a proper perturbation theory. From the discussion above, it is no surprise
that the difference of two block Jacobi matrices from different measures is not a
compact operator in general, which can be easily seen by examining the example of
product measures. It is likely that the non-uniqueness of orthogonal polynomials
plays a role here. For each given measure, the block Jacobi matrices defined above
are unique up to a unitary transformation, which can be ignored when we deal with
the spectral measure. However, when we deal with the difference of two families
of block Jacobi matrices from different measures, the unitary transformation may
play an important role.

Since the block Jacobi matrices can be viewed as a prototype of a family of
commuting operators, the study of them may yield new results in operator theory.

5 Common zeros of orthogonal polynomials

Zeros of a polynomial in d-variables are algebraic varieties of dimension d − 1
or less; they are difficult to deal with for d ≥ 2. Moreover, in dealing with zeros of
orthogonal polynomials, we are mainly interested in the zeros that are real. In one
variable, zeros of orthogonal polynomial are all real and distinct. For orthogonal
polynomials in several variables, however, the right notion seems to be the common
zeros of a family of polynomials. The simplest case is to consider the common zeros
of Pn, or equivalently, zeros of V d

n , which we will deal with in this section.
For d = 1, it is well-known that the zeros of orthogonal polynomials are the

eigenvalues of a truncated Jacobi matrix (cf. Chihara [1978]). It is remarkable that
the same is true in several variables. Let Ji be the block Jacobi matrices in the
previous section. For n ∈ N0, the n-th truncated block Jacobi matrices, denoted
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by Jn,i, are given as follows

Jn,i =















B0,i A0,i ©
AT

0,i B1,i A1,i

. . .
. . .

. . .

AT
n−3,i Bn−2,i An−2,i

© AT
n−2,i Bn−1,i















, 1 ≤ i ≤ d .

We note that Jn,i is a square matrix of order N = dim Πd
n−1. We say that Λ =

(λ1, . . . , λd)
T ∈ Rd is a joint eigenvalue of Jn,1, . . . , Jn,d, if there is an ξ 6= 0,

ξ ∈ RN , such that Jn,iξ = λiξ for i = 1, . . . , d; the vector ξ is called a joint
eigenvector associated to Λ. By a common zero x ∈ Rd of Pn we mean a zero for
every component of Pn, i.e. Pn

j (x) = 0 for all 1 ≤ j ≤ rd
n. The common zeros of

Pn are characterized in the following theorem, which is proved using the three-term
relation (3.1) and the recurrence relation (3.8).

Theorem 5.1 (Xu [1994b]) A point Λ = (λ1, . . . , λd)
T ∈ Rd is a common

zero of Pn if, and only if, it is a joint eigenvalue of Jn,1, . . . , Jn,d; moreover, a
joint eigenvector of Λ is (PT

0 (Λ), . . . ,PT
n−1(Λ))T .

Since all Jn,i are real symmetric matrices, the theorem immediately implies that
common zeros of Pn are all real. Setting both variables in the Christoffel-Darboux
formula as one common zero of Pn, where a standard limiting process is necessary,
it follows readily that one of the partial derivatives of Pn is not identically zero,
which implies that all zeros of Pn are simple. Due to the size of Jn,i, there can be
at most N common zeros of Pn. Moreover, it follows that

Theorem 5.2 (Xu [1994b]) The orthogonal polynomial Pn has N = dimΠd
n−1

distinct real common zeros if, and only if,

An−1,iA
T
n−1,j = An−1,jA

T
n−1,i, 1 ≤ i, j ≤ d. (5.1)

For d = 2, the condition (5.1) is equivalent to a set of conditions derived much
earlier by Mysovskikh [1976] using an entirely different method, where he used
monic orthogonal polynomials and did not use the matrix notation. The theorem
has important applications in numerical cubature formulae.

Common zeros of orthogonal polynomials in several variables are first studied in
connection with cubature formulae, where the word cubature stands for the higher
dimensional quadrature. For a square positive linear functional L, a cubature
formula of degree 2n− 1 is a linear functional

In(f) =

N
∑

k=1

λkf(xk) , λk > 0, xk ∈ Rd, (5.2)

defined on Πd, such that L(f) = In(f) whenever f ∈ Πd
2n−1, and L(f∗) 6= In(f∗)

for at least one f∗ ∈ Π2n. The points x1, . . . ,xN are called nodes and the numbers
λ1, . . . , λN are called weights. Such a formula is called minimal, if N , the number
of nodes, is minimal among all cubature formulae of degree 2n− 1. It is easily seen
(cf. Stroud [1971]) that

N ≥ dim Πd
n−1 (5.3)
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in general. Indeed, if the number of nodes N were less than dimΠd
n−1, then there

would exist a polynomial P ∈ Πd
n−1 vanishing on all nodes, which would then imply

that L(P 2) = 0. We call formulae attaining the lower bound (5.3) Gaussian, since
for d = 1 these are the Gaussian quadrature formulae.

The problem of the existence of Gaussian cubature formulae was raised by
Radon [1948]. The important contributions are made by, among others, Mysovskikh
and his school (cf. Mysovskikh [1981]) and Möller ([1976] and [1979]). Let Pn be
the vector of orthonormal polynomials with respect to L. The following important
theorem is due to Mysovskikh.

Theorem 5.3 (Mysovskikh [1976]) A Gaussian cubature formula exists if and
only if Pn has N = dimΠd

n−1 common zeros.

Since matrix multiplication is not commutative, it is evident from Theorem 5.2
that Pn does not have N = dimΠd

n−1 common zeros in general, which means that
Gaussian cubature formulae do not exist in general. In his ground-breaking work on
minimal cubature formulae, Möller [1976] showed that there is an improved lower
bound for the number of nodes. For d = 2 this bound states, in the formulation of
Xu [1994h], that

N ≥ dimΠ2
n−1 +

1

2
rank(An−1,1A

T
n−1,2 − An−1,2A

T
n−1,1), (5.4)

which agrees with the lower bound (5.3) if and only if the Gaussian cubature formula
exists. Moreover, Möller proved a surprising result which, for d = 2, states that

Theorem 5.4 (Möller [1976]) For a centrally symmetric linear functional L
the lower bound (5.4) holds with

rank(An−1,1A
T
n−1,2 −An−1,2A

T
n−1,1) = [n/2]. (5.5)

A linear functional L on Πd is called centrally symmetric if it satisfies

L(xα) = 0, α ∈ Nd, |α| = odd integer.

In the case that L is given by (2.1) with a weight function W , the central symmetry
of L means that

x ∈ Ω ⇒ −x ∈ Ω and W (x) = W (−x),

where Ω ⊂ Rd is the support set of W . Examples of centrally symmetric weight
functions include the product weight functions W (x, y) = w(x)w(y), where w is a
symmetric function on a symmetric interval [−a, a], and the radial weight functions
W (x) = w(‖x‖) on Euclidean balls centered at origin. In terms of the three-term
relation (3.1), it is shown in Xu [1994h] that

a square positive linear functional L is centrally symmetric if, and only if,
Bn,i = 0 for all n ∈ N0 and 1 ≤ i ≤ d.

For d > 2, analogs of the lower bound (5.4) and the rank condition (5.5) are
also given by Möller [1976] and [1979], see also Xu [1994h] where the bound is
proved under the condition Bn,iBn,j = Bn,jBn,i. Moreover, the condition (5.5) has
also been shown to be true for several families of non-centrally symmetric functions
(Berens et al. [1995a] and Xu [1994g]). Whether the bound in (5.4) can be attained
will be discussed in the following section. For now, we give a positive example in
which the lower bound in (5.3) is attained.
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From the result of Mysovskikh and Möller, it becomes clear that Gaussian cu-
bature must be rare and there is no Gaussian cubature for most of the classical
weight functions. In Mysovskikh and Chernitsina [1971], a Gaussian cubature for-
mula of degree 5 is constructed numerically, which answers the original question of
Radon. One natural question is whether there exists a weight function for which
Gaussian cubature formulae exist for all n. The question is answered only recently
in Berens et al. [1995b] and Schmid and Xu [1994], where two families of weight
functions that admit Gaussian cubature formulae are given for d = 2 in Schmid
and Xu [1994] and d ≥ 2 in Berens et al. [1995b]. We describe the results below

We need to recall the definition of symmetric polynomials. A polynomial P ∈
Πd is called symmetric, if P is invariant under any permutation of its variables. In
particular, the degree of P , considered as a polynomial of variable xi, 1 ≤ i ≤ d,
remains unchanged, we denote it by τ(P ). The elementary symmetric polynomials
in Πd are defined by

uk := uk(x1, . . . xd) =
∑

1≤i1<...<ik≤d

xi1 · · ·xik
, k = 1, 2, . . . , d,

and any symmetric polynomial P can be uniquely represented as
∑

α1+α2+···+αd≤τ(P )

cα1,... ,αn
uα1

1 · · ·uαd

d ;

where τ(P ) is the degree of P . Let x = (x1, x2, . . . , xd)
T and u = (u1, u2, . . . , ud)

T ,
where uk be the k-th symmetric polynomials in x1, . . . , xd. We consider the map-
ping x 7→ u. The Jacobian of u = u(x) can be expressed as

J(x) := det
∂u

∂x
=

∏

1≤i<j≤d

(xi − xj).

Since J2 is a symmetric polynomial, we shall further use the notation ∆(u) :=
J2(x). Let D = {x ∈ Rd : x1 < x2 < . . . < xd}. We define R to be the image of
D under the mapping x 7→ u; i.e., R = u(D). Let µ be a nonnegative measure on
R with finite moments and infinite support on R. We define a measure dν(u) on
R ⊂ Rd by dν(u) = dµ(x) := dµ(x1) · · · dµ(xd); i.e. ν is the image of the product
measure under the mapping x → u.

Theorem 5.5 (Berens et al. [1995b]) Let ν be defined as above. The orthogonal

polynomials Pn with respect to the measure [∆(u)]
1
2 dν(u) or [∆(u)]−

1
2 dν(u) have

N = dimΠd
n−1 many common zeros. Consequently, there exist Gaussian cubature

formulae for these measures.

In fact, the above construction uses the structure of the tensor product of orthogonal
polynomials and quadrature formulae. The tensor product is usually not suitable
for generating cubature formulae, since the degree of the polynomials tends to be
too high; however, the symmetric mapping x 7→ u maps the tensor product into
a system of polynomials with proper degree. For example, let {pn}

∞
n=0 be the

orthonormal polynomials with respect to dµ. Then for α = (α1, . . . , αd), 0 ≤ α1 ≤
. . . ≤ αd = n, the polynomials Pn

α defined by,

Pn
α (u) =

∑

β∈{1,2,... ,d}

pα1(xβ1) · · · pαd
(xβd

),
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where Σ is over all permutation β, are orthogonal with respect to [∆(u)]−
1
2 dν(u).

For α = (α1, . . . , αd), 0 ≤ α1 < . . . < αd = n+ d− 1 and n ∈ N0,

Pn
α (u) =

V n
α (x)

J(x)
, V n

α (x) = det(pαi
(xj))

d
i,j=1.

are orthogonal with respect to [∆(u)]
1
2 dν(u). From this point of view, the symmet-

ric orthogonal polynomials so defined are the most natural extensions of orthogonal
polynomials in one variable.

Questions on cubature formulae of degree 2n−1 can also be asked for cubature
formulae of degree 2n−2. Although there are interesting examples that distinguish
the cubature formulae of even degree from those of odd degree, the theorems are of
the similar nature. We will not go into details, but refer to the results in Schmid
[1978], Xu [1994d] and [1994h].

6 Common zeros and cubature formulae

After the discussion in the previous section, it is natural to ask how many
common zeros Pn can have if it does not have dimΠd

n−1 many. The answer, however,
is a little surprising; the following result is proved in Xu [1994h]:

Let L be centrally symmetric. If n is an even integer, then Pn has no common
zero; if n is an odd integer, then Pn has the origin as the only common zero.

This result indicates that it is often too much to ask for common zeros of all
polynomials of Pn, or all polynomials in V d

n . Instead, one might look for common
zeros of a part of V d

n , such as common zeros of Ud
n spanned by

UT Pn, where U : rd
n × (rd

n − σ)

where the matrix U has full rank rd
n − σ. Such a consideration is important in

the study of cubature formula. Möller [1976] characterized the minimal cubature
formulae that attain his lower bound (5.4). The nodes are shown to be common
zeros of UT Pn for some U with σ = [n/2]. His characterization is derived under
the assumption that the span of {xUT Pn, yU

T Pn} contains r2n+1 many linearly

independent polynomials of degree n + 1; in other words, that UT Pn generates
the polynomial ideal that consists of all polynomials vanishing on the nodes of the
cubature formula. Roughly speaking, such an assumption requires that Un contains
at least half of the polynomials in V d

n ; and to attain the lower bound (5.4), Un has
to have almost exactly half of the polynomials in V d

n .
Clearly, such an assumption may not be satisfied in general. Indeed, the lower

bound (5.4) is known to be attained only in a few cases (cf. Möller [1976], Morrow
and Patterson [1978] and Cools and Schmid [1989]), and it has been shown to
be not attainable for various classical weight functions (cf. Morrow and Patterson
[1978], Verlinden and Cools [1992] and Cools and Schmid [1993]). When a cubature
formula has more nodes than the lower bound (5.4), Un will have fewer polynomials
in V d

n and the nodes of the cubature formula will be determined as common zeros
of UT Pn and some polynomials of degree greater than n; together they span the
ideal determined by the nodes. Among these polynomials, those of degree n+1 are
necessarily orthogonal to polynomials of degree n − 2, since the cubature formula
is of order 2n − 1. They are what we would call quasi-orthogonal polynomials of
order 2. In general, polynomials that determine the nodes of a cubature formula
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may involve quasi-orthogonal polynomials of higher order and several consecutive
degrees higher than n. The above consideration motivates the study of common
zeros of a set of quasi-orthogonal polynomials in Xu [1994h].

For fixed n, we denote the vector of quasi-orthogonal polynomials of degree
n+ s, which are orthogonal to polynomials in Πd

n−1−s, as

Qn+s = Pn+s + Γ1,sPn+s−1 + . . .+ Γ2s,sPn−s.

In Xu [1994h], the common zeros of the polynomials in the set

Qr = {UT
0 Pn, U

T
1 Qn+1, . . . , U

T
r Qn+r,Qn+r+1}, (6.1)

are studied, where Uk, 0 ≤ k ≤ r, are matrices such that

Uk : rd
n+k × rd

n+k − σk, rankUk = rd
n+k − σk, σk ≥ 0.

We note that if Uk is the identity matrix, then the set of common zeros of Qr will be
the same as that of Qr−1. If a cubature formula is based on the zeros of Qr, then we
say that the cubature formula is generated by the zeros of Qr. Moreover, we call Qr

maximal, if for 1 ≤ k ≤ r every polynomial in Πd
n+k vanishing on all the common

zeros of Qr belongs to the linear space spanned by UT
0 Pn, U

T
1 Qn+1, . . . , U

T
n+kQn+k.

The main result in Xu [1994h] characterizes the common zeros of Qr that gener-
ates cubature formulas in terms of the nonlinear matrix equations satisfied by the
matrices Γi and Vk, where Vk are orthogonal compliments of Uk, defined by

UT
k Vk = 0, Vk : rd

n × σk.

The statement in the general case is rather complicated, we shall restrict ourselves
to the case r = 0, where we deal with

Q0 = {UT Pn,Qn+1}, Qn+1 = Pn+1 + Γ1Pn + Γ2Pn−1, (6.2)

and we write U and V instead of U0 and V0 in this case. we have

Theorem 6.1 (Xu [1994h]) The set Q0 = {UT Pn,Qn+1} is maximal and it
has dimΠd

n−1+σ many pairwise distinct real zeros that generate a cubature formula

of degree 2n− 1 if, and only if, there exists V such that UTV = 0,

Γ2 =

d
∑

i=1

DT
n,i(I − V V T )AT

n−1,i, (6.3)

and Γ1 and V satisfy the following conditions:

An−1,i(V V
T − I)AT

n−1,j = An−1,j(V V
T − I)AT

n−1,i, 1 ≤ i, j ≤ d, (6.4)

(Bn,i −An,iΓ1)V V
T = V V T (Bn,i − ΓT

1 A
T
n,i), 1 ≤ i ≤ d, (6.5)

and

V V TAT
n−1,iAn−1,jV V

T + (Bn,i −An,iΓ1)V V
T (Bn,j − ΓT

1 A
T
n,j)

= V V TAT
n−1,jAn−1,iV V

T + (Bn,j −An,jΓ1)V V
T (Bn,i − ΓT

1 A
T
n,i) (6.6)

for 1 ≤ i, j ≤ d.
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There is an analogous theorem for Qr with many more matrix equations that
involve Γi,k and Vk. The lower bound (5.4) is attained if and only if Γ1 = 0 and σ =
[n/2] in the above theorem; this special case has been treated by Möller. However,
in the present general form, the theorem does not deal with just minimal cubature
formulae; in fact, it characterizes every (positive) cubature formula generated by
Q0. With the additional Γ1 and the flexibility on the value of σ, it is likely that the
equations (6.4)–(6.6) are solvable even if the special case that (5.4) is attained is not
solvable. Still, there is no warrant that the system of equations is always solvable;
the question depends on the coefficient matrices of the three-term relation. When
the system is not solvable, one needs to consider Qr for r ≥ 1.

In Xu [1994h], the sufficiency part of (6.3)–(6.6) in the theorem is contained
in two theorems, Theorem 4.1.4, which characterizes the common zeros of Q0, and
Theorem 4.4.3, which established the existence of the cubature formula, necessarily
positive, generated by the common zeros. The first theorem also contains a state-
ment of the necessity part which, however, has an error; namely, the clause that
generates a cubature formula of degree 2n− 1 is missing. The same clause should
also be added to the statement of Theorem 7.1.4 in Xu [1994h] which deals with Qr

in general. The necessity part is the easier half; we give a complete proof below.

Proof of the necessity part of Theorem 6.1. Since xk generates a cubature
formula, the linear functional In(f) in (5.2) is square positive. Moreover, that Q0

is maximal implies that the matrix In(PnPT
n ) is of rank σ. Therefore, there exists a

matrix V : rd
n × σ of rank σ such that In(PnPT

n ) = V V T . Since UT Pn(xk) = 0 and
V is of full rank, it follows easily that UTV = 0. For this V we verify the validity
of (6.3)–(6.6) by computing the matrices In(xiPn−1PT

n ) and In(xixjPn−1PT
n−1),

In(xiPnPT
n ) and In(xixjPnPT

n ), respectively. Since the cubature formula is of de-
gree 2n − 1, it follows readily that In(Pn−1PT

n ) = L(Pn−1PT
n ) = 0. Moreover,

since Qn+1 vanishes on xk, it follows that In(Qn+1PT
n ) = 0. Therefore, using the

three-term relation and the definition of Qn+1, we have, for example,

In(xiPnPT
n ) =An,iIn(Pn+1PT

n ) +Bn,iIn(PnPT
n )

=An,iIn[(Qn+1 − Γ1Pn − Γ2Pn−1)P
T
n ] +Bn,iIn(PnPT

n )

=(Bn,i −An,iΓ1)V V
T

from which (6.5) follows since the matrix on the left hand side is clearly symmetric.
Other matrices are computed similarly, but the computation involves two ways of
using the three-term relation; the desired equations are simply the consequence
that the two ways should yield the same result. �

In the proof of this direction in Xu [1994h], we assumed that the matrices Sn,i

defined below are symmetric, which can be justified, when the additional clause is
assumed, by computing In(xiPn−1PT

n ) and In(xiPnPT
n ) as in the above proof.

The proof of the other direction of the theorem is long. In Xu [1994h] it is
proved following a approach which is very different from the method introduced for
the special case in Möller [1976] and followed by others (cf. Morrow and Patterson
[1978] and Schmid [1978]). It is interesting to mention that the approach in Xu
[1994h] resembles the approach in one variable very closely (cf. Davis and Rabi-
nowitz [1975] and Xu [1994f]). Assume that (6.4)–(6.6) are satisfied by V0 and Γ1,
then the approach consists of three steps. As the first step, the common zeros are
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shown to be exist as the joint eigenvalues of the matrices Sn,i, defined by

Sn,i =















B0,i A0,i ©
AT

0,i B1,i A1,i

. . .
. . .

. . .

Bn−1,i An−1,iV
© V +A∗T

n−1,i V +B∗
n,iV















, 1 ≤ i ≤ d,

where B∗
n,i = Bn,i − An,iΓ1 and A∗

n−1,i = AT
n−1,i − An,iΓ1. All common zeros are

real, since Sn,i are symmetric according to (6.4) and (6.5), and they are pairwise
distinct, by a modified Christoffel-Darboux formula for

K(0)
n (x,y) = Kn(x,y) + [V +Pn(x)]TV +Pn(y),

where V + = (V TV )−1V T is the generalized inverse of V . It is worthwhile to
point out that the theorem for the special case in Möller [1976] is stated under
the restriction that the zeros are all real, which is removed later in Schmid [1978]
as a consequence of a theorem from real algebraic ideal theory; it is not clear
whether the theorem from the ideal theory can possibly be applied to the present
general setting. Back to the proof of the theorem, the second step shows that the
Lagrange interpolation based on the common zeros of Q0 exists and is unique in
the polynomial subspace Πd

n−1 ∪ span{V +Pn}; moreover, if the common zeros are
denoted by x1, . . . ,xN , then the interpolation polynomial, denoted by Lnf , can be
written down explicitly as

Ln(f,x) =
N
∑

k=1

f(xk)
K

(0)
n (x,xk)

K
(0)
n (xk,xk)

, (6.7)

where the interpolation Ln(f,xk) = f(xk), 1 ≤ k ≤ N , is verified via the modified
Christoffel-Darboux formula. In the third step, the cubature formula generated by
the common zeros is shown to exist by applying the linear functional L on Lnf . As
a by product, it follows readily that the cubature weights are given by the formula

λk = [K(0)
n (xk,xk)]−1,

which are clearly positive and the formula is shown for the first time in Xu [1994h].
It is worthwhile to mention that the Lagrange interpolation polynomials defined
in (6.7) are of interests, since interpolation in several variables is very difficult in
general and compact formulae are rare. For the product Chebyshev polynomials
of the first kind, there exists a well-defined sequence of polynomials Lnf which is
proved in Xu [199xa] to converge to f in weighted Lp norm, 0 < p < ∞, for every
continuous function f .

The theorem gives a complete characterization for the common zeros of Q0

that generates a cubature formula. A central question is whether Q0 always has
enough common zeros for some U and Γ1, which is equivalent to ask whether (6.4)–
(6.6) is always solvable. So far, they are solved only for the product Chebyshev
weight functions, (1 − x2)1/2(1 − y2)1/2 and (1 − x2)−1/2(1 − y2)−1/2, and some
simple weight functions for small n; moreover, the previous efforts are mostly on
the special case that (5.4) is attained, which implies that Γ1 = 0, and there are
a number of negative results for the case. There is reason to be optimistic about
solving (6.4)–(6.6) with some nonzero Γ1, although it is likely that the resulting
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cubature formulae may not be the minimal ones. It should be mentioned that the
system (6.4)–(6.6) in its full generality has not yet been explored.

7 Fourier orthogonal series and asymptotics

As we mentioned in Section 5, there is no analog of the limit relations (4.4) in
several variable. These relations play an important role in proving the asymptotic
relations related to orthogonal polynomials of one variable. Let Kn(·, ·) be the
reproducing kernel function. The function

Λn(x) = [Kn(x,x)]−1,

is called the Christoffel function; it has the following fundamental property.
If L is square positive, then

[Kn(x,x)]−1 = min{L(P 2) : P ∈ Πd
n−1, P (x) = 1}

For d = 1, this function plays a significant role in the study of orthogonal poly-
nomials of one variable, which we refer to the extensive survey Nevai [1986]. The
limit relation (4.4) is used in proving the following important property of λn, the
usual notation for Λn in d = 1,

lim
n→∞

nλn(x) = πα′(x)(1 − x2)1/2 a.e. x ∈ [−1, 1]

for measures α belonging to Szegő’s class, i.e., logα′(cos t) ∈ L1[0, 2π] (Máté et
al. [1991]). Such a relation, like many other limit relations involving orthogonal
polynomials on the real line, is proved by first establishing an analogous result for
orthogonal polynomials on the unit circle, then coming back to the real line by
using the so-called ∗-transform in Szegő’s theory. Although part of Szegő’s theory
undoubtly can be extended to the setting in several complex variables, a moment
reflection shows that ∗-transform as a bridge between the real and the complex
does not extend to several variables. So far, only very limited effort has been put
into proving the limit relation in several variables; namely, certain product weight
functions in Xu [1995] and the radial weight function (1 − |x|2)α on the unit ball
in Bos [1994]. In general, for Λn(·) associated with orthogonal polynomials with
respect to W , the limit relation should take the form

lim
n→∞

(

n+ d

d

)

Λn(x) = Cd(x)W (x)

where Cd is independent of W . For the product weight functions in Xu [1995], we
have Cd(x) = 1/W0(x) where W0 is the product Chebyshev weight function of the
first kind,

W0(x) =
1

πd

1
√

1 − x2
1

· · ·
1

√

1 − x2
d

, x = (x1, . . . , xd) ∈ [−1, 1]d;

for the radial weight function (1 − |x|2)α on the unit ball in Rd, we have that
Cd(x) = cd/(1 − |x|2)−1/2 where cd is a constant chosen so that the integral of Cd

is 1. One interesting remark is that for the weight function (1 − |x|2)α the limit

lim
n→∞

1
(

n+d−1
d−1

)PT
n (x)Pn(x) =

1

Cd(x)W (x)
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exists, which is not true for d = 1, where the asymptotic of pn is much more com-
plicated. Of course, with PT

nPn we are dealing with a sum instead of an individual
term.

On the other hand, the order of Λn as n goes to infinity is enough to give
a sufficient condition for the convergence of orthogonal series. For many weight
functions with compact support, it is shown in Xu [1995] that Λn(x) = O(n−d).
The sufficient condition for the convergence of Sn(f) is derived using the L2 theory
as in the case of d = 1 (cf. Nevai [1986]). As an example, we give one of the
consequences as follows.

Theorem 7.1 (Xu [1995]) Let µ ∈ M(Rd), suppµ = [−1, 1]d, and suppose
that [ndΛn(x)]−1 is bounded uniformly on a subset ∆ of [−1, 1]d. Suppose f ∈
C [d/2]([−1, 1]d) and each of its [d/2]-th derivatives satisfies

|D[d/2]f(x) −D[d/2]f(y)| ≤ chβ , |x − y| ≤ h,

where for odd d, β > 1/2, and for even d, β > 0. Then Sn(f) converges uniformly
and absolutely to f on ∆.

Because of the dependence of the asymptotic order of Λn on the dimension, the
requirement on the class of functions in the theorem becomes stronger for higher
dimension. The use of L2 theory also implies similar results for the first Cesáro
means of the Fourier orthogonal series. These results provide sufficient conditions
for the convergence with little restriction on the class of measures; being so, they
are usually not sharp. To fully understand the expansion of Fourier orthogonal
series, one needs to go back to the reproducing kernel function Kn(·, ·).

For d = 1, the Christoffel-Darboux formula (3.12) provides a compact formula
of Kn(·, ·) that contains only one term. For d ≥ 2, however, the nominator in the
formula (3.12) is a sum of rd

n−1 = O(nd−1) many terms, while the number of terms

in Kn(·, ·) is dimΠd
n−1 = O(nd). In order to understand the behavior of Sn(f), it

is necessary to have a compact formula for Kn(·, ·). The first such compact formula
is given in Xu [1995] for the product Chebyshev weight function of the first kind.
Let x = (cos θ1, . . . , cos θd) and y = (cosφ1, . . . , cosφd). Then we have

for the product Chebyshev weight function W0,

Kn(x,y) =
∑

(ε1,... ,εd)∈{−1,1}d

Dn,d(θ1 + ε1φ1, . . . , θd + εdφd), (7.1)

where the function Dn,d is a divided difference

Dn,d(θ1, . . . , θd) = [cos θ1, . . . , cos θd]Gn,d,

and

Gn,d(cos t) = (−1)[
d−1
2 ]2 cos

t

2
(sin t)d−2

{

cos(n− 1
2 )t, for d even

sin(n− 1
2 )t, for d odd.

In fact, the function Dn,d is the Dirichlet kernel of the ℓ-1 summability of the
multiple Fourier series on Td;

Dn,d(Θ) =
∑

|α|1≤n−1

eiα·Θ, Θ ∈ Td,
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where |α|1 = |α1| + . . . + |αd| for α ∈ Zd. It turns out that the ℓ-1 summability
is very different from the usual summability of the spherical means of multiple
Fourier series. For example, there is no critical index for the Riesz means in the ℓ-1
summability. We refer to Berens and Xu [1995], [1996] and the references there for
the results. Here we just point out that overall the ℓ-1 summability is very much
similar to the summability of Fourier series in one variable, which seems to indicate
that we can expect a summability theory for orthogonal series in several variable
similar to that of one variable. We quote one result here.

Theorem 7.2 (Berens and Xu [1996]) For W0, the Cesàro (C, 2d− 1) means
of Sn(f) define a positive operator; the order of summability is best possible in the
sense that the (C, δ) means are not positive for 0 < δ < 2d− 1.

For d = 1 this is Fejér’s theorem which states that the arithmetic means of the
Fourier partial sum is positive. The proof of the theorem uses an inequality of
Askey-Gasper on Jacobi polynomials (cf. Askey [1975]).

For the product Gegenbauer weight functions (1−x2
1)

α . . . (1−x2
d)

α on [−1, 1]d,
the compact formula similar to that of (7.1) holds for 2α ∈ N0; the formula for
other values of α has yet to be found. In fact, there is little results known for the
summability of Fourier orthogonal expansion with respect to these weight functions.
For the weight function

Wµ(x) = wµ(1 − |x|2)µ−1/2, x ∈ Bd = {x ∈ Rd : |x|2 = x2
1 + . . .+ x2

d ≤ 1},

where wµ is the normalization constant so that the integral of Wµ over Bd is 1,
there is an interesting compact formula of Kn(·, ·) which has been discovered by the
author recently in [199xb]. In fact, a compact formula holds already for PT

n (x)Pn(y).
Let Cλ

n denotes the usual Gegenbauer polynomials. Then the compact formula
for PT

n (x)Pn(y) is as follows.

PT
n (x)Pn(y) =

n+ µ+ d−1
2

µ+ d−1
2

∫ 1

−1

C
µ+ d+1

2
n (x · y +

√

1 − |x|2
√

1 − |y|2 t)

× (1 − t2)µ−1dt
/

∫ 1

−1

(1 − t2)µ−1dt, µ > 0 x,y ∈ Bd.

A simpler formula holds for the limiting case µ = 0. It’s worthwhile to mention
that for d = 1 this formula coincides with the product formula of the ultraspher-
ical polynomials. Moreover, by setting |y| = 1, the integral in the formula can
be removed; we see the formula resembles the addition formula for the spherical
harmonics (cf. Erdélyi et al. [1953, Vol. II, p. 244, (2)]). From the formula, a
theorem similar to that of Theorem 7.2 follows. More importantly, it allows us to
give a complete answer for the Cesáro summability of the Fourier orthogonal series.

Theorem 7.3 (Xu [199xb]) Let f be continuous on the closed ball Bd. The
expansion of f in the Fourier orthogonal series with respect to Wµ is uniformly

(C, δ) summable on Bd if, and only if, δ > µ+ d−1
2 .

Other properties and results have been derived from the compact formula in an
ongoing work of the author.

Comparing to our understanding of the classical orthogonal polynomials in one
variable, we know little about their extensions in several variables. The orthogonal
polynomials with respect to the classical weight functions, starting from those in
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Koornwinder [1974], should be studied in detail. The knowledge we obtain from
studying them not only will enhance our understanding of the general theory, it
may also lead to new directions in developing a general theory of orthogonal poly-
nomials in several variables. In this respect, we should at least mention the theory
of orthogonal polynomials on spheres with respect to measures invariant under a
reflection group. This important theory has been developed by Dunkl recently (cf.
Dunkl [1989] and [1991]). Among other things, it opens a way to study orthogonal
polynomials on spheres and balls with respect to a large class of weight functions.
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Erdélyi, A., W. Magnus, F. Oberhettinger and F. G. Tricomi [1953] Higher transcendental func-

tions, vol. 2, McGraw-Hill, New York.
Engles, H. [1980] Numerical quadrature and cubature, Academic Press, New York.
Fuglede, B. [1983] The multidimensional moment problem, Expo. Math. 1, 47–65.
Gekhtman, M. I. and A.A. Kalyuzhny [1994] On the orthogonal polynomials in several variables,

Integr. Equat. Oper. Theory 19, 404–418.
Koornwinder, T. [1975] Two-variable analogues of the classical orthogonal polynomials, The-

ory and Application of Special Functions (R. A. Askey, ed.), Academic Press, New York,
pp. 435–495.

Kowalski, M. A. [1982a] The recursion formulas for orthogonal polynomials in n variables, SIAM
J. Math. Anal. 13, 309–315.

Kowalski, M. A. [1982b] Orthogonality and recursion formulas for polynomials in n variables,
SIAM J. Math. Anal. 13, 316–323.

Krall, H. L. and I. M. Sheffer [1967] Orthogonal polynomials in two variables, Ann. Mat. Pura.
Appl. 76, no. 4, 325–376.
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