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Abstract. Orthogonal polynomials on the standard simplex Σd in R
d are shown to be

related to the spherical orthogonal polynomials on the unit sphere Sd in R
d+1 that are

invariant under the group Z2×· · ·×Z2. For a large class of measures on Sd cubature formulae

invariant under Z2 × · · · × Z2 are shown to be characterized by cubature formulae on Σd.
Moreover, it is also shown that there is a correspondence between orthogonal polynomials

and cubature formulae on Σd and those invariant on the unit ball Bd in R
d. The results

provide a new approach to study orthogonal polynomials and cubature formulae on spheres
and on simplices.

1. Introduction

The purpose of this paper is to study the connection between orthogonal polynomials
and cubature formulae on spheres and on simplices. A special case of the results shows
that the orthogonal polynomials with respect to the measure (u1 . . . ud(1 − u1 − . . . −
ud))

−1/2du on the standard simplex Σd on R
d are related to the spherical harmonics on

the unit sphere Sd in R
d+1 that are invariant under the group Z2×· · ·×Z2, and there is a

one-to-one correspondence between cubature formulae on Σd and cubature formulae on Sd

that are invariant under Z2×· · ·×Z2. The main results will be established for a large class
of measures. Orthogonal polynomials on the sphere with respect to a measure other than
the surface measure have been studied only recently (see [3, 4, 5, 8, 25] and the references
there). The most important development has been a theory developed by Dunkl for
measures invariant under a finite reflection group, in which the role of Laplacian operator
is replaced by a differential-difference operator in the commutative algebra generated by
a family of commuting first order differential-difference operators (Dunkl’s operators).
Motivated by the work of Dunkl, in [25] we used an elementary approach to study the
connection between orthogonal polynomials and cubature formulae on the sphere Sd and
the unit ball Bd of R

d. It was shown that we can construct homogeneous orthogonal
polynomials on Sd from the corresponding orthogonal polynomials on Bd for a large
class of measures.
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The present work is a continuation of [25] in spirit. For a large class of measures we
will show that orthogonal polynomials on Σd and those on Sd which are invariant under
the group G = Z2 × · · · ×Z2 are connected by a simple transformation. The result offers
a way to study the structure of orthogonal polynomials on the sphere; it may also lead to
new understanding on orthogonal polynomials on the simplex. Together with the results
in [25], we also obtain a correspondence between orthogonal polynomials on the simplex
and those on the unit ball that are invariant under G. Our approach is elementary as in
[25]; it is motivated by [3] in which the connection between orthogonal polynomials on
S2 and Σ2 is used to study orthogonal polynomials with symmetry of order three; the
approach does not involve differential or differential-difference operators.

A closely related question is constructing cubature formulae on spheres and on sim-
plices. According to a theorem of Sobolev, in order to establish a cubature formula
invariant under a finite group, one only has to verify those polynomials that are invariant
under the same group. In particular, to establish a Z2 × · · · × Z2 invariant cubature
formula on Sd, we only have to consider the homogeneous polynomials that are invariant
under the group G. This consideration leads us to establish a one-to-one correspondence
between the cubature formulae on Σd and the Z2 × · · · × Z2 invariant cubature formula
on Sd. Moreover, using the result in [25], we also have a correspondence between the
cubature formulae on Σd and the Z2×· · ·×Z2 invariant cubature formulae on Bd. These
results allow us to transform cubature formulae on one domain to another. Over the
years, there has been a lot of efforts devoted to the construction of cubature formulae
on the sphere, on the ball and on the simplex (mostly with respect to the Lebesgue
measure); see [6, 12, 15, 17] for some of the references. It is remarkable that the simple
correspondence between cubature formulae on these regions has not been noticed before.
It yields, in particular, many new cubature formulae on spheres and on simplices; some
of them can be derived from the known cubature formulae on a different domain by the
correspondence. Because the main focus of this paper is on the relation between the
orthogonal structure and cubature formulae on spheres and on simplices, we will concen-
trate on the theoretic side of the matter. The examples of new cubature formulae will be
reported in a separate paper ([7]).

The paper is organized as follows. In Section 2 we introduce notation and present the
necessary preliminaries, where we also prove the basic lemma. In Section 3 we discuss the
relation between orthogonal polynomials on Sd and those on Σd. In Section 4 we discuss
the relation between cubature formulae on the unit sphere and those on the simplex.

2. Preliminary and Basic Lemma

Basic notation. For x ∈ R
d we denote by |x| =

√

x2
1 + . . . + x2

d the usual Euclidean

norm. Let Bd be the unit ball of R
d and Sd be the unit sphere on R

d+1; that is,

Bd = {x ∈ R
d : |x| ≤ 1} and Sd = {y ∈ R

d+1 : |y| = 1}.

We also denote the ℓ1 norm of x ∈ R
d by |x|1 = |x1|+ . . .+ |xd|. Let Σd be the standard

simplex in R
d; that is,

Σd = {u ∈ R
d : u1 ≥ 0, . . . , ud ≥ 0, 1 − |u|1 ≥ 0}.
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For d = 2, the simplex Σ2 is the triangle with vertices at (0, 0), (1, 0) and (0, 1). Through-
out this paper we fix the following notation: For y ∈ R

d+1, we write

(2.1) y = (y1, . . . , yd, yd+1) = rx′ = r(x, xd+1), x′ ∈ Sd, x ∈ Bd,

where r = |y| =
√

y2
1 + · · · + y2

d+1 and x = (x1, . . . , xd).

Polynomial spaces. Let N0 be the set of nonnegative integers. For α = (α1, . . . , αd) ∈
N

d
0 and x = (x1, . . . , xd) ∈ R

d we write xα = xα1

1 · · ·xαd

d . The number |α|1 = α1+· · ·+αd

is called the total degree of xα. We denote by Πd the set of polynomials in d variables
on R

d and by Πd
n the subset of polynomials of total degree at most n. We also denote by

Pd
n the space of homogeneous polynomials of degree n on R

d and we let rd
n = dimPd

n. It
is well-known that

dim Πd
n =

(

n + d

n

)

and rd
n = dimPd

n =

(

n + d − 1

d

)

.

Weight functions. Throughout this paper a weight function on a compact region Ω is
a nonnegative function on Ω whose integral over Ω is positive. We will take Ω = Sd, Bd

or Σd most of the time. On Bd and Σd we use dx (Lebesgue measure), on Sd we use
rotation invariant measure dω (surface measure) on Sd.

Orthogonal polynomials on Bd and Σd. Let Ω denote either Bd or Σd. Let W be a
weight function on Ω. It is known that for each n ∈ N0 the set of polynomials of degree
n that are orthogonal to all polynomials of lower degree forms a vector space Vn whose
dimension is rd

n. We denote by {Pn
k }, 1 ≤ k ≤ rd

n and n ∈ N0, one family of orthonormal
polynomials with respect to W on Ω that forms a basis of Πd

n, where the superscript n
means that Pn

k ∈ Πd
n. The orthonormality means that

∫

Ω

Pn
k (x)Pm

j (x)W (x)dx = δj,kδm,n.

For each n ∈ N0, the polynomials Pn
k , 1 ≤ k ≤ rd

n, form an orthonormal basis of Vn. We
note that there are many bases of Vn; if Q is an invertible matrix of size rd

n, then the
components of QPn form another basis of Vn which is orthonormal if Q is an orthogonal
matrix. For general results on orthogonal polynomials in several variables, including some
of the recent development, we refer to the survey [23] and the references there.

Ordinary harmonics and h-harmonics. The ordinary harmonic polynomials on R
d+1

are the homogeneous polynomials satisfying the Laplace equation ∆P = 0, where ∆ =
∂2
1 + . . . + ∂2

d+1 on R
d+1 and ∂i is the ordinary partial derivative with respect to the i-th

coordinate. The spherical harmonics are the restriction of harmonic polynomials on Sd.
They are orthogonal polynomials with respect to the surface measure dω on Sd.

The theory of h-harmonics has been established recently by Dunkl (see [3-5]). For a
nonzero vector v ∈ R

d+1 define the reflection σv by

xσv := x− 2(x · v)v/|v|2, x ∈ R
d+1.
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The h-harmonics are homogeneous orthogonal polynomials on Sd with respect to h2
αdω,

where the weight function hα is defined by

(2.2) hα(x) :=
m
∏

i=1

|x · vi|αi , αi ≥ 0,

with αi = αj whenever σi is conjugate to σj in the reflection group G generated by
the reflections {σvi

: 1 ≤ i ≤ m}. The function hα is a positively homogeneous G-
invariant function. The key ingredient of the theory is a family of first-order differential-
difference operators, Di (Dunkl’s operators), which generates a commutative algebra
([5]). The h-Laplacian is defined by ∆h = D2

1 + . . . + D2
d+1, which plays the role of

Laplacian in the theory of the ordinary harmonics. In particular, the h-harmonics are the
homogeneous polynomials satisfying the equation ∆hY = 0. The h-spherical harmonics
are the restriction of h-harmonics on the sphere.

Orthogonal polynomials on spheres for S-symmetric functions. A weight function H
defined on R

d+1 is called S-symmetric if it is symmetric with respect to yd+1 and centrally
symmetric with respect to the variables y′ = (y1, . . . , yd); i.e.,

H(y′, yd+1) = H(y′,−yd+1) and H(y′, yd+1) = H(−y′, yd+1).

In particular, the weight functions of the form H(y) = W (y2
1 , . . . , y2

d+1) are S-symmetric.
It is proved in [25] that there is a unique decomposition

(2.3) Pd+1
n =

[n/2]
⊕

k=0

|y|2kHn−2k(H),

where Hn(H) is the subspace of homogeneous polynomials of degree n which are orthog-
onal to polynomials of lower degree. If H = h2, where h is a reflection invariant weight
function as in (2.2), then Hn(H) is the same as the space of h-harmonics on R

d+1; in
particular, when H = 1, it is the same as the space of ordinary harmonics. It is also
proved in [25] that an orthonormal basis of Hd+1

n can be constructed using orthogonal
polynomials on Bd as follows. Associated to the weight function H we define two weight
functions

W (1)(x) = H(x,
√

1 − |x|2)/
√

1 − |x|2 and W (2)(x) = H(x,
√

1 − |x|2)
√

1 − |x|2

on Bd. We denote by {Pn
k } and {Qn

k} systems of orthonormal polynomials with respect

to the weight functions W (1) and W (2), respectively, where we keep the convention that
the superscript n means that Pn

k and Qn
k are polynomials in Πd

n, and the subindex k has
the range 1 ≤ k ≤ rd

n. Keeping in mind the notation (2.1) we define

(2.4) Y
(1)
k,n (y) = rnPn

k (x) and Y
(2)
j,n (y) = rnxd+1Q

n−1
j (x),



ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULA 5

where 1 ≤ k ≤ rd
n, 1 ≤ j ≤ rd

n−1 and we define Y
(2)
j,0 (y) = 0. It is proved in [25] that these

polynomials are homogeneous polynomials in y and they form an orthonormal basis for
the space Hn(H).

The group Z2 × · · · × Z2. In the rest of this paper we will reserve the letter G for
the group G = Z2 × · · · × Z2 = (Z2)

m. It is one of the simplest reflection groups. The
elements of G take the form a = (ε1, . . . , εm), where εi = ±1. For a function f defined
on R

m, the action of a ∈ G on f is defined by R(a)f(x) = f(xa), x ∈ R
m, a ∈ G; we have

R(a)f(x) = f(ε1x1, . . . , εmxm). If R(a)f = f for all a ∈ G, we say that f is invariant
under G. We take the convention that the size of G agrees with the function it acts upon,
so that we do not have to write G = Gm. We will take m = d or m = d+1 in subsequent
sections.

Basic Lemma. We let dω = dωd denote the surface measure on Sd, and the surface
area

ω(Sd) = ωd(S
d) =

∫

Sd

dωd = 2π(d+1)/2/Γ((d + 1)/2).

Let H be defined on R
d+1. Assume that H is symmetric with respect to xd+1; i.e.,

H(x, xd+1) = H(x,−xd+1), where x ∈ R
d. It is proved in [25] that for any continuous

function g defined on Sd, we have

∫

Sd

g(y)H(y)dω =

∫

Bd

[

g(x,
√

1 − |x|2) + g(x,−
√

1 − |x|2)
]

(2.5)

× H(x,
√

1 − |x|2)dx
/

√

1 − |x|2.

This formula connects the integral on Bd to Sd and it plays an essential role in [25]. The
following establishes a relation between the integrations over the unit sphere and over
the standard simplex.

Lemma 2.1. For any continuous function f defined on Sd,

(2.6)

∫

Sd

f(y2
1, . . . , y2

d+1)dω = 2

∫

Σd

f(u1, . . . , ud, 1 − |u|1)
du

√

u1 . . . ud(1 − |u|1)
.

Proof. It follows from (2.5) with H = 1 and g(y) = f(y2
1, . . . , y2

d+1) that

∫

Sd

f(y2
1 , . . . , y2

d+1)dω = 2

∫

Bd

f(x2
1, . . . , x2

d, 1 − |x|2) dx
√

1 − |x|2
.

Since the function g(x2
1, . . . , x2

d) is invariant under the action of G, we can write its
integral over Bd as 2d times the integral over Bd

+ = {x ∈ Bd : x1 ≥ 0, . . . , xd ≥ 0}. Upon

changing variables u1 = x2
1, . . . , ud = x2

d in the integral over Bd
+, we obtain that

(2.7)

∫

Bd

g(x2
1, . . . , x2

d)dx =

∫

Σd

g(u1, . . . , ud)
du√

u1 · · ·ud
,
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where we have changed the integral over Bd
+ back to the integral over Bd. Putting these

two formulae together with g(x) = f(x,
√

1 − |x|1)/
√

1 − |x|1 completes the proof. �

In the case d = 2 the formula (2.6) has appeared in [3, Lemma 1.6, p. 689]. We
note, in particular, that the Lebesgue measure on Sd is related to the weight function
1/

√

(u1 . . . ud(1 − |u|1) over Σd.

3. Orthogonal polynomials on spheres and on simplices

In this section we discuss the relation between orthogonal polynomials on spheres and
on simplices. We need some notations.

Definition 3.1. Let H(y) = W (y2
1, . . . , y2

d+1) be a weight function defined on R
d+1.

Associated to H we define a weight function WΣ on the simplex Σd by

(3.1) WΣ(u) = 2W (u1, . . . , ud, 1 − |u|1)/
√

u1 · · ·ud(1 − |u|1), u ∈ Σd,

and we normalize the weight function W so that, recall the formula (2.6),

(3.2)

∫

Sd

W (y2
1 , . . . , y2

d+1)dω =

∫

Σd

WΣ(u)du = 1.

It is evident that H is S-symmetric on R
d+1. Recall that the space of orthogonal

homogeneous polynomials of degree n associated to the weight function H is denoted by
Hn(H). If a polynomial P in Hn(H) is invariant under G, then P has to be of even
degree, which means that n is even. We define a subspace HG

2n of H2n(H) by

HG
2n = {P ∈ H2n(H)|P (xa) = P (x), a ∈ G};

that is, HG
2n contains polynomials in H2n(H) that are invariant under the action of G.

Similarly, we define PG
2n to be the subspace of Pd+1

2n containing all invariant homogeneous
polynomials on R

d+1.
Let Rn

k denote a basis of orthonormal polynomials of degree n with respect to the
weight function WΣ on Σd, where we keep the convention that the superscript n means
that Rn

k are polynomials in Πd
n, and the subindex k has the range 1 ≤ k ≤ rd

n. Keep in
mind the notation (2.1). We define

(3.3) S2n
k (y) = r2nRn

k (x2
1, . . . , x2

d), 1 ≤ k ≤ rd
n.

These polynomials are in fact homogeneous polynomials in y ∈ R
d+1.

Theorem 3.2. Let W be a weight function on R
d+1 defined as in Definition 3.1. Then

the functions S2n
k defined in (3.3) are homogeneous polynomials of degree 2n on R

d+1,

and the set {S2n
k : 1 ≤ k ≤ rd

n} forms an orthonormal basis for HG
2n. Moreover,

(3.4) PG
2n =

n
⊕

k=0

|y|2kHG
2n−2k;
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that is, if P ∈ PG
n , then there is a unique decomposition

P (y) =

n
∑

k=0

|y|2n−2kP2k(y), P2k ∈ HG
2k.

Proof. Recall the notation (2.1); we see that S2n
k takes the form

S2n
k (y) = r2nRn

k (x2
1, . . . , x2

d) = r2n
∑

|β|1≤n

aβx2β1

1 · · ·x2βd

d ,

where aβ are constants. Since yi = rxi, it is not hard to see that S2n
k is a homogeneous

polynomial of degree 2n in the variables y ∈ R
d+1. To show S2n

k ∈ Hn(H), we need to
show that it is orthogonal to polynomials of degree less than 2n with respect to H(y)dω
on Sd. We consider Pβ(y) = yβ for β ∈ N

d+1 and |β|1 ≤ 2n−1. If one of the components
of β = (β1, . . . , βd+1) is odd, say β1 is odd, then we conclude by symmetry of x1 7→ −x1

that
∫

Sd

S2n
k (y)Pβ(y)H(y)dω =

∫

Sd

Rn
k (y2

1 , . . . , y2
d)y

βW (y2
1 , . . . , y2

d+1)dω = 0.

Hence, we only need to consider the case when all components of β are even; in such a
case we write β = 2γ for γ ∈ N

d+1 and |γ|1 ≤ n− 1. Then the basic formula (2.6) shows
that

∫

Sd

S2n
k (y)y2γH(y)dω =

∫

Σd

Rn
k (x)xγ1

1 · · ·xγd

d (1 − x1 − · · · − xd)
γd+1WΣ(x)dx = 0

by the orthogonality of Rn
k to polynomials of lower degrees. Since it is evident from (3.3 )

that S2n
k are invariant under G, we have shown that S2n

k are elements of HG
2n. Moreover,

if we replace y2γ by S2n
j (y) in the above formula, then it follows from the orthonormality

of Rn
k that {S2n

k : 1 ≤ k ≤ rd
n} forms an orthonormal set.

Let P be a homogeneous polynomial on R
d+1 that is invariant under G. Then P is

necessarily of even degree, say degree 2n, which is of the form P (y) = p(y2
1 , . . . , y2

d+1),

where p is homogeneous of degree n. Using x2
d+1 = 1− x2

1 − . . . x2
d whenever possible, we

can write P further as

P (y) = r2nq(x2
1, . . . , x2

d), q ∈ Πd
n,

where q is a polynomial of degree n, not homogeneous in general. Since {Rk
j , 1 ≤ j ≤

rd
n, 0 ≤ k ≤ n} forms a basis for all polynomials of degree n, we can write q in terms of

Rk
j . Therefore, we have the unique expansion

P (y) = r2n
n

∑

k=0

rd

k
∑

j=1

bj,kRk
j (x2

1, . . . , x2
d) =

n
∑

k=0

rd

k
∑

j=1

bj,kr2n−2kS2k
j (y).
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In particular, if P ∈ HG
2n, then it follows from the orthogonality of P to polynomials

of lower degree that P (y) =
∑

j ajS
2n
j (y). This shows that {Sn

j , 1 ≤ j ≤ rd
n} forms an

orthonormal basis of HG
2n, and the unique decomposition (3.4) holds. �

As a special case of the theorem, a basis of orthonormal polynomials associated to the
weight function WΣ(u) = (u1 · · ·ud(1 − |u|1))−1/2 yields, by (3.3), an orthonormal basis
for spherical harmonics that are invariant under G.

Since {Sn
j } forms a basis of HG

2n, it follows that the dimension of HG
2n is rd

n. We
formulate this as a corollary.

Corollary 3.3. Let W be a weight function on R
d+1 defined as in Definition 3.1. Then

dimHG
2n =

(

n + d − 1

n

)

and dimPG
2n =

(

n + d

n

)

.

For the h-harmonics, the decomposition of PG
2n in terms of HG

2n was established in [4]
using the differential-difference operators. The importance of the above theorem lies in
the relation between orthogonal polynomials on the sphere Sd and on the simplex Σd. In
view of the result in [25], we can also establish a relation between orthogonal polynomials
on the simplex Σd and on the ball Bd.

Let U be a weight function defined on R
d. We define a weight function UΣ on Σd by

(3.5) UΣ(u) = U(u1, . . . , ud)/
√

u1 · · ·ud, u ∈ Σd.

We denote the space of orthogonal polynomials of degree n with respect to the weight
function U(x2

1, . . . , x2
d) on Bd by Vn(Bd). If P ∈ Vn(Bd) is invariant under G, then it

must be of even degree. We define a subspace VG
2n(Bd) of V2n(Bd) by

VG
2n(Bd) = {P ∈ V2n(Bd)|P (xa) = P (x), a ∈ G}.

That is, V2n(Bd) contains orthogonal polynomials in V2n(Bd) that are invariant under
G.

Theorem 3.4. Let U be a weight function defined on R
d. Let Rn

k be orthonormal

polynomials with respect to the weight function UΣ. Then the polynomials T 2n
k (x) =

Rn
k (x2

1, . . . , x2
d) are orthogonal with respect to the weight function U(x2

1, . . . , x2
d) on Bd

and {T 2n
k , 1 ≤ k ≤ rd

n} forms an orthonormal basis for VG
2n(Bd). In particular, it follows

that dimVG
2n(Bd) = rd

n.

The theorem follows as a corollary of Theorem 3.2 and the results in [25]. It can also
be proved following a similar line as in the proof of Theorem 3.2, using the formula (2.7)
instead of (2.6); we leave the details to the reader.

These two theorems point out a rather basic relation between orthogonal polynomials
on the simplex Σd and those on the sphere Sd and the ball Bd. It is rather remarkable
that, except for the case discussed in [3], they do not seem to have appeared in the liter-
ature. Let us illustrate them by an example, in which we look at the classical orthogonal
polynomials.
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Example 3.5. Let us consider the weight functions H(y) = Hα|y1|2α1 |y2|2α2 |y3|2α3 on
S2, where Hα is a normalization constant so that H is normalized as in Definition 3.1.
The corresponding weight function WΣ on the simplex Σd is given by

(3.6) Wα
Σ (x) = 2Hαx

α1−1/2
1 x

α2−1/2
2 (1 − x1 − x2)

α3−1/2.

In an effort to understand Dunkl’s theory of h-harmonics, in [24] we study the orthogonal
polynomials on Sd associated to H(y) = Hαyα1

1 · · · yαd+1

d+1 , d ≥ 2, in detail. In particular,
an orthonormal basis of h-harmonics is given in terms of the orthonormal polynomials

D
(λ,µ)
n of one variable with respect to the measure (1− t2)λ|t|2µ on [−1, 1], which in turn

can be written in terms of Jacobi polynomials. For d = 2, using the spherical coordinates

y1 = r cos θ1, y2 = r sin θ1 cos θ2, y3 = r sin θ1 sin θ2, r = |y|,

some of the h-harmonics of degree n (Y
n,(1)
k in the notation of [24]) are given by

Y n
k (y) = An

krnD
(k+α2+α3+1/2,α1)
n−k (cos θ1)(sin θ1)

kD
(α3,α2)
k (cos θ2),

where 0 ≤ k ≤ n and An
k are normalization constants. (It should be mentioned that the

spherical coordinates adopted above are in the reverse order of the spherical coordinates
used in [24].) On the other hand, an orthonormal basis for WΣ can be given in terms of

the Jacobi polynomials P
(α,β)
n by (cf. [10])

Rn
k (x1, x2) = Bn

k P
(2k+α2+α3,α1−1/2)
n−k (2x1 − 1)(1 − x1)

kP
(α3−1/2,α2−1/2)
k (2

x2

1 − x1
− 1),

where 0 ≤ k ≤ n, n ≥ 0, and Bn
k are normalization constants. According to Theorem

3.2, the polynomials

S2n
k (y) = r2nRn

k (x2
1, x

2
2), y = (y1, y2, y3) = r(x1, x2, x3),

are h-harmonics with respect to H. In fact, using the spherical coordinates and the for-

mula D
(λ,µ)
2n (cos θ) = const P

(λ−1/2,µ−1/2)
n (cos 2θ) ([24]), we see from the above formulae

for Y n
k and Rn

k that, up to a constant, the polynomials S2n
k (y) and Y 2n

2k (y) are identical.
In particular, this shows that Y 2n

2k (y) forms a basis for h-harmonics invariant under G.
Moreover, by Theorem 3.4, the polynomials Tn

k (x1, x2) = Rn
k (x2

1, x
2
2) are orthogonal

polynomials on B2 with respect to the weight function

U(x1, x2) = 2Hα|x1|2α1 |x2|2α2(1 − x2
1 − x2

2)
2α3−1/2.

If α1 = α2 = 0, we can use the quadratic transform P
(λ,λ)
2k (t) = const P

(λ,−1/2)
k (2t2 − 1)

[18, p. 59, (4.1.5)] to conclude that

Tn
k (x1, x2) = const P

(2k+α3,2k+α3)
2n−2k (x1)(1 − x2

1)
kP

(α3−1/2,α3−1/2)
2k (x2/

√

1 − x2
1).
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Apart from the constant, these polynomials with α = α3 − 1/2 are exactly the same as

2P
α
2n,2k given in [10, formula (3.8), p. 449], where the polynomials 2P

α
n,k are given as an

orthogonal basis for the weight function (1 − x2
1 − x2

2)
α−1/2. �

The case α1 = α2 = α3 = 0 in the above example is of particular interest, since
h-harmonics reduce to the ordinary harmonics when α = 0. Another interesting case is
α1 = α2 = α3; Dunkl [3] studied the h-harmonics that are invariant under the symmetric
group of order three in this case. Among other things, an orthogonal basis invariant
under the permutations of x1, x2, and 1 − x1 − x2 is given, which leads to h-harmonics
invariant under the octahedral group.

4. Cubature formula on spheres and on simplices

In this section we discuss the connection between cubature formulae on spheres and
on simplices. For a given integral L(f) :=

∫

fdµ, where dµ is a nonnegative measure

with support set on Σd or Bd, a cubature formula of degree M is a linear functional

IM (f) =

N
∑

k=1

λkf(xk) , λk ∈ R, xk ∈ R
d,

defined on Πd, such that L(f) = IM (f) whenever f ∈ Πd
M , and L(f∗) 6= IM (f∗) for at

least one f∗ ∈ Πd
M+1. When the measure is supported on Sd, we need to replace Πd

M

by Πd+1
M in the above formulation and require xk ∈ Sd. The points x1, . . . ,xN in the

formula are called nodes and the numbers λ1, . . . , λN are called weights. Such a formula
is called minimal, if N , the number of nodes, is minimal among all cubature formulae of
degree M .

We are interested in the cubature formulae that are invariant under the action of the
group G. A linear functional I(f) is called invariant under G if I(R(a)f) = I(f) for all
a ∈ G. In order to write down an invariant cubature formula explicitly, we need more
notation. For u ∈ R

m, m = d or d+1, we denote its G-orbit by G(u), which is defined by
G(u) = {ua|a ∈ G}; we also denote by |G(u)| the number of distinct elements in G(u).
A cubature formula is invariant under G if the set of its nodes is a union of G-orbits
and the nodes belonging to the same G-orbit have the same weight. In the case we are
considering, the invariant cubature formula, denoted by IG

M (f), takes the form

IG
M (f) =

N
∑

k=1

λk

∑

a∈G

f(uia)
/

|G(ui)| =
N

∑

k=1

λk

∑

ε∈{−1,1}m

f(ε1ui,1, . . . εmui,m)
/

|G(ui)|,

where the summation
∑

a∈G f(uia) is understood as taken over all distinguished elements

of G(ui) as explained in the second equality. We note that |G(u)| = 2k, where k is the
number of non-zero elements of u in this case.

The main result in this section establishes a correspondence between cubature formulae
on the simplex Σd and a Z2 × · · · × Z2 invariant cubature formulae on the sphere Sd.
Because of their applications in numerical integration and in areas ranging from coding
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theory to isometric embeddings between classical Banach spaces, cubature formulae on
the sphere have been under intense study for years. One of the important approaches
in the construction of cubature formulae is initiated by Sobolev [16], which deals with
the invariant cubature formula under a finite group. The fundamental result of Sobolev
states that a cubature formula invariant under a group is exact for all polynomials in a
subspace P if, and only if, it is exact for all polynomials in P that are invariant under the
same group. Since this result helps to reduce the number of polynomials that need to be
evaluated by a great deal, it has been used to construct a number of cubature formulae
on the unit sphere S2 (cf. [6, 11, 15, 17] and the references there). In the case we are
considering, the results in the previous section shows that the invariant polynomials on
Sd can be identified with the polynomials on the simplex Σd under a proper change of
variables. Therefore, Sobolev’s result suggests that the Z2 × · · · × Z2 invariant cubature
formulae are related to the cubature formulae on the simplex. Indeed, we have the
following result which does not seem to have been noticed before.

Theorem 4.1. Let WΣ be a weight function on Σd as defined in Definition 3.1. Suppose

that there is a cubature formula of degree M on Σd giving by

(4.1)

∫

Σd

f(u)WΣ(u)du =

N
∑

i=1

λif(ui), f ∈ Πd
M ,

whose N nodes lie on the simplex Σd; that is ui = (ui,1, . . . , ui,d) and ui ≥ 0, 1−|u|1 ≥ 0.
Then there is a cubature formula of degree 2M + 1 on the unit sphere Sd,

(4.2)

∫

Sd

g(y)W (y2
1, . . . , y2

d+1)dω =

N
∑

i=1

λi

∑

a∈G

g(via)
/

|G(vi)|, g ∈ Πd+1
2M+1

where the nodes vi = (vi,1, . . . , vi,d+1) ∈ Sd are defined in terms of ui by

(4.3) vi = (vi,1, . . . , vi,d+1) = (
√

ui,1, . . . ,
√

ui,d,
√

1 − |ui|1).

On the other hand, if there exists a cubature formula of degree 2M +1 on Sd in the form

of (4.2), then there is a cubature formula of degree M on the simplex Σd in the form of

(4.1) whose nodes ui ∈ Σd are defined by

(4.4) ui = (ui,1, . . . , ui,d) = (v2
i,1, . . . , v2

i,d).

Proof. Assuming (4.1), we prove (4.2) for the polynomials gβ(y) = yβ , β ∈ N
d+1 and

|β|1 ≤ 2M + 1. If one of the components of β = (β1, . . . , βd) is odd, say β1 is odd,
then the integral in the left hand side of (4.2) is zero by symmetry. Moreover, let a0 =
(−1, 1, . . .1) ∈ G; we have that

∑

a∈G

gβ(via) =
∑

a∈G

gβ(via0a
−1
0 a) =

∑

b∈G

gβ(via0b) = −
∑

b∈G

gβ(vib),
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which implies that the right hand side of (4.2) is also zero. Hence, we only need to verify
(4.2) for g2γ(y) = y2γ , |γ|1 ≤ M . Since g2γ is clearly invariant under G, the right hand
side of (4.2) with g = g2γ becomes

N
∑

i=1

λi

∑

a∈G

g2γ(via)
/

|G(vi)| =

N
∑

i=1

λig2γ(vi).

Hence, taking into consideration (4.3), it follows from the basic formula (2.6) that (4.2)
with g = g2γ is equivalent to (4.1) with f(u) = uγ1

1 · · ·uγd

d (1−|u|1)γd+1 , which holds true
since |γ|1 ≤ M .

On the other hand, assuming (4.2), to prove (4.1) we only have to restrict (4.2) to
invariant polynomials of the form g(y) = f(y2

1, . . . , y2
d), y ∈ R

d+1, and use the basic
formula (2.6). �

Although both the statement and the proof of this theorem are simple, its importance
is apparent. It allows us to transform back and forth between cubature formulae on Σd

and Z2 ×· · ·×Z2 invariant cubature formulae on Sd for a large class of weight functions.
Before we go any further, let us determine the number of nodes in the cubature formula
(4.2).

Evidently, the number of nodes of (4.2) depends on how many nodes of (4.1) are on
the boundary of Σd. Recall that Σd is defined by d + 1 inequalities: u1 ≥ 0, . . . , ud ≥ 0
and 1 − |u|1 ≥ 0 for u ∈ R

d. A k-dimensional face of Σd, 0 ≤ k ≤ d, contains elements
of Σd for which exactly d− k inequalities become equalities. In particular, if k = d, then
none of the inequalities becomes equality, so that the (unique) d-dimensional face of Σd

is the interior of Σd. We also note that a 0-dimensional face is one of the vertices of the
simplex Σd. For 0 ≤ k ≤ d, we define

(4.5) Nk = number of nodes in (4.1) which lie on k-dimensional faces.

Then the number of nodes of (4.1) is equal to N0 + N1 + . . .Nd. We have the following
corollary.

Corollary 4.2. Let NM (Σd) and N2M+1(S
d) denote the number of nodes of the formula

(4.1) and the formula (4.2), respectively. Then the following relation holds

NM (Σd) = N0 + N1 + . . .Nd ⇐⇒ N2M+1(S
d) = 2d+1Nd + . . . + 4N1 + 2N0.

Proof. If a node ui of (4.1) lies on a k-dimensional face of Σd, then it follows from the
definition that the corresponding node vi in (4.3) has exactly k + 1 nonzero elements,
which implies that |G(ui)| = 2k+1. Moreover, if vi is a node of a cubature formula of
the form (4.2) which contains exactly k + 1 nonzero elements, then ui in (4.4) lies on a
k-dimensional face of Σd. �

There are lower bounds on the number of nodes of cubature formulae, which are used
to test whether a given cubature formula is minimal. The lower bound for cubature
formulae on Σd is given by

(4.6) NM (Σd) ≥
(

n + d

n

)

:= Nmin
M (Σd), M = 2n or M = 2n + 1.
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This lower bound is well-known (cf. [17]) and it holds for all cubature formulae with
respect to weight functions on Σd or on any other domain that has a positive measure.
For cubature formulae of odd degree with respect to the weight function Wα

Σ on Σ2 in
(3.6), there is an improved lower bound ([2])

(4.7) N2n+1(Σ
2) ≥

(

n + 2

n

)

+
[n + 1

2

]

:= Nmin
2n+1(Σ

2),

which is the same as the lower bound for cubature formulae of degree 2n+1 with respect
to a centrally symmetric weight function, such as (1 − |x|2)α on B2. This bound follows
from a general result of Möller ([14]), but the verification ([2, 21]) uses explicit formulae
for the orthogonal polynomials with respect to Wα

Σ . It is not known whether the lower
bound (4.7) holds for other weight functions on Σ2. For cubature formulae on Sd we
only give the lower bound for odd degree, since the cubature formula (4.2) is of degree
2M + 1. We have

(4.8) N2M+1(S
d) ≥ 2

(

M + d

M

)

:= Nmin
2M+1(S

d),

(cf. [14,15]) which holds for all centrally symmetric weight functions on Sd. We note
that for large M , the order of both Nmin

M (Σd) and Nmin
2M+1(S

d) is O(Md).
The following corollary states that if the cubature formula (4.1) is close to a minimal

formula for M relatively large, then so is the Z2 × · · · × Z2 invariant cubature formula
(4.2).

Corollary 4.3. Let the notation be the same as in Corollary 4.2. Then

NM (Σd) = Nmin
M (Σd) + O(Md−1) ⇐⇒ N2M+1(S

d) = Nmin
2M+1(S

d) + O(Md−1).

Proof. This follows easily from the following asymptotic formula

(

n + λ

n

)

=
Γ(n + λ + 1)

Γ(λ + 1)Γ(n + 1)
=

nλ

Γ(λ + 1)
(1 + O(n−1)), λ > 0,

and the formulae (4.6) and (4.8). �

It is worth mentioning that an attractive feature of the correspondence in Theorem 4.1
is that the degree of the Z2×· · ·×Z2 invariant cubature formula (4.2) is more than twice
the degree of the cubature formula (4.1) on Σd. Since it is easier to construct cubature
formulae of lower degree, the theorem offers an effective method to construct cubature
formulae on the sphere. However, most of the existing cubature formulae on Σd are
constructed for the Lebesgue measure dx (see the survey [12]), which corresponds to the
measure |y1 · · · yd+1|dω on Sd; and there are few cubature formulae known for the weight
function (u1 · · ·ud(1−u1−· · ·−ud))

1/2 on Σd, which corresponds to the surface measure
dω. On the other hand, most of the existing cubature formulae on Sd are constructed for
the surface measure dω, from which we may obtain cubature formula on Σd with respect
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to the measure (u1 · · ·ud(1 − u1 − · · · − ud))
1/2. Hence, Theorem 4.1 will also help us

to obtain new cubature formulae on Σd. We indicate the power of the method by the
following example.

Example 4.4. The following is a Z2 × Z2 × Z2 invariant cubature formula of degree 5
on the unit sphere S2 with 12 nodes ([1] and [17, p. 296, formula U3: 5-1]),

(4.9)

∫

S2

f(y1, y2, y3)dω =
π

3

∑

[f(±r,±s, 0) + f(0,±r,±s) + f(±s, 0,±r)],

where the sum is taken over all possible choices of (±1,±1), and r, s are given by

r2 = (5 +
√

5)/10 and s2 = (5 −
√

5)/10.

It is a minimal cubature formula on S2 by (4.8). We note that r2 + s2 = 1. Using
Theorem 4.1, we can transform it to a cubature formula of degree 2 on Σ2,

(4.10)

∫

Σ2

f(x1, x2)
dx1dx2

√

x1x2(1 − x1 − x2)
=

2π

3

[

f(r2, s2) + f(0, r2) + f(s2, 0)
]

,

which is in fact a minimal cubature formula of degree 2 by (4.6).
On the other hand, a minimal formula of degree 3 has four nodes; it follows from the

general theory of minimal cubature formulae that these nodes are common zeros of two
orthogonal polynomials of degree 2 ([14]). Since a basis of the orthogonal polynomials
with respect to W 0

Σ is known explicitly (cf. Example 3.5), it is not hard to find such a
formula. Let Rn

k denote the orthonormal polynomials of degree n given in Example 3.5
with respect to the weight function W 0

Σ. We have

R2
0(x1, x2) =3(3 − 30x1 + 35x2

1)/8,

R2
1(x1, x2) =3

√
5(−1 + 7x1)(−1 + x1 + 2x2)/4,

R2
2(x1, x2) =3

√
35(1 − 2x1 − 8x2 + x2

1 + 8x1x2 + 8x2
2)/8,

where we take the subscript of Rn
k as k = 0, 1, 2 instead of k = 1, 2, 3 as in Example

3.5. The two polynomials of degree 2 that have four common zeros are elements of the
subspace spanned by these three polynomials. It turns out, however, that R2

0 and R2
2 have

four common zeros. We denote these zeros by (si, ti), 1 ≤ i ≤ 4; they yield a minimal
cubature formula of degree 3 in the form

(4.11)

∫

Σ2

f(x1, x2)W
0
Σ(x1, x2)dx1dx2 = 2π

4
∑

i=1

λif(si, ti),

where the nodes (si, ti) and the weights λi are given by

s1 = s2 = (15 + 2
√

30)/35, s3 = s4 = (15 − 2
√

30)/35,

t1 =
(

10 −
√

30 −
√

65 − 10
√

30
)

/35, t2 =
(

10 −
√

30 +

√

65 − 10
√

30
)

/35,

t3 =
(

10 +
√

30 −
√

65 + 10
√

30
)

/35, t4 =
(

10 +
√

30 +

√

65 + 10
√

30
)

/35

λ1 = λ2 = (18 −
√

30)/72, λ3 = λ4 = (18 +
√

30)/72,
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and t1, t2, t3, t4 are exactly the zeros of the polynomial 1225t4 − 1400t3 + 410t2 − 40t + 1.
We found the nodes and the weights with the help of the computer program Mathematica.
For more on the minimal cubature formula, we refer to [14, 15, 21, 22] and the references
there. Since all nodes of (4.11) are located inside the triangle Σ2, it yields a Z2 ×Z2 ×Z2

invariant cubature formula of degree 7 with 32 nodes,

(4.12)

∫

S2

f(x1, x2, x3)dω =
π

2

4
∑

i=1

λi

∑

f(±√
si,±

√
ti,±

√
1 − si − ti)

where the inner sum is over all possible choices of signs. Both cubature formulae (4.11)
and (4.12) appear to be new. Since Nmin

7 (S2) = 20 by (4.8), the formula (4.12) is far
from a minimal formula. In [1] or [17, p. 299, formula U3: 7-2], a Z2 ×Z2 ×Z2 invariant
formula of degree 7 with 26 nodes is given, which yields via Theorem 4.1, however, a
cubature formula of degree 3 on Σ2 with 7 nodes. �

In order to construct a Z2 × Z2 × Z2 invariant cubature formula on S2 with respect
to surface measure, we only need to work with a cubature formula with respect to W 0

Σ.
Several methods used to construct cubature formulae for the Lebesgue measure on Σ2

may be extended to construct cubature formulae for the weight function W 0
Σ, including

the method of constructing minimal formulae. At the moment, there is a better under-
standing of the structure of the cubature formula on the simplex, especially the minimal
cubature, and less of the structure of cubature formulae on the sphere. Using Theorem
4.1 in both directions, a number of new cubature formulae on Sd as well as on Σd can be
constructed. We will present the bulk of the new formulae obtained through Theorem 4.1
in [7], where, among others, formulae on S2 that are invariant under the octahedral group
(called fully symmetric formulae in [9, 17]) will be constructed by considering symmetric
formulae on the triangle Σ2 (see [13]).

As suggested by Theorem 3.4 and Sobolev’s principle, there is also a correspondence
between cubature formulae on the simplex Σd and the cubature formulae on the unit ball
Bd, which we now describe. Let us denote by R

d
+ the positive quadrant of R

d; that is, if

x = (x1, . . . , xd) ∈ R
d
+, then xi ≥ 0 for 1 ≤ i ≤ d. For x ∈ R

d
+, we define x1/2 ∈ R

d
+ by

x1/2 = (
√

x1, . . . ,
√

xd).

Theorem 4.5. Let U be a weight function defined on R
d and UΣ be defined as in (3.5).

If there is a cubature formula of degree M on Σd giving by

(4.13)

∫

Σd

f(u)UΣ(u)du =

N
∑

i=1

λif(ui), f ∈ Πd
M ,

with all ui ∈ R
d
+, then there is a cubature formula of degree 2M + 1 on the unit ball Bd,

(4.14)

∫

Bd

g(x)U(x2
1, . . . , x2

d)dx =

N
∑

i=1

λi

∑

a∈G

g(u
1/2
i a)

/

|G(ui)|, g ∈ Πd
2M+1.
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Moreover, a cubature formula of degree 2M + 1 in the form of (4.14) implies a cubature

formula of degree M in the form of (4.13).

The proof of this theorem follows exactly as that of Theorem 4.1 if we use the basic
formula (2.7) instead of (2.6). We notice that (4.13) is the same as (4.1), except that
we no longer require its nodes to be on Σd. If a node of (4.13) is not on Σd, then the
corresponding nodes of (4.14) will be outside of Bd. Let Nk be the number of nodes of
(4.13) which lie on k-dimensional faces of Σd as in (4.5). Then we also have

Corollary 4.6. Let NM (Σd) and N2M+1(B
d) denote the number of nodes of the formula

(4.13) and the formula (4.14), respectively. Then the following relation holds

NM (Σd) = N0 + N1 + . . .Nd ⇐⇒ N2M+1(B
d) = 2dNd + . . . + 2N1 + N0.

A corollary similar to that of Corollary 4.3 also holds. We note that in the cor-
respondence of Theorem 4.5, the Lebesgue measure on Σd corresponds to the mea-
sure |x1 · · ·xd|dx on Bd, and the Lebesgue measure on Bd corresponds to the measure
du/

√
u1 · · ·ud on Σd. In view of Theorem 4.1, another interesting case is the correspon-

dence between dx/
√

1 − |x|2 on Bd and du/(u1 · · ·ud(1 − |u|1))1/2 on Σd.

Example 4.7. Let us consider the cubature formula of degree 2 in (4.10) of Example
4.4; by Theorem 4.5 we can transform it to

∫

B2

f(x1, x2)
dx1dx2

√

1 − x2
1 − x2

2

=
π

6

[

∑

f(±r,±s) +
∑

f(0,±r) +
∑

f(±s, 0)
]

,

where the summations are over all possible choices of signs. This is a cubature formula
of degree 5 with 8 nodes for WB(x) = 1/

√

1 − |x|2. The number of nodes of this formula
is one more than the lower bound (4.7); we have remarked that (4.7) holds for cubature
formulae with respect to WB on B2. Using Theorem 4.5, we also conclude that the
cubature formula (4.11) yields a Z2×Z2×Z2 invariant cubature formula of degree 7 with
respect to WB on B2 with 16 nodes. �
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