
Generalized translation operator and

approximation in several variables

Yuan Xu 1

Department of Mathematics
University of Oregon

Eugene, Oregon 97403-1222.

Abstract

Generalized translation operators for orthogonal expansions with respect to families
of weight functions on the unit ball and on the standard simplex are studied. They
are used to define convolution structures and modulus of smoothness for these re-
gions, which are in turn used to characterize the best approximation by polynomials
in the weighted Lp spaces. In one variable, this becomes the generalized translation
operator for the Gegenbauer polynomial expansions.

1 Introduction

Let wλ denote the weight function wλ(t) = (1− t2)λ−1/2 on [−1, 1]. Let bλ be
the normalization constant of wλ, b

−1
λ =

∫ 1
−1wλ(s)ds. The orthogonal polyno-

mials with respect to wλ are the Gegenbauer polynomials Cλ
n . The generalized

translation operator with respect to wλ is defined by

Tsf(t) = bλ−1/2

∫ 1

−1
f

(
st+ u

√
1− s2

√
1− t2

)
(1− u2)λ−1du. (1.1)

It plays the role of translation for the trigonometric series and can be used to
define a convolution structure f ? g for f, g ∈ L1(wλ, [−1, 1]),

(f ? g)(t) = bλ

∫ 1

−1
f(s)Ttg(s)wλ(s)ds, (1.2)
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as introduced by Gelfand [17] and Bochner [9]. The convolution and the gen-
eralized translation operator have been used to study Fourier orthogonal ex-
pansions in Gegenbauer polynomials (see, for example, [3,5,6,11,22,23,28]).
Using the product formula of the Gegenbauer polynomials, the generalized
translation operator can also be defined by the equation

TsC
λ
n(t) =

Cλ
n(s)

Cλ
n(1)

Cλ
n(t), n ≥ 0. (1.3)

The purpose of this paper is to study the generalized translation operator for
weight functions defined on the unit ball Bd = {x : ‖x‖ ≤ 1} ⊂ Rd and on
the standard simplex

T d = {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, 1− |x| ≥ 0}, |x| = x1 + . . .+ xd,

in Rd and use them to study weighted approximation and orthogonal expan-
sions in several variables. To define the weight functions, we start from the
reflection invariant weight function considered by Dunkl [13].

For a nonzero vector v ∈ Rd, let σv denote the reflection with respect to the
hyperplane perpendicular to v; that is, xσv := x − 2(〈x, v〉/‖v‖2)v, x ∈ Rd,
where 〈x, y〉 denote the usual Euclidean inner product and ‖x‖ denote the
usual Euclidean norm ‖x‖2 = 〈x, x〉. The weight function hκ is defined by

hκ(x) =
∏

v∈R+

|〈x, v〉|κv , x ∈ Rd, (1.4)

in which R+ is a fixed positive root system of Rd, normalized so that 〈v, v〉 = 2
for all v ∈ R+, and κ is a nonnegative multiplicity function v 7→ κv defined
on R+ with the property that κu = κv whenever σu is conjugate to σv in the
reflection group G generated by the reflections {σv : v ∈ R+}. Then hκ is
invariant under the reflection group G, a subgroup of the orthogonal group.
The simplest example is given by the case G = Zd

2 for which hκ is just the
product weight function

hκ(x) =
d∏

i=1

|xi|κi , κi ≥ 0. (1.5)

Other examples include weight functions invariant under the symmetric group
and the hyperoctahedral group,

∏
1≤i<j≤d

|xi − xj|κ and
d∏

i=1

|xi|κ0
∏

1≤i<j≤d

|x2
i − x2

j |κ,

respectively.
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The weight functions on the unit ball Bd that we shall consider are of the form

WB
κ,µ(x) = h2

κ(x)(1− ‖x‖2)µ−1/2, x ∈ Bd, (1.6)

where µ ≥ 0 and hκ is a reflection invariant weight function as in (1.4), and
the weight functions on the simplex that we shall consider are of the form

W T
κ,µ(x) = h2

κ(
√
x1, . . . ,

√
xd)(1− |x|)µ−1/2/

√
x1 · · ·xd, (1.7)

where µ ≥ 0 and hκ is a reflection invariant weight function as in (1.4), and we
assume that hκ is even in each of its variables (for example, weight functions
invariant under Zd

2 and the hyperoctahedral group on Rd). These include the
classical weight functions on these domains, which are

WB
µ (x) = (1− ‖x‖2)µ−1/2, x ∈ Bd, (1.8)

on the unit ball (taking hκ(x) = 1) and

W T
κ (x) = x

κ1−1/2
1 · · ·xκd−1/2

d (1− |x|)κd+1−1/2, x ∈ T d, (1.9)

on the simplex (taking hκ(x) =
∏d

i=1 |xi|κi and κd+1 = µ). For d = 1, W T
κ (x) is

the Jacobi weight function on the interval [0, 1].

The orthogonal structures for WB
κ,µ on the ball and for W T

κ,µ on the simplex are
closely related to the orthogonal structure of h-harmonics on the unit sphere
Sd = {x : ‖x‖ = 1} of Rd+1. Our study of the generalized translation operators
relies on that of the weighted spherical means, studied in [36,37], which are
the generalizations of the ordinary spherical means

Tθf(x) =
1

σd(sin θ)d

∫
〈x,y〉=cos θ

f(y)dω(y), (1.10)

where σd =
∫
Sd dω = 2π(d+1)/2/Γ((d + 1)/2) is the surface area of Sd. The

ordinary spherical means have been used as main tool for approximation on
the sphere; see, for example, [6,21,19,22,26]. The weighted spherical means
are defined implicitly via an integral relation. In [37] the weighted means were
used to define a modulus of smoothness, which was shown to be equivalent to
a K-functional and used to characterize the weighted Lp best approximation
by polynomials. The similar K-functional was also defined and used to char-
acterize the weighted best approximation on Bd and on T d, but the modulus
of smoothness was not defined since the analog of the spherical means for Bd

and T d seemed to be artificial. It has been realized only recently in [38] that
the analog of the spherical means for Bd and T d, as generalized translation
operators on these regions, are of interest. Since the main purpose of [38] is to
define weighted maximal functions and use them to prove results on almost
everywhere convergence, the generalized translation operators themselves were
not studied there. We complete this circle of ideas in the present paper.
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One of our results gives an explicit integral formula for the generalized trans-
lation operator with respect to the classical weight function WB

µ in (1.8) on
the unit ball (see (3.9), which extends the formula (1.1) to several variables.
No integral formula is known for any other weight functions.

The paper is organized as follows. In the next section we recall the background
and results for h-harmonics and the weighted spherical means. The results on
the unit ball are presented in Section 3 and the results on the simplex appear
in Section 4.

2 Weighted spherical means and weighted approximation on Sd−1

Let hκ be the reflection invariant weight function defined in (1.4). We denote
by aκ the normalization constant of hκ, a

−1
κ =

∫
Sd−1 h2

κ(y)dω, and denote by
Lp(h2

κ), 1 ≤ p ≤ ∞, the space of functions defined on Sd−1 with the finite
norm

‖f‖κ,p :=
(
aκ

∫
Sd−1

|f(y)|ph2
κ(y)dω(y)

)1/p

, 1 ≤ p <∞,

and for p = ∞ we assume that L∞ is replaced by C(Sd), the space of continu-
ous functions on Sd−1 with the usual uniform norm ‖f‖∞, since we are mainly
interested in problems in approximation theory. The case κ ≡ 0 corresponds
to the usual (unweighted) Lp space on Sd−1.

2.1 Background. The essential ingredient of the theory of h-harmonics is a
family of first-order differential-difference operators, Di, called Dunkl opera-
tors, which generates a commutative algebra; these operators are defined by
([13])

Dif(x) = ∂if(x) +
∑

v∈R+

kv
f(x)− f(xσv)

〈x, v〉
〈v, εi〉, 1 ≤ i ≤ d,

where ε1, . . . , εd are the standard unit vectors of Rd. The h-Laplacian is defined
by ∆h = D2

1 + . . . + D2
d and it plays the role similar to that of the ordinary

Laplacian. Let Pd
n denote the subspace of homogeneous polynomials of degree

n in d variables. An h-harmonic polynomial P of degree n is a homogeneous
polynomial P ∈ Pd

n such that ∆hP = 0. Furthermore, let Hd
n(h2

κ) denote the
space of h-harmonic polynomials of degree n in d variables and define

〈f, g〉κ := aκ

∫
Sd−1

f(x)g(x)h2
κ(x)dω(x).

Then 〈P,Q〉κ = 0 for P ∈ Hd
n(h2

κ) and Q ∈ Πd
n−1, where Πd

n denote the
space of polynomials of degree at most n in d variables. The spherical h-
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harmonics are the restriction of h-harmonics to the unit sphere. It is known
that dimHn(h2

κ) = dimPd
n − dimPd

n−2 with dimPd
n =

(
n+d−1

d

)
.

In terms of the polar coordinates y = ry′, r = ‖y‖, the h-Laplacian operator
∆h takes the form ([35])

∆h =
∂2

∂r2
+

2λκ + 1

r

∂

∂r
+

1

r2
∆h,0,

where ∆h,0 is the Laplace-Beltrami operator on the sphere, and throughout
this paper, we fix the value of λκ as

λ := λκ = γκ +
d− 1

2
with γκ =

∑
v∈R+

κv. (2.1)

Applying ∆h to h-harmonics Y ∈ Hn(h2
κ) with Y (y) = rnY (y′) shows that

spherical h-harmonics are eigenfunctions of ∆h,0; that is,

∆h,0Y (x) = −n(n+ 2λκ)Y (x), x ∈ Sd−1, Y ∈ Hd
n(h2

κ). (2.2)

For further background materials, see [13,14] and the references in [14].

The standard Hilbert space theory shows that

L2(h2
κ) =

∞⊕
n=0

Hd
n(h2

κ).

That is, with each f ∈ L2(h2
κ) we can associate its h-harmonic expansion

f(x) =
∞∑

n=0

Yn(h2
κ; f, x), x ∈ Sd−1,

in L2(h2
κ) norm. For the surface measure (κ = 0), such a series is called

the Laplace series (cf. [15, Chapt. 12]). The orthogonal projection Yn(h2
κ) :

L2(h2
κ) 7→ Hd

n(h2
κ) takes the form

Yn(h2
κ; f, x) :=

∫
Sd−1

f(y)Pn(h2
κ;x, y)h

2
κ(y) dω(y), (2.3)

where the kernel Pn(h2
κ;x, y) is the reproducing kernel of the space of h-

harmonics Hd
n(h2

κ) in L2(h2
κ). The kernel Pn(h2

κ;x, y) enjoys a compact formula
in terms of the intertwining operator between the commutative algebra gen-
erated by the partial derivatives and the one generated by Dunkl operators.
This operator, Vκ, is linear and it is determined uniquely by

VκPd
n ⊂ Pd

n, Vκ1 = 1, DiVκ = Vκ∂i, 1 ≤ i ≤ d.
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The formula for the reproducing kernel for Hd
n(h2

κ) is given in terms of the
Gegenbauer polynomials

Pn(h2
κ;x, y) =

n+ λκ

λκ

Vκ[C
λκ
n (〈·, y〉)](x). (2.4)

An explicit formula of Vκ is known only in the case of symmetric group S3 for
three variables and in the case of the abelian group Zd

2. In the latter case, Vκ

is an integral operator,

Vκf(x) = cκ

∫
[−1,1]d

f(x1t1, . . . , xdtd)
d∏

i=1

(1 + ti)(1− t2i )
κi−1dt, (2.5)

where cκ is the normalization constant determined by Vκ1 = 1, cκ = cκ1 . . . cκd

and c−1
r =

∫ 1
−1(1− t2)r−1dt. If some κi = 0, then the formula holds under the

limit relation

lim
λ→0

cλ

∫ 1

−1
f(t)(1− t)λ−1dt = [f(1) + f(−1)]/2.

One important property of the intertwining operator is that it is positive ([25])
for any reflection group,, that is, Vκp ≥ 0 if p ≥ 0. One can also study the
dual of this operator, as in [30].

2.2 Weighted spherical means, convolution and approximation. We
recall the results developed in [36,37], some of which will be needed later and
others are cited to show what can be expected in the cases Bd and T d. For
f ∈ Lp(h2

κ) and g ∈ L1(wλ; [−1, 1]), we define a sort of convolution

(f ?κ g)(x) := aκ

∫
Sd−1

f(y)Vκ[g(〈x, · 〉)](y)h2
κ(y)dω. (2.6)

For the surface measure (hκ(x) = 1 and Vκ = id), this is called the spherical
convolution in [12], and it has been used by many authors, see, for example,
[7–9,19,21,22,26]. It satisfies many properties of the usual convolution in Rd.
The weighted spherical means, T κ

θ , with respect to h2
κ is defined implicitly by

the formula

bλ

∫ π

0
T κ

θ f(x)g(cos θ)(sin θ)2λdθ = (f ?κ g)(x), 0 ≤ θ ≤ π, (2.7)

where g is any L1(wλ) function. That Tθf is well defined is shown in [36,37].
For κ = 0, Vκ = id, the weighted spherical means coincide with the weighted
means Tθf in (1.10). Many properties of Tθf , given in [6,22], can be extended
to the weighted means T κ

θ f . In particular, we have

‖T κ
θ f‖κ,p ≤ ‖f‖κ,p and lim

θ→0
‖T κ

θ f − f‖κ,p = 0.
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Consequently, the following definition of a modulus of smoothness, ωr(f ; t)κ,p,
makes sense. Let r > 0, for f ∈ Lp(h2

κ), 1 ≤ p <∞, or f ∈ C(Sd−1), define

ωr(f, t)κ,p := sup
0≤θ≤t

‖(I − T κ
θ )r/2‖κ,p. (2.8)

For the unweighted case (κ = 0), such a definition was given in [26] and the
case r being an even integer had appeared in several early references (see
the discussion in [26]). One of the important properties of this modulus of
smoothness is that it is equivalent to a K-functional.

Let r > 0. Recall the equation (2.2). We define (−∆h,0)
r/2g by

(−∆h,0)
r/2g ∼

∞∑
n=1

(n(n+ 2λκ))
r/2Yn(h2

κ; g)

for g ∈ L2(h2
κ). Furthermore, define the function space Wp

r (h2
κ) by

Wp
r (h2

κ) =
{
f ∈ Lp(h2

κ) : (k(k + 2λ))
r
2Pk(h

2
κ; f) = Pk(h

2
κ; g) some g ∈ Lp(h2

κ)
}
.

The K-functional between Lp(h2
κ) and Wp

r (h2
κ) is defined by

Kr(f ; t)κ,p := inf
{
‖f − g‖κ,p + tr‖(−∆h,0)

r/2 g‖κ,p, g ∈ Wp
r (h2

κ)
}
. (2.9)

It is equivalent to the modulus of smoothness in the following sense:

Theorem 2.1. For 1 ≤ p ≤ ∞, there exist two positive constants c1 and c2
such that for f ∈ Lp(h2

κ),

c1ωr(f ; t)κ,p ≤ Kr(f ; t)κ,p ≤ c2 ωr(f ; t)κ,p.

The modulus of smoothness or the K-functional can be used to characterize
the best approximation by polynomials. Let

En(f)κ,p := inf
{
‖f − P‖κ,p : P ∈ Πd

n

}
,

We state the direct and the inverse theorems in terms of the modulus of
smoothness.

Theorem 2.2. For f ∈ Lp(h2
κ), 1 ≤ p ≤ ∞,

En(f)κ,p ≤ c ωr(f ;n−1)κ,p.

On the other hand,

ωr(f, n
−1)κ,p ≤ c n−r

n∑
k=0

(k + 1)r−1Ek(f)κ,p.
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These theorems are proved in [36,37], following closely the method developed
in [26] where these theorems were essentially established in the case κ = 0.
For results in the unweighted cases, see also [19]. The problem of best approx-
imation has been studied by many authors. We refer to [6,18,21,22,24,26,31]
and the references therein.

One can study summability of h-harmonic expansions (see [32,34,20]) and the
convolution structure ?κ is useful in this direction (see [36,38]). For summa-
bility of the ordinary harmonic expansions (unweighted case), we refer to
[6,7,10,18,19,21,22,26] and the references therein.

In the case of usual surface measure on Sd−1, there are various other moduli of
smoothness that have been used to characterize the best approximation; see,
for example, [27,31]. It would be nice to define one that can be given explicitly
for the weighted case.

3 Generalized translation operator and Approximation on Bd

Recall the weight function WB
κ,µ(x) defined in (1.6), in which hκ is an reflection

invariant weight function defined on Rd. Let aκ,µ denote the normalization
constant for WB

κ,µ. Denote by Lp(WB
κ,µ), 1 ≤ p ≤ ∞, the space of measurable

functions defined on Bd with the finite norm

‖f‖W B
κ,µ,p :=

(
aκ,µ

∫
Bd
|f(x)|pWB

κ,µ(x)dx
)1/p

, 1 ≤ p <∞,

and for p = ∞ we assume that L∞ is replaced by C(Bd), the space of contin-
uous function on Bd.

3.1 Background. Let Vd
n(WB

κ,µ) denote the space of orthogonal polynomials
of degree n with respect to WB

κ,µ on Bd. Elements of Vd
n(WB

κ,µ) are closely
related to the h-harmonics associated with the weight function

hκ,µ(y1, . . . , yd+1) = hκ(y1, . . . , yd)|yd+1|µ

on Rd+1, where hκ is associated with the reflection group G. The function hκ,µ

is invariant under the group G×Z2. Let Yn be such an h-harmonic polynomial
of degree n and assume that Yn is even in the (d + 1)-th variable; that is,
Yn(x, xd+1) = Yn(x,−xd+1). We can write

Yn(y) = rnPn(x), y = r(x, xd+1) ∈ Rd+1, r = ‖y‖, (x, xd+1) ∈ Sd,
(3.1)

in polar coordinates. Then Pn is an element of Vd
n(WB

κ,µ) and this relation is an
one-to-one correspondence ([34]). Under the changing variables y 7→ r(x, xd+1),
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hκ,µ becomes WB
κ,µ and the elementary formula

∫
Sd
P (y)dω =

∫
Bd

[
P (x,

√
1− ‖x‖2 ) + P (x,−

√
1− ‖x‖2 )

]
dx√

1− ‖x‖2
(3.2)

shows the relation between their normalization constants.

Let ∆κ,µ
h denote the h-Laplacian associated with hκ,µ and ∆κ,µ

h,0 denote the
corresponding spherical h-Laplacian. When ∆κ,µ

h is applied to functions on
Rd+1 that are even in the (d+1)-th variable, the spherical h-Laplacian can be
written in polar coordinates y = r(x, xd+1) as ([35]):

∆κ,µ
h,0 = ∆h − 〈x,∇〉2 − 2(λκ + µ)〈x,∇〉,

in which the operators ∆h and ∇ = (∂1, . . . , ∂d) are all acting on x variables
and ∆h is the h-Laplacian associated with hκ on Rd. Define

DB
κ,µ := ∆h − 〈x,∇〉2 − 2(λκ + µ)〈x,∇〉,

as an operator acting on functions defined on Bd. It follows that the elements
of Vd

n(Wκ,µ) are eigenfunctions of DB
κ,µ:

DB
κ,µP = −n(n+ 2λκ + 2µ)P, P ∈ Vd

n(WB
κ,µ). (3.3)

For the classical weight function WB
µ (x) = (1− ‖x‖2)µ−1/2, the operator DB

κ,µ

becomes a pure differential operator which is a classical result going back to
Hermite (see [4] and [15, Chapt. 12]).

For f ∈ L2(WB
κ,µ), its orthogonal expansion is given by

L2(WB
κ,µ) =

∞⊕
n=0

Vd
n(WB

κ,µ) : f =
∞∑

n=0

projκ,µ
n f,

where projκ,µ
n : L2(WB

κ,µ) 7→ Vd
n(WB

κ,µ) is the projection operator, which can be
written as an integral

projκ,µ
n f(x) = aκ,µ

∫
Bd
f(y)Pn(WB

κ,µ;x, y)WB
κ,µ(y)dy, (3.4)

where Pn(WB
κ,µ;x, y) is the reproducing kernel of Vd

n(WB
κ,µ). The intertwining

operator associated with hκ,µ, denoted by Vκ,µ, is given in terms of the in-
tertwining operator Vκ associated to hκ and the operator V Z2

µ associated to
hµ(x) = |xd+1|µ, x ∈ Rd+1, which is given explicitly by (2.5) (setting d = 1
and κ1 = µ there); that is,

Vκ,µf(x, xd+1) = cµ

∫ 1

−1
Vκ[f(·, xd+1t)](x)(1 + t)(1− t2)µ−1dt,
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where x ∈ Rd. Since polynomials in Vn(WB
κ,µ) correspond to h-harmonics that

are even in the last coordinates, we introduce a modified operator

V B
κ,µf(x, xd+1) := [Vκ,µf(x, xd+1) + Vκ,µf(x,−xd+1)] (3.5)

= cµ

∫ 1

−1
Vκ[f(·, xd+1t)](x)(1− t2)µ−1dt,

acting on functions defined on Rd+1.

3.2 Generalized translation operator. For the weight function WB
κ,µ on

Bd, we define a convolution, denoted by ?B
κ,µ, as follows: For f ∈ L1(WB

κ,µ) and
g ∈ L1(wλκ+µ, [−1, 1]),

(f ?B
κ,µ g)(x) = aκ,µ

∫
Bd
f(y)V B

κ,µg(〈X, ·〉)(Y )WB
κ,µ(y)dy,

where X = (x,
√

1− ‖x‖2) and Y = (y,
√

1− ‖y‖2). The properties of this
convolution can be derived from the corresponding convolution on the sphere.
Let f ?κ,µ g denote the convolution defined in (2.6) with respect to hκ,µ. In
fact, (3.2) immediately implies the following proposition.

Proposition 3.1. For f ∈ L1(WB
κ,µ) and g ∈ L1(wλκ+µ, [−1, 1]),

(f ?B
κ,µ g)(x) = (F ?κ,µ g)(x,

√
1− ‖x‖2), where F (x, xd+1) := f(x).

We now define the generalized translation operator on Bd implicitly via the
convolution operator.

Definition 3.2. For f ∈ L1(WB
κ,µ), the generalized translation operator

Tθ(W
B
κ,µ; f) is defined implicitly by

bλ+µ

∫ π

0
Tθ(W

B
κ,µ; f, x)g(cos θ)(sin θ)2λ+2µdθ = (f ?B

κ,µ g)(x), (3.6)

where λ = λκ, for every g ∈ L1(wλ+µ, [−1, 1]).

The generalized translation operator Tθ(W
B
κ,µ) is related to the weighted spher-

ical means associated with the weight function hκ,µ on Sd. For F ∈ L1(h2
κ,µ),

denote the weighted spherical means by T κ,µ
θ F as defined in (2.7). From the

definitions of Tθ(W
B
κ,µ) and T κ,µ

θ , Proposition 3.1 shows that the following re-
lation holds:

Proposition 3.3. For each x ∈ Bd, Tθ(W
B
κ,µ; f, x) is a uniquely determined

L∞ function in θ. Furthermore, define F (x, xd+1) = f(x); then

Tθ(W
B
κ,µ; f, x) = T κ,µ

θ F (x, xd+1), x ∈ Bd, xd+1 =
√

1− ‖x‖2. (3.7)
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We could of course define the generalized translation operator by the formula
(3.7). The convolution ?B

κ,µ, however, will be used in the following section.
These relations allow us to derive the following properties of the generalized
translation operator.

Proposition 3.4. The generalized translation operator Tθ(W
B
κ,µ; f) satisfies

the following properties:

(1) Let f0(x) = 1, then Tθ(W
B
κ,µ; f0, x) = 1;

(2) For f ∈ L1(WB
κ,µ),

projκ,µ
n Tθ(W

B
κ,µ; f) =

Cλκ+µ
n (cos θ)

Cλκ+µ
n (1)

projκ,µ
n f ;

(3) Tθ(W
B
κ,µ) : Πd

n 7→ Πd
n and

Tθ(W
B
κ,µ; f) ∼

∞∑
n=0

Cλκ+µ
n (cos θ)

Cλκ+µ
n (1)

projκ,µ
n f ;

(4) For 0 ≤ θ ≤ π,

Tθ(W
B
κ,µ; f)− f =

∫ θ

0
(sin s)−2λκ−2µds

∫ s

0
Tt(W

B
κ,µ;DB

κ,µf)(sin t)2λκ+2µdt;

(5) For f ∈ Lp(WB
κ,µ), 1 ≤ p <∞, or f ∈ C(Bd),

‖Tθ(W
B
κ,µ; f)‖W B

κ,µ,p ≤ ‖f‖W B
κ,µ,p and lim

θ→0
‖Tθ(W

B
κ,µ; f)− f‖W B

κ,µ,p = 0.

Proof. All these properties follow from the integral relation (3.2), the relation

Pn(WB
κ,µ;x, y) =

1

2

[
Yn(h2

κ,µ; (x,
√

1− ‖x‖2), (y,
√

1− ‖y‖2)) (3.8)

+ Yn(h2
κ,µ; (x,

√
1− ‖x‖2), (y,−

√
1− ‖y‖2))

]
,

the connection between Tθ(W
B
κ,µ; f) and T κ,µ

θ F in Proposition 3.4, and the cor-
responding relations for T κ,µ

θ F in [37]. Recall the projection operator Yn(h2
κ,µ;F )

of h-harmonics defined in (2.3). The relations (3.2) and (3.8) show that

projκ,µ
n f(x) = Yn(h2

κ,µ;F,X), X = (x,
√

1− ‖x‖2).

Hence, it follows from Proposition 3.4 and property (2) of Proposition 2.4 in
[37] that

projκ,µ
n Tθ(W

B
κ,µ; f, x) = projκ,µ

n T κ,µ
θ F (X) = Yn(h2

κ,µ;T κ,µ
θ F,X)

=
Cλ+µ

n (cos θ)

Cλ+µ
n (1)

Yn(h2
κ,µ;F,X) =

Cλ+µ
n (cos θ)

Cλ+µ
n (1)

projκ,µ
n f(x).

11



This proves (2). The property (3) follows from (2). Since F (x, xd+1) = f(x) is
evidently even in xd+1, the definition shows that ∆κ,µ

0 F (x, xd+1) = DB
κ,µf(x).

Consequently, by the definition of T κ,µ
θ and (3.7), we conclude that

T κ,µ
θ ∆κ,µ

0 F (x, xd+1) = Tθ(W
B
κ,µ;DB

κ,µf, x),

from which the property (4) follows from the corresponding property of T κ,µ
θ

(Proposition 2.4 in [37]). Finally, to prove the property (5), we note that it
follows from the definition of Vκ,µ at (3.5) that

Vκ,µ [g(〈(x,−xd+1), ·〉)] (y, yd+1) = Vκ,µ [g(〈(x, xd+1), ·〉)] (y,−yd+1)

Hence, the definition of T κ,µ
θ shows that T κ,µ

θ F (x, xd+1) = T κ,µ
θ F (x,−xd+1).

Consequently, by (3.2),∫
Bd

∣∣∣Tθ(W
B
κ,µ; f, x)

∣∣∣pW p
κ,µ(x)dx =

∫
Bd

∣∣∣∣T κ,µ
θ F (x,

√
1− ‖x‖2)

∣∣∣∣pW p
κ,µ(x)dx

=
∫

Sd
|T κ,µ

θ F (y)|p h2
κ,µ(y)dy.

Let ‖ · ‖κ,µ,p denote the Lp(h2
κ,µ) norm on Sd. For f(x) = F (X), we have

‖f‖W B
κ,µ,p = ‖F‖κ,µ,p. Hence, the property (5) follows from the corresponding

property of T κ,µ
θ (Proposition 2.4 in [37]).

Recall the definition of the generalized translation operator for the Gegen-
bauer expansions at (1.1). The reason that Tθ(W

B
κ,µ) is called the generalized

translation operator lies in the property (2), since for d = 1 and κ = 0 the
property (2) agrees with (1.3).

Once the generalized translation operator is defined, we see that (3.6) expresses
the convolution of f?B

κ,µg as an integral of one variable. For g ∈ L1(wλ, [−1, 1]),
its Gegenbauer expansion can be written as

g(t) ∼
∞∑

n=0

ĝλ
n

n+ λ

λ
Cλ

n(t), where ĝλ
n = bλ

∫ 1

−1
g(s)

Cλ
n(s)

Cλ
n(1)

wλ(s)ds,

since the L2(wλ, [−1, 1]) norm of Cλ
n is equal to Cλ

n(1)λ/(n + λ). Hence, it
follows from the property (2) of Proposition 3.4 that

projκ,µ
n (f ?B

κ,µ g) = ĝλ+µ
n projκ,µ

n f,

which is the analog of the familiar property f̂ ∗ g = f̂ · ĝ of the ordinary
convolution. The convolution ?B

κ,µ also satisfies several other properties of the
ordinary convolution. For example, it satisfies Young’s inequality:

12



Proposition 3.5. For f ∈ Lq(WB
κ,µ) and g ∈ Lr(wλ+µ; [−1, 1]),

‖f ?B
κ,µ g‖W B

κ,µ,p ≤ ‖f‖W B
κ,µ,q‖g‖wλ+µ,r,

where p, q, r ≥ 1, p−1 = r−1+q−1−1 and ‖·‖wλ+µ,r denotes the Lr(wλ+µ, [−1, 1])
norm.

This follows from Proposition 3.1 and Young’s inequality for ?κ,µ in [37].

3.3 Generalized translation operator for the classical weight WB
µ .

Recall the integral formula (1.1) of the generalized translation operator for
the weight function wλ. In the case of the classical weight function WB

µ in
(1.8), it is possible to give an integral formula for the generalized translation
operator in the same spirit.

To see how such a formula may look like, we turn to a further relation between
functions on Bd and those on Sd+m, where m is a positive integer. For f(x)
on Bd, define F (x, x′) = f(x) on Rd+m. Then∫

Sd+m
F (y)dω(y) =

∫
Bd
f(x)(1− ‖x‖2)(m−1)/2dx.

As shown in [34], this relation preserves orthogonal structure. This suggests a
relation between Tθ(W

B
µ ; f) on Bd and the ordinary spherical means Tθf on

Sd+m, similar to the one in Proposition 3.3 (which is the case m = 0). On the
other hand, the spherical means is given by the formula (1.10). Hence, it is
possible to derive a formula for Tθ(W

B
µ ; f) from that of spherical means. It is

this heuristic argument that suggests the following formula.

Let I denote the d× d identity matrix and define the symmetric matrix

A(x) = (1− ‖x‖2)I + xTx, x = (x1, . . . , xd),

where xT is the transpose of x (xT is a column vector). In the following, we
take u ∈ Rd as a row vector. For u ∈ Rd, the inequality 1 − uA(x)uT ≥ 0
defines an ellipsoid in Rd (see below).

Theorem 3.6. For WB
µ in (1.8) on Bd, the generalized translation operator

is given by

Tθ(W
B
µ ; f, x) = Aµ

(√
1− ‖x‖2

)d−1

(3.9)

×
∫

uA(x)uT≤1
f

(
cos θx+ sin θ

√
1− ‖x‖2 u

)
(1− uA(x)uT )µ−1du,

where Aµ = 1/
∫
Bd(1− ‖x‖2)µ−1dx is the normalization constant for WB

µ−1/2.
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Proof. Although the explicit formula of V B
µ is known for WB

µ , it does not seem
to be easy to verify the defining formula (3.6) directly. Instead, we will verify
the property (2) of Proposition 3.4. In other words, let T ∗

θ f denote the right
hand side of (3.9); we show that T ∗

θ f = f for all f ∈ Vd
n(WB

µ ). It is known

that one basis of Vd
n(WB

µ ) consists of functions of the form Cµ+(d−1)/2
n (〈x, y〉),

y ∈ Sd ([33]). Hence, it is sufficient to show that

T ∗
θC

µ+(d−1)/2
n (〈x, y〉) =

Cµ+(d−1)/2
n (cos θ)

C
µ+(d−1)/2
n (1)

Cµ+(d−1)/2
n (〈x, y〉), y ∈ Sd.

The matrix A(x) has eigenvalues 1 and
√

1− ‖x‖2 (repeated d− 1 times) and

it is symmetric. Hence, there is a unitary matrix U(x) such that

A(x) = U(x)Λ(x)U(x)T , Λ(x) = diag
{
1,

√
1− ‖x‖2, . . . ,

√
1− ‖x‖2

}
.

The columns of U(x) are the eigenvectors of A(x). In particular, the first col-
umn of U(x) is x/‖x‖ and the other columns of U(x) form an orthonormal
basis of the null space of xTx; that is, the other columns are mutually or-
thonormal and are also orthogonal to x. Changing variables u 7→ uU(x) := v,
the quadratic form becomes

uA(x)uT = vΛ(x)vT = v2
1 +

√
1− ‖x‖2(v2

2 + . . .+ v2
d),

which suggests one more change of variables v 7→
√

1− ‖x‖2 vD−1(x) := s
with

D(x) = diag
{√

1− ‖x‖2, 1, . . . 1
}
,

so that the quadratic form becomes uA(x)uT = ssT . Hence, the integral do-
main uA(x)uT ≤ 1 becomes Bd in s variables. Since U(x) is unitary, we have
du = dv = ds/(1− ‖x‖2)(d−1)/2. Consequently, we have

T ∗
θC

µ+(d−1)/2
n (〈x, y〉)

= aκ

∫
Bd
Cµ+(d−1)/2

n (cos θ〈x, y〉+ sin θ〈s, yU(x)D(x)〉) (1− ‖s‖2)µ−1ds,

where we have used the fact that 〈sD(x)UT (x), y〉 = 〈s, yU(x)D(x)〉. Since
the first column of U(x) is x/‖x‖ and U is unitary, the vector yU(x)D(x) has
norm

‖yU(x)D(x)‖2 = yU(x)D2(x)UT (x)y

= yyT − yU(I −D(x)2)UTyT = 1− 〈x, y〉2,

as ‖y‖ = 1 and I −D2 = diag{‖x‖2, 0, . . . , 0}. Hence, using the formula

Aµ

∫
Bd
f(〈x, y〉)(1− ‖x‖2)µ−1dx = bµ+(d−3)/2

∫ 1

−1
f(t‖y‖)(1− t2)µ+(d−3)/2dt,
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which can be easily verified as the left hand side is invariant under the rotation,
we conclude that

T ∗
θC

µ+(d−1)/2
n (〈x, y〉) = bµ+(d−3)/2

×
∫ 1

−1
Cµ+(d−1)/2

n

(
cos θ〈x, y〉+ sin θ

√
1− 〈x, y〉2 t

)
(1− t2)µ+(d−3)/2dt.

Using the product formula for the Gegenbauer polynomials finishes the proof.

For µ = 0, the integral formula of Tθ(Wµ; f) holds under the limit µ → 0
and the integral domain becomes uA(x)uT = 1. This case has been studied
in [16]. See also [1] in which a generalized translation operator is defined for
the weight function xµ

d+1dω on Sd
+ = {x ∈ Sd : xd+1 ≥ 0}, which is related to

Tθ(Wµ; f), but no integral formula as above is given there.

If d = 1, then A(x) = 1 and 1 − uTA(x)u = 1 − u2. Hence, the formula for
Tθ(W

B
µ ; f, x) when d = 1 becomes

Tθ(W
B
µ ; f, x) = Aµ

∫
|u|≤1

f
(
cos θx+ sin θ

√
1− x2 u

)
(1− u2)µ−1du,

which agrees with the formula of Tcos θf(x) in (1.1).

Changing variables
√

1− ‖x‖2u = sD(x)U t(x), the proof of the theorem, gives

an alternative expression for Tθ(W
B
µ ; f).

Corollary 3.7. Let U(x) be a unitary matrix whose first column is x/‖x‖ and

D(x) = diag{
√

1− ‖x‖2, 1, . . . , 1}. For WB
µ in (1.8),

Tθ(W
B
µ ; f, x) = Aµ

∫
Bd
f

(
cos θx+ sin θ sD(x)UT (x)

)
(1− ‖s‖2)µ−1ds,

In the above formula we take x and s as row vectors in Rd. Recall that the
first column of U(x) is x/‖x‖ and the other columns of U(x) are orthonormal
vectors that are orthogonal to x (that is, 〈x, ξ〉 = 0). Hence, we can write the
formula for Tθ(W

B
µ ; f) as an explicit integral over Bd. For example, in the case

of d = 2,

U(x) =
1

‖x‖

x1 −x2

x2 x1

 and D(x) =


√

1− ‖x‖2 0

0 1

 .

In this case it is more convenient to use the polar coordinates x = r(cosφ, sinφ),
where r ≥ 0 and 0 ≤ φ ≤ 2π.
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Corollary 3.8. For d = 2, x = rx′ with x′ = (x′1, x
′
2) = (cosφ, sinφ),

Tθ(W
B
µ ; f, x) =

Aµ

∫
B2
f

(
r cos θx′ +

√
1− r2 sin θs1x

′ + sin θs2(−x′2, x′1)
)

(1− ‖s‖2)µ−1ds.

For d > 2 the formula of U(x) can be messy. For example, in the case d is
odd, we do not have a simple formula. On the other hand, there are simple
expressions of U(x) for d = 4, 8, . . .. As examples, we give the formula of U(x)
for d = 3 and d = 4 below.


x1

‖x‖
x2√

x2
1+x2

2

x3

‖x‖

x2

‖x‖
−x1√
x2
1+x2

2

− x2x3

x1‖x‖

x3

‖x‖ 0
x2
2+x2

3

x1‖x‖

 and
1

‖x‖



x1 x2 x3 x4

x2 −x1 −x4 x3

x3 x4 −x1 −x2

x4 −x3 x2 −x1


.

Using these one can write down the formula of Tθ(Wµ; f) as an explicit integral
over Bd.

An interesting problem is to find an integral expression for Tθ(W
B
κ,µ; f) with

respect to other weight functions. One should perhaps start with the case that
hκ is given by the product weight function (1.5).

3.4 Modulus of smoothness, K-functional and best approximation.
Property (5) of Proposition 3.4 shows that the following definition of the
modulus of smoothness makes sense:

Definition 3.9. Let r > 0. Define

(I − T κ
θ )r/2f ∼

∞∑
n=0

(
1− Cλκ+µ

n (cos θ)/Cλκ+µ
n (1)

)r/2
projκ,µ

n f.

For f ∈ Lp(WB
κ,µ), 1 ≤ p <∞, or f ∈ C(Bd), define

ω(f ; t)W B
κ,µ,p := sup

θ≤t

∥∥∥∥(
I − Tθ(W

B
κ,µ)

)r/2
f

∥∥∥∥
W B

κ,µ,p
.

Because of Proposition 3.4, this modulus of smoothness is related to the mod-
ulus ωr(f ; t)κ,µ,p, defined in (2.8) but associated with hκ,µ. In fact, we have

ω(f ; t)W B
κ,µ,p = ωr(F ; t)κ,µ,p, F (x, xd+1) = f(x). (3.10)

Consequently, properties of ωr(f ; t)W B
κ,µ,p can be easily obtained from those of

ωr(f ; t)κ,µ,p (see Proposition 3.6 of [37]).
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Proposition 3.10. The modulus of smoothness ωr(f ; t)W B
κ,µ,p satisfies:

(1) ωr(f ; t)W B
κ,µ,p → 0 if t→ 0;

(2) ωr(f ; t)W B
κ,µ,p is monotone nondecreasing on (0, π);

(3) ωr(f + g, t)W B
κ,µ,p ≤ ωr(f ; t)W B

κ,µ,p + ωr(g, t)W B
κ,µ,p;

(4) For 0 < s < r,

ωr(f ; t)W B
κ,µ,p ≤ 2[(r−s+1)/2]ωs(f ; t)W B

κ,µ,p;

(5) If (−DB
κ,µ)kf ∈ Lp(WB

κ,µ), k ∈ N, then for r > 2k

ωr(f ; t)W B
κ,µ,p ≤ c t2kωr−2k((−DB

κ,µ)kf ; t)W B
κ,mu,p.

To justify the definition of this modulus of smoothness, we show that it is
equivalent to a K-functional, defined using the differential-difference operator
associated with WB

κ,µ (see (3.3)). Let

Wp
r (WB

κ,µ) :=
{
f ∈ Lp(WB

κ,µ) : (−DB
κ,µ)r/2f ∈ Lp(WB

κ,µ)
}
,

where the fractional power of DB
κ,µ on f is defined by

(−DB
κ,µ)r/2f ∼

∞∑
n=0

(n(n+ 2λκ + 2µ))r/2 projκ,µ
n f, f ∈ Lp(WB

κ,µ).

The K-functional between Lp(WB
κ,µ) and Wp

r (WB
κ,µ) is defined by

Kr(f ; t)W B
κ,µ,p := inf

{
‖f − g‖W B

κ,µ,p + tr‖(−DB
κ,µ)r/2g‖W B

κ,µ,p

}
,

where the infimum is taken over all g ∈ Wp
r (WB

κ,µ).

Theorem 3.11. For f ∈ Lp(WB
κ,µ), 1 ≤ p ≤ ∞,

c1ωr(f ; t)W B
κ,µ,p ≤ Kr(f ; t)W B

κ,µ,p ≤ c2ωr(f ; t)W B
κ,µ,p.

Proof. Again let F (x, xd+1) = f(x). Denote by Kr(F ; t)κ,µ,p the K-functional
defined in (2.9) but with respect to the weight function h2

κ,µ. Because of (3.10)
and the equivalence between Kr(F ; t)κ,µ,p and ωr(F ; t)κ,µ,r (see Theorem 2.1),
we only need to show that Kr(f ; t)W B

κ,µ,p = Kr(F ; t)κ,µ,p.

It follows from (3.2) that ‖∆κ,µ
h,0F‖κ,µ,p = ‖DB

κ,µf‖W B
κ,µ,p. Hence,

Kr(f ; t)W B
κ,µ,p = inf

{
‖F − ge‖κ,µ,p + tr‖∆κ,µ

h,0ge‖κ,µ,p

}
:= K∗

r (F ; t)κ,µ,p,

where the infimum is taken over all ge(x, xd+1) ∈ Wp
r (h2

κ,µ) that are even in
xd+1. Evidently, K∗

r (F ; t)κ,µ,p ≥ Kr(F ; t)κ,µ,p. To complete the proof we show
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that K∗
r = Kr. For any ε > 0, fix a g ∈ Wp

r (W p
κ,µ) such that

Kr(F ; t)κ,µ,p ≥ ‖F − g‖κ,µ,p + tr‖ −∆κ,µ
h,0g‖κ,µ,p − ε.

Since hκ,µ corresponds to G × Z2, the spherical Laplacian ∆κ,µ
h,0 commutes

with the sign change in xd+1. Consequently, setting ge(x, xd+1) = [g(x, xd+1)+
g(x,−xd+1)]/2, so that ge is even in xd+1, it follows that ‖∆κ,µ

h,0ge‖κ,µ,p ≤
‖∆κ,µ

h,0g‖κ,µ,p. This and the fact that ‖F − ge‖κ,µ,p ≤ ‖F − g‖κ,µ,p, as F is
even in xd+1, show that K∗

r (F ; t)κ,µ,p ≤ Kr(F ; t)κ,µ,p + ε. As ε > 0 is arbitrary,
the proof follows.

One immediate consequence of the above equivalence is the following prop-
erty of the modulus of smoothness, which does not follow trivially from the
definition of ωr(f ; t)W B

κ,µ,p but it is clear for the K-functional.

Corollary 3.12. For f ∈ Lp(WB
κ,µ), 1 ≤ p ≤ ∞,

ωr(f, δt)W B
κ,µ,p ≤ c max{1, δr}ωr(f, t)W B

κ,µ,p.

The direct and the inverse theorems for the best approximation by polynomials
in Lp(WB

κ,µ) is characterized in [37] by the K-functional. The equivalence in
Theorem 3.11 allows us to state the characterization in terms of the modulus
of smoothness.

Theorem 3.13. For f ∈ Lp(WB
κ,µ), 1 ≤ p ≤ ∞,

En(f)W B
κ,µ,p ≤ c ωr(f ;n−1)W B

κ,µ,p.

On the other hand,

ωr(f ;n−1)W B
κ,µ,p ≤ c n−r

n∑
k=0

(k + 1)r−1Ek(f)W B
κ,µ,p.

Finally, let us mention that, by (3.4), (3.8) and (2.4),

projκ,µ f = f ?B
κ,µ pn, where pn(t) =

n+ λ+ µ

λ+ µ
Cλ+µ

n (t).

Hence, all summation methods of orthogonal expansions with respect to WB
κ,µ

can be written in the form of f ?B
κ,µgr, where gr is the same summation method

applies to the Gegenbauer series evaluated at point t = 1. Since Tθ(W
B
κ,µ; f),

thus ωr(f ; t)W B
κ,µ,p, is defined in terms of f ?B

κ,µ g, the modulus of smoothness
is a convenient tool for studying the summability of orthogonal expansions
on Bd. For various results on the summability of orthogonal expansions with
respect to WB

κ,µ, see [14,20,34,37,38] and the references therein.
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4 Generalized translation operator and Approximation on T d

Recall the weight function W T
κ,µ defined in (1.7), in which hκ is a weight

function invariant under a reflection group G0 and even in each of its variables.
That is, hκ is invariant under the semi-product of a reflection group G0 and
the abilian group Zd

2.

The definition of Lp(W T
κ,µ), 1 ≤ p ≤ ∞, is similar to the case of WB

κ,µ. The
notions such as the space of orthogonal polynomials Vd

n(W T
κ,µ) and the repro-

ducing kernel Pn(W T
κ,µ;x, y) are also defined similarly as in the case of WB

κ,µ.

4.1 Background. Elements of Vd
n(W T

κ,µ) are closely related to the orthogonal
polynomials in Vd

2n(WB
κ,µ). Let us denote by ψ the mapping

ψ : (x1, . . . , xd) ∈ Bd 7→ (x2
1, . . . , x

2
d) ∈ T d

and define (f ◦ ψ)(x1, . . . , xd) = f(x2
1, . . . , x

2
d). The elementary integral∫

Bd
f(x2

1, . . . , x
2
d)dx =

∫
T d
f(x1, . . . , xd)

dx
√
x1 · · ·xd

. (4.1)

shows that ‖f‖W T
κ,µ,p = ‖f ◦ ψ‖W B

κ,µ,p. The mapping R 7→ P given by

P2n(x) = (Rn ◦ ψ)(x) x ∈ Bd (4.2)

is a one-to-one mapping between Rn ∈ Vd
n(W T

κ,µ) and P2n ∈ Vd
2n(WB

κ,µ; Zd
2), the

subspace of polynomials in Vd
2n(WB

κ,µ) that are even in each of its variables
(invariant under Zd

2). In particular, applying DW B
κ,µ

on P2n leads to a second
order differential-difference operator acting on Rn. We denote this operator
by DT

κ,µ. Then ([35])

DT
κ,µR = −n(n+ λκ + µ)R, R ∈ Vd

n(W T
κ,µ), (4.3)

For the weight function (1.9), the operator is a second order differential oper-
ator, which takes the form

DT
κ,µ =

d∑
i=1

xi(1− xi)
∂2P

∂x2
i

− 2
∑

1≤i<j≤d

xixj
∂2P

∂xi∂xj

+
d∑

i=1

((
κi +

1

2

)
− λxi

)
∂P

∂xi

(recall µ = κd+1 in this case). This is classical, already known in [4] at least
for d = 2 (see also [15, Chapt. 12]).

In the following, we also denote by projκ,µ
n : L2(W T

κ,µ) 7→ Vd
n(W T

κ,µ) the orthog-
onal projection operator. For f ∈ L2(W T

κ,µ), it can be written as an integral

projκ,µ
n f(x) = aκ,µ

∫
T d
f(y)Pn(W T

κ,µ;x, y)W T
κ,µ(y)dy,
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where Pn(W T
κ,µ;x, y) is the reproducing kernel of Vd

n(W T
κ,µ). The relation (4.1)

implies, in particular, that ([35])

Pn(W T
κ,µ;x, y) =

1

2d

∑
ε∈Zd

2

P2n

(
WB

κ,µ;x1/2, εy1/2
)
, (4.4)

where x1/2 = (
√
x1, . . . ,

√
xd) and εu = (ε1u1, . . . εdud). We define a useful

operator, V T
κ,µ, acting on functions of d+ 1 variables,

V T
κ,µF (x, xd+1) =

1

2d

∑
ε∈Zd

2

V B
κ,µF (εx, xd+1). (4.5)

The definition of V T
κ,µ is justified by the following fact: Let p(α,β)

n (t) denote the
orthonormal Jacobi polynomial of degree n associated to the weight function
wα,β(t) = (1− t)α(1 + t)β on t ∈ [−1, 1]. Using the relation

2n+ λ

λ
Cλ

2n(t) = p(λ−1/2,−1/2)
n (1)p(λ−1/2,−1/2)

n (2t2 − 1), (4.6)

we can write the reproducing kernel Pn(W T
κ,µ;x, y) as

Pn(W T
κ,µ;x, y) = p

(λκ+µ− 1
2
,− 1

2
)

n (1)V T
κ,µ

[
p

(λκ+µ− 1
2
,− 1

2
)

n (2〈·, Y 1/2〉2 − 1)
]
(X1/2).

where X1/2 =
(√

x1, . . . ,
√
xd,

√
1− |x|

)
.

4.2 Generalized translation operator. The operator V T
κ,µ is used to define

a convolution operator on T d:

Definition 4.1. For f ∈ L1(W T
κ,µ) and g ∈ L1(wλκ+µ; [−1, 1]), we define

(f ?T
κ,µ g)(x) = aκ,µ

∫
T d
f(y)V T

κ,µ

[
g

(
2〈X1/2, ·〉2 − 1

)]
(Y 1/2)W T

κ,µ(y)dy.

Recall that |x| = x1 + . . .+xd. Using (4.1), it is not hard to show that f ?T
κ,µ g

is related to the convolution structure f ?B
κ,µ g on Bd ([38]):

Proposition 4.2. For f ∈ L1(W T
κ,µ) and g ∈ L1(wλ+µ; [−1, 1]),(

(f ?T
κ,µ g) ◦ ψ

)
(x) =

(
(f ◦ ψ) ?B

κ,µ g(2{·}2 − 1)
)

(x).

The generalized translation operator associated with W T
κ,µ is again defined

implicitly in terms of the convolution structure.
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Definition 4.3. For f ∈ L1(W T
κ,µ), the generalized translation operator

Tθ(W
T
κ,µ; f) is defined implicitly by

bλ+µ

∫ π

0
Tθ(W

T
κ,µ; f, x)g(cos 2θ)(sin θ)2λ+2µdθ = (f ?T

κ,µ g)(x), (4.7)

where λ = λκ, for every g ∈ L1(wλ+µ).

The definition of V T
κ,µ ensures that the generalized translation operator on T d

is related to the one on Bd. This also shows that the operator Tθ(W
T
κ,µ; f) is

well-defined.

Proposition 4.4. For each x ∈ T d, Tθ(W
T
κ,µ; f, x) is a uniquely determined

L∞ function in θ. Furthermore,(
Tθ(W

T
κ,µ; f) ◦ ψ

)
(x) = Tθ(W

B
κ,µ; f ◦ ψ, x), x ∈ T d. (4.8)

The proof follows from the definition and the elementary formula cos 2θ =
2 cos2 θ−1; see [38]. This relation allows us to derive properties of Tθ(W

T
κ,µ; f).

Proposition 4.5. The generalized translation Tθ(W
T
κ,µ; f) satisfies the fol-

lowing properties:

(1) Let f0(x) = 1, then Tθ(W
T
κ,µ; f0, x) = 1.

(2) For f ∈ L1(W T
κ,µ),

projκ,µ
n Tθ(W

T
κ,µ; f) =

P (λκ+µ−1/2,−1/2)
n (cos 2θ)

P
(λκ+µ−1/2,−1/2)
n (1)

projκ,µ
n f.

(3) Tθ(W
T
κ,µ) : Πd

n 7→ Πd
n and

Tθ(W
T
κ,µ; f) ∼

∞∑
n=0

P (λκ+µ−1/2,−1/2)
n (cos 2θ)

P
(λκ+µ−1/2,−1/2)
n (1)

projκ,µ
n f.

(4) For 0 ≤ θ ≤ π,

Tθ(W
T
κ,µ; f)− f = 2

∫ θ

0
(sin s)−2λκ−2µds

∫ s

0
Tt(W

T
κ,µ;DT

κ,µf)(sin t)2λκ+2µdt.

(5) For f ∈ Lp(W T
κ,µ), 1 ≤ p <∞, or f ∈ C(T d),

‖Tθ(W
T
κ,µ; f)‖W T

κ,µ,p ≤ ‖f‖W T
κ,µ,p and lim

θ→0
‖Tθ(W

T
κ,µ; f)− f‖W T

κ,µ,p = 0.

Proof. The property (1) is an easy consequence of (4.8) and the property (1)
of Proposition 3.4. Let f ∈ Vn(W T

κ,µ). Then f ◦ ψ ∈ V2n(WB
κ,µ). Hence, by
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Proposition 3.4,

Tθ(W
T
κ,µ; f, x2

1, . . . , x
2
d) = Tθ(W

B
κ,µ; f ◦ ψ, x) =

Cλκ+µ
2n (cos θ)

Cλκ+µ
2n (1)

(f ◦ ψ)(x).

This proves the properties (2) and (3) upon using the relation (4.2). Let f =∑
ckRk, Rk ∈ Vn(W T

κ,µ). By (4.2), P = R ◦ ψ ∈ Vn(WB
κ,µ). Then

(DT
κ,µf) ◦ ψ = −

∑
ckk(k + λκ + µ)Rk ◦ ψ (4.9)

= −2−1
∑

ck2k(2k + 2λκ + 2µ)P2k

= 2−1
∑

ckD
B
κ,µP2k = 2−1DB

κ,µ(f ◦ ψ),

from which (4) follows from the property (4) of Proposition 3.4. Finally, a
change of variables x 7→ ψ(x) shows that

‖Tθ(W
T
κ,µ; f)‖W T

κ,µ,p = ‖Tθ(W
T
κ,µ; f) ◦ ψ‖W B

κ,µ,p = ‖Tθ(W
B
κ,µ; f ◦ ψ)‖W B

κ,µ,p,

which is less than or equal to ‖f ◦ ψ‖W B
κ,µ,p = ‖f‖W T

κ,µ,p by the property (5) of
Proposition 3.4.

Using the relation to Tθ(W
B
κ,µ; f), we can derive from Theorem 3.6 an integral

formula for Tθ(W
T
µ ; f), where W T

µ (x) = (x1 · · ·xd)
−1/2(1 − |x|)µ−1/2. One in-

teresting question is to find such a formula for the classical weight function
W T

κ in (1.9).

In the case of d = 1 and G = Zd
2, the weight function W T

κ,µ becomes the Jacobi
weight function wκ,µ(t) = 2κ+µtκ(1−t)µ on [0, 1] (see (1.9)), whose correspond-
ing orthogonal polynomials are P (κ,µ)

n (2t− 1). The orthogonal expansion of f
in Jacobi polynomials is defined by

f(t) ∼
∞∑

n=0

an(f)p(α,β)
n (t), where an(f) = cα,β

∫ 1

−1
f(s)p(α,β)

n (s)ds

and c−1
α,β =

∫ 1
−1wα,β(s)ds. The usual generalized translation operator, Sθf(t),

for the Jacobi expansion is an operator defined by ([3])

Sθf(t) ∼
∞∑

n=0

an(f)p(α,β)
n (cos θ)p(α,β)

n (t).

We should emphasis, however, that the operator Sθf is different from the case
d = 1 of the generalized translation operator Tθ(W

T
κ,µ; f). Even in the case

of α = λ + µ − 1/2 and β = −1/2, they are different as can be seen from
Proposition 4.5. The convolution structure of the Jacobi expansions defined
via Sθ has a natural extension to the product Jacobi weight functions on the
unit cube [−1, 1]d. The convolution structure defined above works for W T

κ,µ on
the simplex.
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4.3 Modulus of smoothness, K-functional and best approximation.
We can also define a modulus of smoothness on T d using the generalized
translation operator; that is, for r > 0, define

ωr(f ; t)W T
κ,µ,p := sup

θ≤t
‖(Tθ(W

T
κ,µ)− I)r/2f‖W T

κ,µ,p.

Evidently it is related to the modulus of smoothness on the unit ball Bd. The
following relation follows immediately from Proposition 4.4 and (4.1).

Proposition 4.6. For f ∈ L1(W T
κ,µ),

ωr(f ; t)W T
κ,µ,p = ωr(f ◦ ψ; t)W B

κ,µ,p.

Properties of ωr(f ; t)W T
κ,µ,p can be derived from the corresponding ones of ωr(f◦

ψ; t)W B
κ,µ,p in Proposition 3.10. We will not write these properties down. The

modulus of smoothness ωr(f ; t)W T
κ,µ,p is also equivalent to the K-functional

Kr(f ; t)W T
κ,µ,p defined in [37]. The definition is exactly the same as the one for

WB
κ,µ,

Kr(f ; t)W T
κ,µ,p := inf

{
‖f − g‖W T

κ,µ,p + tr‖(−DT
κ,µ)r/2g‖W T

κ,µ,p

}
,

where the infimum is taken over all g ∈ Wp
r (W T

κ,µ). The space Wp
r (W T

κ,µ) is
defined as its counterpart on Bd.

Theorem 4.7. For f ∈ Lp(W T
κ,µ), 1 ≤ p ≤ ∞,

c1ωr(f ; t)W T
κ,µ,p ≤ Kr(f ; t)W T

κ,µ,p ≤ c2ωr(f ; t)W T
κ,µ,p.

Proof. Because of Proposition 4.6 and Proposition 3.11, it suffices to show
that

Kr(f ; t)W T
κ,µ,p = Kr(f ◦ ψ; 2t)W B

κ,µ,p.

By (4.9) and (4.1)

Kr(f ; t)W T
κ,µ,p = inf

g

{
‖f ◦ ψ − g ◦ ψ‖W B

κ,µ,p + 2rtr‖(−DB
κ,µ)r/2(g ◦ ψ)‖W B

κ,µ,p

}
= inf

g0

{
‖f ◦ ψ − g0‖W B

κ,µ,p + 2rtr‖(−DB
κ,µ)r/2g0‖W B

κ,µ,p

}
:= K∗

r (f ◦ ψ; t)W B
κ,µ,p,

where the infimum is taken over all g0 such that g0 = g ◦ ψ ∈ Wp
r (WB

κ,µ). The
definition clearly shows that

Kr(f ; t)W T
κ,µ,p = K∗

r (f, t)W B
κ,µ,p ≥ Kr(f ◦ ψ; 2t)W B

κ,µ,p.
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We prove that the reverse inequality holds. For any δ > 0, fix a g ∈ Wp
r (WB

κ,µ)
such that

Kr(f ; 2t)W T
κ,µ,p ≥ ‖f − g‖W B

κ,µ,p + 2rtr‖(−DB
κ,µ)r/2g‖W B

κ,µ,p − δ.

Let g0(x) = 2−d ∑
ε∈Zd

2
R(ε)g(x), where R(ε)g(x) := g(εx) for ε ∈ Zd

2. Then g0

is even in each of its variables. We claim that R(ε)DB
κ,µ = DB

κ,µR(ε). Indeed,
since hκ is even for each of its variables, it is invariant under Zd

2, so that
R(ε)∆h = ∆hR(ε) and, furthermore,

〈x,∇〉R(ε)g(x) =
∑

xiεi∂ig(εx) = R(ε)〈x,∇〉g(x),

the claimed equality follows from the definition of DB
κ,µ. It follows that

‖(−DB
κ,µ)r/2g0‖W B

κ,µ,p ≤ 2−d
∑

‖(−DB
κ,µ)r/2R(ε)g‖W B

κ,µ,p ≤ ‖(−DB
κ,µ)r/2g‖W B

κ,µ,p.

Clearly, we also have

‖f ◦ ψ − g0‖W B
κ,µ,p ≤ 2−d

∑
‖f ◦ ψ −R(ε)g‖W B

κ,µ,p = ‖f ◦ ψ − g‖W B
κ,µ,p.

Consequently, since g0 is even in each of its variables and g0 ∈ Wp
r (WB

κ,µ), it
follows that

K∗
r (f ; t)W T

κ,µ,p ≤ ‖f − g0‖W B
κ,µ,p + 2rtr‖(−DB

κ,µ)r/2g0‖W B
κ,µ,p

≤ ‖f − g‖W B
κ,µ,p + 2rtr‖(−DB

κ,µ)r/2g‖W B
κ,µ,p

≤ Kr(f ; 2t)W T
κ,µ,p + δ.

Since δ is arbitrary, this completes the proof.

Again, the above equivalence allows us to state the following important prop-
erty of the modulus of smoothness.

Corollary 4.8. For f ∈ Lp(W T
κ,µ), 1 ≤ p ≤ ∞,

ωr(f, δt)W T
κ,µ,p ≤ c max{1, δr}ωr(f, t)W T

κ,µ,p.

Furthermore, we can state the direct and the inverse theorems for the best
approximation by polynomials in Lp(W T

κ,µ), given in terms of the K-functional
in [37], in terms of the modulus of smoothness.

Theorem 4.9. For f ∈ Lp(W T
κ,µ), 1 ≤ p ≤ ∞,

En(f)W T
κ,µ,p ≤ c ωr(f ;n−1)W T

κ,µ,p.
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On the other hand,

ωr(f ;n−1)W T
κ,µ,p ≤ c n−r

n∑
k=0

(k + 1)r−1Ek(f)W T
κ,µ,p.

Let us point out that in the case of d = 1, ωr(f ; t)W T
κ,µ,p is a modulus of

smoothness for the Jacobi weight function wκ,µ on [−1, 1]. However, it is dif-
ferent from the modulus of smoothness defined in the literature using the
generalized translation operator Sθ (see, for example, [3,5] for r = 1). Using
the convolution structure, we can write

projκ,µ f = f ?T
κ,µ qn, qn(t) = p(λ+µ−1/2,−1/2)

n (1)p(λ+µ−1/2,−1/2)
n (t)

Hence, all summation methods of orthogonal expansions with respect to WB
κ,µ

can be written in the form of f ?B
κ,µgr, where gr is the same summation method

applies to the Jacobi series with (α, β) = (λ+µ−1/2,−1/2). Consequently, the
modulus of smoothness can be used to study the summability of orthogonal
expansions on the simplex.
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