
RODRIGUES TYPE FORMULA FOR ORTHOGONAL
POLYNOMIALS ON THE UNIT BALL

YUAN XU

Abstract. For a class of weight function invariant under reflection groups on

the unit ball, a family of orthogonal polynomials is defined via a Rodrigues
type formula using the Dunkl operators. Their properties and their relation

with several other bases are explored.

1. Introduction

Let Πd = R[x1, . . . , xd] denote the space of polynomials in d variables and Πd
n

denote the subspace of polynomials of degree at most n. We will use the standard
multiindex notation. For α ∈ Nd

0 and x ∈ Rd, xα = xα1
1 · · ·xαd

d is a monomial of
degree |α| = α1 + . . . + αd.

The classical orthogonal polynomials on the unit ball Bd = {x : ‖x‖ ≤ 1}, where
‖x‖ is the Euclidean norm of x, are orthogonal with respect to the weight function

(1.1) Wµ(x) = (1− ‖x‖2)µ−1/2, x ∈ Bd, µ > −1/2.

The study of these polynomials can be traced back to Hermite, see [1] and [5,
Chapt. 12]. Among the first orthogonal bases on Bd being studied is the one given
by the Rodrigues type formula

(1.2) Uα(x) = (1− ‖x‖2)−µ+1/2∂α(1− ‖x‖2)n+µ−1/2, α ∈ Nd
0,

where ∂i = ∂/∂xi and ∂α = ∂α1
1 · · · ∂αd

d , and a family of polynomials that are
biorthogonal to Uα.

The purpose of this paper is to consider the analogues of Uα for orthogonal
polynomials on Bd with respect to a class of weight functions invariant under a
reflection group. We first define the weight function. Let G be a finite reflection
group with a fixed positive root system R+. Let σv denote the reflection along
v ∈ R+, that is, xσv = x− 2〈x, v〉/‖v‖2 for x ∈ Rd with the inner product 〈x, y〉 =∑d

i=1 xiyi. Thus, G is a finite orthogonal group generated by the reflections {σv :
v ∈ R+}. Let κ be a multiplicity function defined on R+, that is, κ : R+ 7→ R is a
G-invariant function. We assume that κ(v) ≥ 0 for all v ∈ R+. Then the function

(1.3) hκ(x) =
∏

v∈R+

|〈x, v〉|κ(v), x ∈ Rd,

is a positive homogeneous G-invariant function of order γ := γκ =
∑

v∈R+
κv.

For example, if G is the symmetric group, then hκ(x) =
∏

1≤i<j≤d |xi − xj |κ and
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γ = d(d− 1)κ/2. In this paper we consider the reflection invariant weight function
Wκ,µ on the unit ball

(1.4) Wκ,µ(x) = h2
κ(x)(1− ‖x‖2)µ−1/2, x ∈ Bd, µ > −1/2

where h2
κ is as in (1.3). If κ = 0 then Wκ,µ(x) becomes Wµ(x) in (1.1).

The weight function hκ was introduced by Dunkl for the purpose of studying the
orthogonal structure for polynomials on the unit sphere Sd−1 = {x ∈ Rd : ‖x‖ = 1}
with respect to the measure h2

κ(x)dω, where dω is the rotation invariant measure
on Sd−1. The main ingredient in the study is a family of commuting differential-
difference operators, Di, called Dunkl’s operators ([2]),

Dif(x) = ∂if(x) +
∑

v∈R+

κv
f(x)− f(xσv)

〈x, v〉
〈ei, v〉, 1 ≤ i ≤ d,

where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th component. The set {Di : 1 ≤
i ≤ d} generates a commutative algebra of operators containing the h-Laplacian
∆h = D2

1 +. . .+D2
d. Let Pd

n denote the space of homogeneous polynomials of degree
n in d variables. If p ∈ Pd

n then∫
Sd−1

p(x)q(x)h2(x)dω = 0, ∀q ∈ Πd
n−1,

if and only if ∆hp = 0. The space Hd
n(h2

κ) := Pd
n ∩ ker ∆h is called the space of h-

harmonic polynomials of degree n. If κ(v) = 0, it agrees with the space of ordinary
harmonic polynomials Hd

n := Pd
n ∩ ker ∆, where ∆ denote the ordinary Laplacian

∆ = ∂2
1 + . . . + ∂2

d . For the extensive study of h-harmonics and the related work,
see [4] and the references therein.

The theory of h-harmonics has also made it possible to study the orthogonal
structure of polynomials with respect to Wκ,µ on Bd. Initial work in this direction
has been carried out in [12, 13], which has lead to new results even in the case of
the classical weight function Wµ. In the present paper we show that the orthogonal
polynomials Uα(x) in (1.2) defined by the Rodrigues type formula can be extended
to the reflection invariant weight function Wκ,µ. That is, we define Uα as follows:

Definition 1.1. For α ∈ Nd
0, define

Uα(x) = (1− ‖x‖2)−µ+1/2Dα(1− ‖x‖2)|α|+µ−1/2.

We will show that Uα(x) so defined are orthogonal polynomials with respect to Wκ,µ

on Bd. Properties of these polynomials and their relations with other orthogonal
bases will be discussed. Let us mention that recently Dunkl and Dunkl-Cherednik
operators have been used to give the Rodrigues type formula for nonsymmetric Her-
mite and Laguerre polynomials with respect to reflection invariant weight functions
([8, 10]) and for Macdonald’s polynomials ([7]).

2. Rodrigues type formula and Orthogonal bases

For n ∈ Nd
0 let Vd

n(Wκ,µ) denote the subspace of polynomials of degree exactly
n in Πd that are orthogonal with respect to Wκ,µ. A polynomial p ∈ Vd

n(Wκ,µ) if
p ∈ Πd

n and
∫

Bd p(x)q(x)Wκ,µ(x)dx = 0 for all q ∈ Πd
n−1. We show Uα ∈ Vd

n(Wκ,µ).
The definition of Uα in Definition 1.1 shows that it depends on κ and µ. In the

following proposition, we write Uµ
α := Uα to emphasis its dependence on µ.
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Proposition 2.1. Let α ∈ Nd
0 and |α| = n. Then Uµ

α is a polynomial of degree n
and we have a recursive formula

Uµ
α+ei

(x) = −(2µ + 1)xiU
µ+1
α (x) + (1− ‖x‖2)DiU

µ+1
α (x).

Proof. Since (1−‖x‖2)a is invariant under the reflection group, a simple computa-
tion shows that

DiU
µ+1
α (x) =∂i

[
(1− ‖x‖2)−µ−1/2

]
Dα(1− ‖x‖2)|α|+µ+1/2

+ (1− ‖x‖2)−µ−1/2Dα+ei(1− ‖x‖2)|α|+µ+1/2

=(2µ + 1)xi(1− ‖x‖2)−1Uµ+1
α (x) + (1− ‖x‖2)−1Uµ

α+ei
(x),

which proves the recursive relation. That Uµ
α is a polynomial of degree |α| is a

consequence of this relation (use induction if necessary). �

The following proposition plays a key role in proving that Uα is in fact an or-
thogonal polynomial with respect to Wκ,µ on Bd.

Proposition 2.2. Assume that p and q are continuous function and p vanishes on
the boundary of Bd. Then∫

Bd

Dip(x)q(x)h2
κ(x)dx = −

∫
Bd

p(x)Diq(x)h2
κ(x)dx.

Proof. The proof is similar to the the proof of Lemma 3.7 of [3] (Theorem 5.1.18
of [4]). We shall be brief. Assume κv ≥ 1. Analytic continuation can be used to
extend the range of validity to κv ≥ 0. Integration by parts shows∫

Bd

∂ip(x)q(x)h2
κ(x)dx = −

∫
Bd

p(x)∂i(q(x)h2
κ(x))dx

= −
∫

Bd

p(x)∂iq(x)h2
κ(x)dx− 2

∫
Bd

p(x)q(x)hκ(x)∂ihκ(x)dx.

Let Di denote the difference part of Di, Di = ∂i + Di. For a fixed root v, a simple
computation shows that∫

Bd

Dip(x)q(x)h2
κ(x)dx =

∫
Bd

p(x)
∑

v∈R+

κivi
q(x) + q(xσv)

〈x, v〉
h2

κ(x)dx.

Adding these two equations and using the fact that

hκ(x)∂ihκ(x) =
∑

v∈R+

κvvi
1

〈v, x〉
h2

κ(x)

completes the proof. �

Theorem 2.3. For α ∈ Nd
0, the polynomials Uα are elements in Vd

|α|(Wκ,µ).

Proof. Let n = |α|. For each β ∈ Nd
0 and |β| < n, we claim that

(2.1) Dβ(1− ‖x‖2)n+µ−1/2 = (1− ‖x‖2)n−|β|+µ−1/2Qβ(x)
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for some Qβ ∈ Πd
n. This follows from induction. The case β = 0 is trivial with

Q0(x) = 1. Suppose the equation is true for |β| < n− 1. Then

Dβ+ei(1− ‖x‖2)n+µ−1/2 = Di

[
(1− ‖x‖2)n−|β|+µ−1/2Qβ(x)

]
= ∂i

[
(1− ‖x‖2)n−|β|+µ−1/2

]
Qβ(x) + (1− ‖x‖2)n−|β|+µ−1/2DiQβ(x)

= (1− ‖x‖2)n−|β|+µ−3/2
[
−2(n− |β|+ µ− 1/2)xiQβ(x) + (1− ‖x‖2)DiQβ(x)

]
= (1− ‖x‖2)n−|β+ei|+µ−1/2Qβ+ei

(x),

where Qβ+ei
, as defined above, is clearly a polynomial of degree |β| + 1, which

completes the inductive proof. This formula shows, in particular, that Dβ(1 −
‖x‖2)n+µ−1/2 is a function that vanishes on the boundary of Bd if |β| < n. For any
polynomial p ∈ Πd

n−1, using the Proposition 2.2 repeatedly gives∫
Bd

Uα(x)p(x)h2
κ(x)(1− ‖x‖2)µ−1/2dx =

∫
Bd

Dα
[
(1− ‖x‖2)n+µ−1/2

]
p(x)h2

κ(x)dx

= (−1)n

∫
Bd

Dαp(x)(1− ‖x‖2)n+µ−1/2h2
κ(x)dx = 0,

since Di : Pd
n 7→ Pd

n−1, which implies Dαp(x) = 0 as p ∈ Πd
n−1. �

By definition, Uα is orthogonal to polynomials of lower degree. However, if
|α| = |β|, Uα and Uβ are not necessarily orthogonal. In fact, they are not and there
is another family of orthogonal polynomials in Vd

n(Wκ,µ) that are biorthogonal to
Uα. For its definition, we need the projection operator projBn : Pd

n 7→ Vd
n(Wκ,µ).

This operator has an explicit formula ([12]). For p ∈ Pd
n,

(2.2) projBd p(x) =
∑

0≤j≤n/2

1
4jj!(−n− λ− µ + 1)j

∆j
hp(x),

where λ = γκ+(d−1)/2 and (a)j = a(a+1) . . . (a+j−1) is the Pochhammer symbol.
Let Vκ be the intertwining operator between the family of partial derivatives and
Dunkl’s operators, which is a linear operator uniquely determined by ([3])

Vκ1 = 1, VκPd
n = Pd

n, DiVκ = Vκ∂i, 1 ≤ i ≤ d.

The explicit formula of Vκ, however, is known only in the case of the group Zd
2 and

S3, the symmetric group of three variables. For each β ∈ Nd
0, the function Vκxβ is

a homogeneous polynomial of degree |β|. Define

Rβ(x) := projBn Vκ{xβ} = Vκ

 ∑
0≤j≤n/2

1
4jj!(−n− λ− µ + 1)j

∆jxβ

 ,

where the second equality follows from (2.2) and the fact that ∆hVκ = Vκ∆. Clearly
Rβ is an orthogonal polynomial of degree n with respect to Wκ,µ and {Rβ : |β| = n}
is a basis of Vd

n(Wκ,µ). It turns out that Rβ and Uα are biorthogonal. For α ∈ Nd
0,

write α! = α1! . . . αd!.

Theorem 2.4. The two families {Uα : |α| = n, α ∈ Nd
0} and {Rα : |α| = n, α ∈ Nd

0}
are biorthogonal with respect to Wκ,µ on Bd; more precisely,

aκ

∫
Bd

Uα(x)Rβ(x)Wκ,µ(x)dx = Aαδα,β , Aα = (−1)nα!
(µ + 1/2)n

(λ + µ + 1/2)n
.
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In particular, {Uα : |α| = n} is a basis for Vd
n(Wκ,µ).

Proof. Since both Uα and Vβ are orthogonal polynomials with respect to Wκ,µ, we
only need to consider the case that they are both polynomials of degree n. Let
α, β ∈ Nd

0 and |α| = |β|. Following the proof of Proposition 2.3, we have

aκ

∫
Bd

Uα(x)Rβ(x)h2
κ(x)(1− ‖x‖2)µ−1/2dx

= (−1)naκ

∫
Bd

Dα [Rβ(x)] (1− ‖x‖2)n+µ−1/2h2
κ(x)

= (−1)naκ

∫
Bd

Dα
[
Vκxβ

]
(1− ‖x‖2)n+µ−1/2h2

κ(x)

= δα,βα!(−1)naκ

∫
Bd

(1− ‖x‖2)n+µ−1/2h2
κ(x),

since Rβ(x) = xβ+ lower degree polynomials andDαVκxβ = Vκ∂αxβ = α!δα,βVκ1 =
α!δα,β . The constant is computed by∫

Bd

(1− ‖x‖2)n+µ−1/2h2
κ(x) =

∫ 1

0

rd−1+2γ(1− r2)µ−1/2dr

∫
Sd−1

h2
κ(x′)dω(x′)

=
Γ(γ + d/2)Γ(µ + 1/2)
2Γ(γ + µ + (d + 1)/2)

∫
Sd−1

h2
κ(x′)dω(x′)

=
(µ + 1/2)n

(λ + µ + 1/2)n
a−1

κ ,

since a−1
κ is just the above integral with n = 0. Finally, it follows from the biorthog-

onality that the set {Uα : |α| = n} is linearly independent, so that it is a basis of
Vd

n(Wκ,µ). �

For our next property of Uα(x), we will need the reproducing kernel Pn(x, y) of
Vd

n(Wκ,µ). This kernel is characterized by the property that

aκ

∫
Bd

P (x, y)q(y)Wκ,µ(y)dy = q(x), ∀q ∈ Vd
n(Wκ,µ).

It is shown in [12] that the kernel enjoys a closed formula given by

Pn(x, y) =
n + λ + µ

λ + µ
cµ(2.3)

× Vκ

[∫ 1

−1

Cλ+µ
n (〈x, ·〉+ t

√
1− ‖x‖2

√
1− ‖y‖2)(1− t2)µ−1dt

]
(y),

where cµ = 1/
∫ 1

−1
(1− t2)µ−1dt and Vκ acts on the variable represented by the dot

in the formula. This closed formula for the reproducing kernel has been used to
study summability of the Fourier orthogonal expansion on the unit ball. It follows
from the biorthogonal property of {Uα} and {Rβ} that

(2.4) Pn(x, y) =
∑
|α|=n

A−1
α Rα(x)Uα(y).

Indeed, multiplying the right hand side of the above equation by Rβ(y) and inte-
grating, the result is Rβ(y) by the biorthogonality, which shows that the right hand
side satisfies the reproducing property. Since the kernel is unique, it has to equal
the left hand side.
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Let Kn(x, y) = Vκ(〈x, y〉n)/n!. It is known ([3]) that

(2.5) Kn(x,D(y))p(y) = p(x), ∀p ∈ Pd
n,

where D(y) means that Di is taken with respect to the variable y and Kn(x,D(y))
is the operator formed by replacing yi by D(y)

i in Kn(x, y). A bilinear form 〈p, q〉h
is defined on Pd

n by
〈p, q〉h = p(D)q(x), p, q ∈ Pd

n.

This form is symmetric in the sense that 〈p, q〉h = 〈q, p〉h ([3]). We have the
following lemma that will be useful below.

Lemma 2.5. Let α ∈ Nd
0 with |α| = n and q ∈ Pd

j with j < n. Then

(D(y))α
[
q(y)V (y)

κ 〈x, y〉n−j
]

= (n− j)!q(D)xα.

Proof. Let β ∈ Nd
0 and |β| = j. As a function in y, yβVκ〈x, y〉n−j is a polynomial

in Pd
n. Using the fact that the bilinear form is symmetric, we get

(D(y))α
[
yβVκ〈x, y〉n−j

]
/(n− j)! = 〈yα, yβKn−|β|(x, y)〉h

= 〈yβKn−|β|(x, y), yα〉h = Kn−|β|(x,D(y))Dβyα = Dβxα,

where the last step follows from the equation (2.5) with p(y) = Dβyα and n replaced
by n− j. �

Proposition 2.6. Let α ∈ Nd
0 and |α| = n. Then

Uα(x) =
∑

0≤2j≤n

2n(µ + 1/2)n

22j(µ + 1/2)jj!
(−1)n−j(1− ‖x‖2)j∆j

hxα.

In particular, Uα(x) = (−1)n2n(µ + 1/2)nxα + (1− ‖x‖2)Q(x), where Q ∈ Πd
n−2.

Proof. Since DαRβ(y) = α!δα,β , applying (D(y))α to the equation (2.4) gives

α!A−1
α Uα(x) = (D(y))αPn(x, y).

We then use the expression of Pn(x, y) in (2.3). Since the leading coefficient of
Cλ

n(t) is (λ)n2n/n!, it follows that Pn(x, y), as a function of y, satisfies

Pn(x, y) =
n + λ + µ

λ + µ

(λ + µ)n2n

n!
cµ

× Vκ

[∫ 1

−1

(〈x, ·〉+ t
√

1− ‖x‖2
√

1− ‖y‖2)n(1− t2)µ−1dt

]
(y) + . . .

=
(λ + µ + 1)n2n

n!
cµ

∑
0≤2j≤n

(
n

2j

)
bj(1− ‖x‖2)jVκ

[
(1− ‖y‖2)j〈x, ·〉n−2j

]
(y)

+ polynomial of lower degree in y,

where we have used the binomial formula and the fact that
∫ 1

−1
tj(1− t2)µ−1dt = 0

if j is odd, and bj is given by

bj = cµ

∫ 1

−1

t2j(1− t2)µ−1dt =
(1/2)j

(µ + 1/2)j
.



ORTHOGONAL POLYNOMIALS ON THE UNIT BALL 7

Consequently, since Dαp(x) = 0 for any p ∈ Πd
m, m < |α|, we have

α!A−1
α Uα(x) =

(λ + µ + 1)n2n

n!
cµ

∑
0≤j≤n

(
n

2j

)
(1/2)j

(µ + 1/2)j
(1− ‖x‖2)j

× (D(y))α
[
(1− ‖y‖2)jVκ

(
〈x, ·〉n−2j

)
(y)

]
.

Using Lemma 2.5 with q(y) = ‖y‖2j , we have

(D(y))α
[
(1− ‖y‖2)jVκ

(
〈x, ·〉n−2j

)
(y)

]
= (−1)j(D(y))α

[
‖y‖2jVκ

(
〈x, ·〉n−2j

)
(y)

]
= (−1)j(n− 2j)!∆j

hxα.

Putting these equations together we conclude

Uα(x) = Aα
(λ + µ + 1)n2n

α!n!
cµ

∑
0≤j≤n

(−1)j n!(1/2)j

(2j)!(µ + 1/2)j
(1− ‖x‖2)j∆j

hxα.

Using the identity (2j)! = 22j(1/2)jj! to simplify the constants completes the proof.
�

We note that the expansion is still implicit in a way, since the computation of
∆j

hxα can be difficult. In the case of classical orthogonal polynomials on Bd, ∆h

becomes ∆, the multinomial formula gives

∆jxα = (∂2
1 + . . . + ∂2

d)jxα =
∑
|β|=j

j!
β!

∂2βxα =
∑
|β|=j

j!α!
β! (α− 2β)!

xα−2β ,

from which the explicit formula of Uα(x) for Wµ follows. Since Dunkl’s operators
commute, the multinomial formula can also be used to expand ∆hxα. However, we
do not have a nice formula for Dβxα. This is a polynomial of degree |α| − |β| in
x. For |α| = |β| it is equal to 〈xα, xβ〉h and is easily seen to be a polynomial of
κ. However, we do not know an explicit formula for this quantity. We mention the
following recursive formula, which can be used to compute Dβxα of lower degree.

Proposition 2.7. Let α, β ∈ Nd
0, |β| ≤ |α|. If αi > 0, then

Dβxα = xiDβxα−ei + β1Dβ−eixα−ei +
∑

v∈R+

κv〈v, ei〉Pβ,v(D)xα−ei ,

where Pβ,v(y) = (yβ−(yσv)β)/〈y, σv〉 is a homogeneous polynomial of degree |β|−1.

Proof. We use the product rule of Dunkl’s operators ([4, p. 157])

Di(fg)(x) = g(x)Dif(x) + f(x)∂ig(x) +
∑

v∈R+

κvf(xσv)〈v, ei〉
g(x)− g(xσv)

〈x, v〉
,

Using the fact that DiKn(x, y) = xiKn−1(x, y), the product rule with g(y) = yβ

and f(y) = K|α|−|β|(x, y) shows

D(y)
i

[
yβK|α|−|β|(x, y)

]
=yβxiK|α|−|β|−1(x, y) + K|α|−|β|(x, y)βiy

β−ei

+
∑

v∈R+

κvK|α|−|β|(x, yσv)〈v, ei〉
yβ − (yσv)β

〈x, v〉
.
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Let φα,β(x) = (D(y)
i )α

[
yβK|α|−|β|(x, y)

]
. Since Kn(xw, yw) = Kn(x, y) for all

w ∈ G, applying (D(y)
i )α−ei to the above equation gives

φα,β(x) = xiφα−ei,β(x) + βiφα−ei,β−ei
(x) +

∑
v∈R+

κv〈v, ei〉
∑

|τ |=|β|−1

cτφα−ei,τ (xσv),

where (yβ − (yσv)β)/〈x, v〉 =
∑

|τ |=|β|−1 cτyτ . By Lemma 2.5, φα,β(x) = Dβxα,
which gives the stated formula. �

3. Relation to an orthonormal basis

The biorthogonality of two bases is useful for finding the orthogonal expansions
of a function. For example, for f ∈ L2(Wκ,µ), the Fourier orthogonal expansion of
f in terms of the basis {Uα} is given by

f(x) =
∞∑

n=0

∑
|α|=n

bα,nA−1
α Uα(x), bα,n = aκ

∫
Bd

f(x)Rα(x)Wκ,µ(x)dx,

where the equality holds in L2 norm. That the coefficient bα,n is given as above
can be easily seen upon integrating the expansion of f(x)Rα(x) over Bd. Thus,
the biorthogonality provides an easy way to compute the Fourier coefficient bα,n in
the expansion with respect to Uα(x). Note that Rα depends on the intertwining
operator Vκ. The following formula proved in [11] is useful for computing integrals
of Vκf , which works despite the lack of explicit formula for Vκ.

Lemma 3.1. For a continuous function f on Bd,∫
Sd−1

Vκf(x)h2
κ(x)dω(x) = Bκ

∫
Bd

f(x)(1− ‖x‖2)γ−1dx

where the constant Bκ can be determined by setting f(x) = 1.

We use this lemma to work out the expansion in one particular case. Let C
(µ,τ)
n (t)

be polynomials defined by the generating function

cµ

∫ 1

−1

1
(1− 2xt + t2)µ

(1 + t)(1− t2)τ−1dt =
∞∑

n=0

C(µ,τ)
n (x)tn.

These are orthogonal polynomials with respect to the weight function wµ,τ (t) =
|t|2τ (1−t2)µ−1/2 on [−1, 1] and they are related to the Jacobi polynomials P

(α,β)
n (t).

In particular,

(3.1) C
(µ,τ)
2n (t) =

(µ + τ)n

(τ + 1/2)n
P (µ−1/2,τ−1/2)

n (2t2 − 1).

It is known that an orthonormal basis of Vd
n(Wκ,µ) is given by

(3.2)
{

fj,β(x) := mjC̃
(µ,n−2j+λ)
2j (‖x‖)Sh

β (x) : Sh
β ∈ Hd

n−2j(h
2
κ), 0 ≤ 2j ≤ n

}
,

in which c−2
j is the L2(wλ,µ, [−1, 1]) norm of C

(µ,n−2j+λ)
2j (t) and {Sh

β} is an or-

thonormal basis of Hd
n−2j(h

2
κ). In particular, the polynomial C

(µ,λ)
2n (‖x‖) is an

element of Vd
2n(Wκ,µ); hence it can be written in terms of Uα(x).
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Proposition 3.2. The following expansion holds,

(3.3)
C

(µ,λ)
2n (‖x‖)
C

(µ,λ)
2n (1)

=
n!

(µ + 1/2)2n22n

∑
|β|=n

1
β!

U2β(x).

Proof. The fact that {Uα : |α| = 2n} is a basis of Vd
2n(Wκ,µ) shows that we can

write

C
(µ,λ)
2n (‖x‖) =

∑
|α|=2n

bαA−1
α Uα(x).

Using the biorthogonality in Proposition 2.4 and the fact that Rκ(x) = Vκxα + . . .,
we can compute the coefficient bα as follows:

bα = aκ,µ

∫
Bd

C
(µ,λ)
2n (‖x‖)Rα(x)h2

κ(x)(1− ‖x‖2)µ−1dx

= aκ,µ

∫
Bd

C
(µ,λ)
2n (‖x‖)Vκ [xα]h2

κ(x)(1− ‖x‖2)µ−1dx

= bκ,µ

∫ 1

0

r2n+d−1+2γC
(µ,λ)
2n (r)(1− r2)µ−1/2dr · ch

∫
Sd−1

Vκ({·}α)(x′)h2
κ(x′)dω(x′),

using the polar coordinates x = rx′, r > 0 and x′ ∈ Sd−1, where bκ,µ = 1/
∫ 1

0
r2λ(1−

r2)µ−1/2dr and ch = 1/
∫

Sd−1 h2
κ(x′)dω(x′). The first integral can be computed

using the L2 norm and the leading coefficient k
(µ,τ)
n of C

(µ,τ)
n (t) (cf. [4, p. 27]),

bκ,µ

∫ 1

0

r2n+d−1+2γC
(µ,λ)
2n (r)(1− r2)µ−1/2dr

= bκ,µ

(
k(µ,τ)

)−1
∫ 1

0

[
C

(µ,λ)
2n (r)

]2

(1− r2)µ−1/2dr =
(µ + 1/2)n(λ + µ)n

(λ + µ + 1)2n
,

The integral of Vκxα can be computed using Lemma 3.1,

ch

∫
Sd−1

Vκ({·}α)(x′)h2
κ(x′)dω = aκ

∫
Bd

xα(1− ‖x‖2)γ−1dx,

where aκ = 1/
∫

Bd(1 − ‖x‖2)γ−1dx, which shows that the integral is zero if one
of αi is odd. If α = 2β, then the integral over Bd can be evaluated using polar
coordinates and the result is

ch

∫
Sd−1

Vκ({·}α)(x′)h2
κ(x′)dω =

(1/2)β

(λ + 1/2)β
.

Putting these equations together, we have proved that

C
(µ,λ)
2n (‖x‖) =

∑
|β|=n

(µ + 1/2)n(µ + λ)n

(µ + λ + 1)2n

(1/2)β

(λ + 1/2)β
A−1

2β U2β(x)

Using the formula of C
(µ,λ)
2n (1) ([4, p. 27]) and simplifying the coefficients completes

the proof. �
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Let us write the expansion explicitly. Using the multinomial formula and the
Rodrigues type formula of Uβ(x), we see that the equation (3.3) gives

C
(µ,λ)
2n (‖x‖)
C

(µ,λ)
2n (1)

=
1

(µ + 1/2)2n22n
(1− ‖x‖2)−µ+1/2

∑
|β|=n

n!
β!
D2β(1− ‖x‖2)2n+µ−1/2

=
1

(µ + 1/2)2n22n
(1− ‖x‖2)−µ+1/2∆n

h(1− ‖x‖2)2n+µ−1/2.

In particular, if κ = 0 and d = 1, so that λ = 0, then C
(µ,0)
2n (‖x‖) becomes the

Gegenbauer polynomial Cµ
2n(x) and the above formula is precisely the Rodrigues

formula for the Gegenbauer polynomials. Furthermore, in polar coordinates, the
h-Laplacian can be written as

(3.4) ∆h =
∂2

∂r2
+

2λ + 1
r

∂

∂r
+

1
r2

∆h,0,

where ∆h,0 is the spherical part of the operator which has h-harmonics as eigen-
functions. More precisely, if Sh

n ∈ Hd
n(h2

κ) then

(3.5) ∆h,0S
h
n(x) = −n(n + 2λ)Sh

n(x).

This leads to the following Rodrigues type formula for C
(µ,λ)
2n (t).

Proposition 3.3. For n ≥ 0,

C
(µ,λ)
2n (r)

C
(µ,λ)
2n (1)

=
1

(µ + 1/2)2n22n
(1− r2)−µ+1/2

(
d2

dr2
+

2λ

r

d

dr

)n

(1− r2)2n+µ−1/2.

By the relation (3.1), this gives a Rodrigues type formula for the Jacobi polyno-
mials, which can be rewritten as

P (α,β)
n (2r2 − 1) =

(α + 1)n

(α + 1)2nn!22n
(1− r2)−α

(
d2

dr2
+

2β + 1
r

d

dr

)n

(1− r2)2n+α.

In fact, this formula was discovered by Koornwinder [6] in the course of giving an
analytic proof for his addition formula for the Jacobi polynomials.

It is possible to derive a Rodrigues type formula for other elements in the or-
thonormal basis (3.2). We have the following,

Proposition 3.4. Let Sh
n−2j be an h-spherical harmonic in Hd

n(h2
κ). Then

C
(µ,n−2j+λ)
2j (‖x‖)

C
(µ,n−2j+λ)
2j (1)

Sh
n−2j(x)

=
1

(µ + 1/2)2j22j
(1− ‖x‖2)−µ+1/2∆j

h

[
(1− ‖x‖2)2j+µ−1/2Sh

n−2j(x)
]
.

Proof. Let g be a differentiable function defined on [0, 1] and Sh
m ∈ Hd

m(h2
κ). We

claim that

∆h

[
g(‖x‖)Sh

m(x)
]

= Sh
m(x)

(
d2

dr2
+

2λ + 2m + 1
r

d

dr

)
g(r), r = ‖x‖.



ORTHOGONAL POLYNOMIALS ON THE UNIT BALL 11

Indeed, since Sh
m is a homogeneous polynomial of degree r, Sh

m(x) = rmSh
m(x′)

under the polar coordinates. Therefore, using (3.4) and (3.5),

∆h

[
g(‖x‖)Sh

m(x)
]

=
(

d2

dr2
+

2λ + 1
r

d

dr

)
(rmg(r)) · Sh

m(x′)

−m(m + 2λ)g(r)rm−2Sh
m(x′)

=
[(

d2

dr2
+

2λ + 2m + 1
r

d

dr

)
g(r)

]
rmSh

m(x′),

where the second equality follows from a simple computation. Clearly, we can use
the formula repeatedly to get

∆j
h

[
g(‖x‖)Sh

m(x)
]

= Sh
m(x)

(
d2

dr2
+

2λ + 2m + 1
r

d

dr

)j

g(r).

Applying the above formula with g(r) = (1 − r2)2j+µ−1/2 and m = n − 2j, the
stated formula follows from Proposition 3.3. �
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[5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions,
McGraw-Hill, Vol 2, New York, 1953.

[6] T. Koornwinder, Jacobi polynomials, III. An analytic proof of the addition formula, SIAM
J. Math. Anal., 6 (1975), p. 533-543.

[7] L. Lapointe and L. Vinet, Rodrigues formulas for the Macdonald polynomials, Adv. Math.
130 (1997), 261–279.

[8] A. Nishino, H. Ujino and M. Wadati, Rodrigues formula for the nonsymmetric multivariable
Laguerre polynomial, J. Phys. Soc. Japan 68 (1999),797–802.
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