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Abstract. Many results on the unit ball and those on the simplex can be deduced from each other
or from the corresponding results on the unit sphere. The areas in which such a connection appears
include orthogonal polynomials, approximation, cubature formulas and polynomial interpolation.
We explain this phenomenon in some detail.
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1. Introduction. Recent studies show that, for several problems in analysis,
results on the unit ball Bd = {x : ‖x‖ ≤ 1} in Rd and those on the standard simplex

T d = {x : x1 ≥ 0, . . . , xd ≥ 0, 1− x1 − . . .− xd ≥ 0}

in Rd can often be deduced from each other or deduced from results on the unit
sphere Sd = {x : ‖x‖ = 1} in Rd+1, making use of elementary maps between the
three domains and symmetry of the polynomial spaces on these domains. Here and in
the following, ‖x‖ denote the Euclidean norm. Problems for which that has occured
all involve polynomials in one form or other. They appear in the areas of orthogonal
polynomials, approximation theory, cubature formulas, and polynomial interpolation.
The purpose of this paper is to explain this phenomenon in some detail. We will mainly
take orthogonal polynomials and best approximation by polynomials as examples, but
will mention what else is known in this regard.

The unit sphere is a manifold without a boundary, it is homogeneous in the sense
that any point can be translated to any other point by a simple rotation. In contrast,
the unit ball and the simplex are manifolds with a boundary, points near the boundary
are different from points inside. Analysis on these two domains will have to catch the
boundary behavior. This consideration seems to indicate that the results on Bd and
T d should not be deducible from those on Sd. The key, however, lies in the notion
of weighted spaces. More specifically, we will work with weighted Lp spaces on these
domains. For the domain Sd we will consider mainly the weight function h2

κ, where

(1.1) hκ(x) =
d+1∏
i=1

|xi|κi , κi ≥ 0,

which becomes zero on the coordinate plane xi = 0 if κi > 0. Consequently, a
function f ∈ Lp(Sd;h2

κ) can have singularities on the intersections of the sphere and
the coordinates planes. When we work with the weighted spaces, these intersections
play the role of the boundary on the sphere Sd. Corresponding to h2

κ, we have the
weight function

(1.2) WB
κ,µ(x) =

d∏
i=1

|xi|κi(1− ‖x‖2)µ−1/2, κi ≥ 0, µ ≥ 0,
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defined on Bd, where µ = κd+1, and the weight function

(1.3) WT
κ,µ(x) =

d∏
i=1

x
κi−1/2
i (1− x1 − . . .− xd)µ−1/2, κi ≥ 0, µ ≥ 0,

defined on T d. These are the weight functions that will be used in this paper. Many
results that we will discuss hold for more general weight functions, mainly for those
weight functions that are invariant under a finite reflection group. The weight function
hκ in (1.1) is a special case, which is invariant under the group Zd+1

2 , and WB
κ,µ in

(1.2) is invariant under the group Zd
2. We will not discuss the most general case in

order to keep our exposition simple and keep the main idea clear.
These three weight functions are closely related and the relation extends to or-

thogonal polynomials and cubature formulas with respect to these weight functions,
as explored in [26, 27]. More recently, it has been realized that we can get a complete
characterization for the best approximation on Bd and on T d this way ([34, 35, 36]).
It is this latter development that we choose as examples for the main idea. Our goal
is to explain how results on the ball Bd and on the simplex T d can be derived. We
will not give a complete survey of the results known on these domains, neither will
we state the results in their most general form.

The paper is organized as follows. The background and the basic relation between
the three domains are given in the next section. The results on orthogonal polynomials
and approximation on the unit sphere are discussed in Section 3. The way to obtain
results on the unit ball and on the simplex is explained in Section 4 and in Section
5, respectively. Finally, in Section 6, we give a brief account on other problems for
which results on Bd and on T d can be obtained from each other or from those on Sd.

2. Basic relations. Let Πd = R[x1, . . . , xd] be the space of polynomials of d
real variables and let Πd

n be the subspace of polynomials of degree at most n. We also
denote by Pd

n the space of homogeneous polynomials of degree n. It is known that

dimPd
n =

(
n+ d− 1
d− 1

)
and dim Πd

n =
(
n+ d
d

)
.

2.1. Polynomial spaces on Sd and on Bd. Denote by Pn(Sd) and Πn(Sd)
the restriction of Pd+1

n and Πd+1
n on Sd, respectively. The polynomials in Pn(Sd) may

not be homogeneous. In fact, we have

Pd
n =

∑
0≤2j≤n

‖x‖n−2jPn−2j(Sd)

so that ‖x‖n−2jPn−2j(Sd) ⊂ Pd
n. Let Sd

+ denote the upper hemisphere of Sd. A
simpleminded relation between Sd

+ and Bd is as follows:

(2.1) x ∈ Bd ⇐⇒ (x, xd+1) ∈ Sd
+, xd+1 =

√
1− ‖x‖2.

Clearly, a similar relation holds for the lower hemisphere. The domain Sd
+ induces a

symmetry in the polynomial space. Let P+
n (Sd) denote the subspace of elements in

Pn(Sd) that are even in its (d+ 1)-th coordinates. The mapping (2.1) leads immedi-
ately to the following basic result:

Lemma 2.1. For each n ≥ 0 the equation

(2.2) Pn(Sd) = Πd
n ∪ xd+1Πd

n−1
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holds in the sense that for each P ∈ Pn(Sd) there exist unique elements p ∈ Πd
n and

q ∈ Πd
n−1 such that

P (x, xd+1) = p(x) + xd+1q(x), (x, xd+1) ∈ Sd.

In particular, there is a one-to-one correspondence between Πd
n and P+

n (Sd).
Proof. Let P ∈ Pn(Sd). We can write P (x, xd+1) =

∑
pj(x)x

j
d+1 for some

pj ∈ Πd
n−j . Using the fact that x2

d+1 = 1−‖x‖2, we have P (x, xd+1) = p(x)+xd+1q(x),
where p ∈ Πd

n and q ∈ Πd
n−1. Clearly p and q are unique.

Using (2.1) as a change of variables leads immediatly to the relation

(2.3)
∫

Sd

f(y)dω(y) =
1
2

∫
Bd

[
f

(
x,

√
1− ‖x‖2

)
+ f

(
x,−

√
1− ‖x‖2

)] dx√
1− ‖x‖2

,

where dω is the surface measure on the sphere Sd.
These simple observations have important applications for orthogonal polynomials

and approximation by polynomials, as will be discussed in Section 4.

2.2. Polynomial spaces on Bd and on T d. We start with a simple mapping
between Bd and T d. Let Bd

+ := {x ∈ Bd : x1 ≥ 0, . . . , xd ≥ 0} be the positive
quadrant of Bd. A simpleminded relation between Bd and T d is as follows:

(2.4) (x1, . . . , xd) ∈ Bd
+ ⇐⇒ (x2

1, . . . , x
2
d) ∈ T d.

A polynomial P of the form P (x) = p(x2
1, . . . , x

2
d) is invariant under sign changes of

its coordinates; that is, it is invariant under the group G = Zd
2. Let ψ denote the map

(2.5) ψ : (x1, . . . , xd) ∈ Bd 7→ (x2
1, . . . , x

2
d) ∈ T d.

The domain Bd
+ can be looked upon as the fundamental domain for the polynomials

invariant under Zd
2. Let us define

GΠd
2n := {p ∈ Πd

2n : p invariant under Zd
2}.

The relation (2.4) leads to a correspondence between polynomial spaces:
Lemma 2.2. The map ψ introduces a one-to-one correspondence between Πd

n and
GΠd

2n; more precisely, p ∈ Πd
n corresponds to p ◦ ψ ∈ GΠd

2n.
Proof. If P ∈ GΠd

2n then P is even in each of its variables. Hence, it is easy to see
that P (x) = p(x2

1, . . . , x
2
d) = (p◦ψ)(x) for some p ∈ Πd

n. The correspondence between
P and p is evidently ono-to-one.

Using (2.4) as a change of variables leads immediatly to the relation

(2.6)
∫

Bd

f(x2
1, . . . , x

2
d)dx =

∫
T d

f(x1, . . . , xd)
dx

√
x1 · · ·xd

.

These observations will play important roles in the study of orthogonal polyno-
mials and approximation by polynomials, which will be discussed in Section 5.

3. Analysis on the unit sphere. In this section we review results for orthog-
onal polynomials and approximation with respect to the weight function h2

κ on the
unit sphere Sd. The weight function hκ is given in (1.1), which has singularity at the
intersections of the sphere and coordinate planes.
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3.1. Orthogonal polynomials on the sphere. Let hκ be defined as in (1.1).
We consider orthogonal polynomials with respect to the inner product

〈f, g〉κ := aκ

∫
Sd

f(x)g(x)h2
κ(x)dω(x),

where ak is a constant such that a−1
κ

∫
Sd h

2
κ(x)dω = 1. Let Hn(h2

κ) denote the sub-
space of orthogonal homogeneous polynomials of degree n with respect to this inner
product. It is known that dimHn(h2

κ) = dimPd
n − dimPd

n−2. The elements of this
space are called h-harmonics. If hκ(x) ≡ 1, Hn(h2

κ) is the space of ordinary spherical
harmonics of degree n. The weight function hκ in (1.1) is an example of a family
of weight functions invariant under reflection groups, for which the corresponding
h-harmonics enjoy properties similar to those of ordinary spherical harmonics (see
[9, 10] and the references therein).

We state the basic properties of h-harmonics below. The essential ingredient is
the Dunkl operator Dj which, for hκ in (1.1), is defined by ([9])

Djf(x) = ∂jf(x) + κj
f(x)− f(x1, . . . ,−xj , . . . , xd+1)

xj
, 1 ≤ j ≤ d+ 1.

These are first order differential-difference operators that maps Pd
n to Pd

n−1 and they
commute with each other; that is, DiDj = DjDi for 1 ≤ i, j ≤ d+1. The h-Laplacian
is defined by ∆h = D2

1 + . . . + D2
d+1, which plays the role of the usual Laplacian: If

P ∈ Hn(h2
κ), then ∆hP = 0. Furthermore, in shperical-polar coordinates x = rx′,

r > 0, x′ ∈ Sd, the h-Laplacian takes the form [30]

(3.1) ∆h =
∂2

∂r2
+

2λ+ 1
r

∂

∂r
+

1
r2

∆h,0, where λ := |κ|+ d− 1
2

,

a formula similar to the spherical-polar form of the usual Laplacian. The operator
∆h,0 is called the spherical h-Laplacian. When restricted to Sd, h-harmonics are
eigenfunctions of ∆h,0, that is,

(3.2) ∆h,0Y (x) = −n(n+ 2λ)Y (x), x ∈ Sd, Y ∈ Hn(h2
κ).

The basic Hilbert space theory shows that L2(h2
κ;Sd) can be decomposed as

L2(h2
κ;Sd) =

∞⊕
n=0

Hn(h2
κ) : f =

∞∑
n=0

projHn
f,

where projHn
is the projection operator from L2(h2

κ) onto Hn(h2
κ). It is known that

(3.3) projHn
f = aκ

∫
Sd

f(y)Pn(h2
κ;x, y)W 2

κ (y)dy,

where Pn(h2
κ) is the reproducing kernel of Hn(h2

κ) (zonal h-harmonic). The reproduc-
ing kernel turns out to satisfy a compact formula ([25])

(3.4) Pn(h2
κ;x, y) =

λ+ n

λ
Vκ

[
Cλ

n(〈x, ·〉)
]
(y),

where Cλ
n is the Gegenbauer polynomial of degree n and Vκ is the intertwining oper-

ator, which is a linear operator uniquely determined by Vκ1 = 1 and DjVκ = Vκ∂j ,
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1 ≤ j ≤ d+ 1. For hκ in (1.1), it is known that Vκ satisfies [24]

(3.5) Vκf(x) = cκ

∫
[−1,1]d+1

f(x1t1, . . . , xd+1td+1)
d+1∏
i=1

(1 + ti)(1− t2i )
κi−1dt.

The formula (3.4), just like the classical zonal harmonics, plays an important role in
the study of h-harmonic expansions, which points out a connection to Gegenbauer
expansions and indicates a possible connection to functions of one variable.

3.2. Weighted approximation. We work with the space Lp(h2
κ;Sd) that is

equipped with the norm

‖f‖κ,p :=
(
aκ

∫
Sd

|f(x)|ph2
κ(x)dω

)1/p

for 1 ≤ p <∞ and ‖f‖∞ = supx∈Sd |f(x)| for p = ∞.
The equation (3.3) and the explicit formula (4.6) suggests the definition of the

following weighted convolution: For f ∈ L1(h2
κ;Sd) and g ∈ L1(wλ, [−1, 1]),

(3.6) (f ∗κ g)(x) = aκ

∫
Sd

f(y)Vκ[g(〈·, x〉)](y)h2
κ(y)dω.

For the surface measure (hκ(x) = 1), this is the spherical convolution in [8]. It satisfies
the usual properties of convolution. In particular, it satisfies Young’s inequality:

Proposition 3.1. For f ∈ Lq(h2
κ) and g ∈ Lr(wλ; [−1, 1]),

‖f ∗κ g‖κ,p ≤ ‖f‖κ,q‖g‖wλ,r.

where p, q, r ≥ 1 and p−1 = r−1 + q−1 − 1.
This shows that (f ∗κ g)(x) is finite for f ∈ L1(h2

κ) and g ∈ L1(wλ, [−1, 1]). We
note that the projection operator projHn

in (3.3) can be written as a convolution of f
with the Gegenbauer polynomial Cλ

n , which indicates a possible reduction in the study
of h-harmonic expansions to that of Gegenbauer expansions. We shall not pursue this
line of study here (see, for example, [29]). Instead, we use the convolution to define a
weighted spherical means, Tκ

θ , which is defined implicitly as follows:

cλ

∫ π

0

Tκ
θ f(x)g(cos θ)(sin θ)2λdθ := (f ∗κ g)(x),

where g is any L∞([−1, 1]) function and 0 ≤ θ ≤ π. Young’s inequality can be used
to show that Tκ

θ is well-defined. In the case of κ = 0, the weighted spherical means
coincides with the classical spherical means

(3.7) Tθf(x) =
1

σd−1(sin θ)d−1

∫
〈x,y〉=cos θ

f(y)dω,

which was studied in [5, 18]. The weighted spherical means shares essentially all
properties of the classical spherical means ([34]), including those listed below:

Proposition 3.2. The means Tκ
θ f satisfy the following properties:

1. Let f0(x) = 1; then Tκ
θ f0(x) = 1.

2. If f ∼
∑∞

n=0 projHn
f , then

Tκ
θ f ∼

∞∑
n=0

Cλ
n(cos θ)
Cλ

n(1)
projHn

f.
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3. For f ∈ Lp(h2
κ), 1 ≤ p <∞, or f ∈ C(Sd),

‖Tκ
θ f‖κ,p ≤ ‖f‖κ,p and lim

θ→0
‖Tκ

θ f − f‖κ,p = 0.

The last property suggests immediately the following definition of a weighted
modulus of smoothness: For r > 0 and 1 ≤ p ≤ ∞,

(3.8) ωr(f, t)κ,p := sup
0<θ≤t

‖(I − Tκ
θ )r/2f‖κ,p.

For κ = 0, this coincides with the classical modulus of smoothness on the sphere that
has been used by many authors (see, for example, [5, 17, 18, 20] and the references
therein). It satisfies the usual properties of modulus of smoothness.

There is also a weighted K-functional, defined using the spherical h-Laplacian
∆h,0 in (3.1): For r > 0 and 1 ≤ p ≤ ∞,

(3.9) Kr(f, t)κ,p := inf
g

{
‖f − g‖κ,p + tr‖(−∆h,0)r/2g‖κ,p

}
,

where the infimum is taken over the space of all g ∈ Lp(h2
κ) for which ‖∆h,0g‖p is

finite.
Just as in the classical approximation theory, the weighted modulus of smoothness

and the weighted K-functional are equivalent ([34]).
Theorem 3.3. For r > 0, 1 ≤ p ≤ ∞, and f ∈ Lp(h2

κ;Sd),

c1ωr(f ; t)κ,p ≤ Kr(f ; t)κ,p ≤ c2 ωr(f ; t)κ,p, 0 < t < π/2,

where c1 and c2 are constants independent of f .
These two equivalent gadgets can be used to characterize the best approximation

by polynomials ([34]). For f ∈ Lp(h2
κ;Sd), 1 ≤ p ≤ ∞, we denote by

(3.10) En(f)κ,p := inf
{
‖f − P‖κ,p : P ∈ Πn(Sd)

}
the error of best approximation by polynomials in the weighted Lp space.

Theorem 3.4. For f ∈ Lp(h2
κ;Sd), 1 ≤ p ≤ ∞,

(3.11) En(f)κ,p ≤ c ωr(f ;n−1)κ,p

and, on the other hand,

ωr(f, n−1)κ,p ≤ c n−r
n∑

k=0

(k + 1)r−1Ek(f)κ,p.

In other words, both direct and inverse theorems for the best approximation hold.
These results provide a complete characterization of the best approximation by

polynomials. For the surface measure on Sd (κ = 0), they were proved in [20], which
brings a long investigation with various early results obtained by many other authors
to a completion. See the results in [5, 15, 17, 18, 20] and the references therein. The
proof of these two theorems are rather involved.

Let us mention one result that will be used to explain how to obtain results on
the ball and on the simplex. Let η ∈ Ck[0,+∞) be a function defined by η(x) = 1 for
0 ≤ x ≤ 1 and η(x) = 0 if x ≥ 2. Define a sequence of operators ηn for n > 0 by

(3.12) ηnf :=
∞∑

k=0

η
(k
n

)
projHk

f.
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Since η(k/n) = 0 if k ≥ 2n, the series is finite and ηnf is a spherical polynomial of
degree at most 2n− 1. Furthermore, the operator ηn preserves polynomials of degree
n. The main properties of ηn are given in the following proposition:

Proposition 3.5. Let f ∈ Lp(h2
κ), 1 ≤ p ≤ ∞. If k ≥ bλc+ 1 then

1. ηnf ∈ Π2n−1(Sd) and ηnP = P for P ∈ Πn(Sd);
2. for n > 0, ‖ηnf‖κ,p ≤ c‖f‖κ,p;
3. for n > 0, ‖f − ηnf‖κ,p ≤ cEn(f)κ,p.

This proposition was proved in [34], where we assume that η is in C∞. The proof is
based on the boundedness of the Cesàro (C, δ)-means for the h-harmonic expansions,
which holds if δ > λ as shown in [24]. This gives the condition k ≥ bλc+ 1. For the
Lebesgue measure (κ = 0), the definition of the operator ηnf appeared first in [14]
and it played an important role in [20].

4. Analysis on the unit ball. Our goal in this section is to show how the
results on Bd can be deduced from those on Sd. We consider analysis in the weighted
space Lp(WB

κ,µ) on Bd, where WB
κ,µ is given in (1.2), which has the norm

‖f‖W B
κ,µ,p :=

(
aB

κ,µ

∫
Bd

|f(x)|pWB
κ,µ(x)dx

)1/p

for 1 ≤ p <∞, and ‖f‖∞ = supx∈Bd |f(x)| for p = ∞, where aB
κ,µ is the normalization

constant of the weight function WB
κ,µ.

Frequently we will refer to the results in the previous section. For this purpose it
is more convenient for us to refer to those results in terms of the weight function

hκ,µ(x) :=
d∏

i=1

|xi|κi |xd+1|µ = h̃κ(x1, . . . , xd)|xd+1|µ,

which is the weight function hκ defined in (1.1) with κd+1 = µ, where we use the
notation h̃κ(x) =

∏d
i=1 |xi|κi for x ∈ Rd. Note that h̃κ is hκ in (1.1) with d + 1

replace by d. Thus, when we refer to the results in the previous section, we will
replace hκ by hκ,µ. Furthermore, whenever we refer to a notion that appeared in the
previous section and denoted by a notation that contains a subindex κ, we will then
replace κ by κ, µ. For example, we will use Vκ,µ to denote the intertwining operator in
(3.5) associated with hκ,µ and use ∗κ,µ to denote the convolution in (3.6) associated
with hκ,µ.

4.1. Orthogonal polynomials on Bd. Under the mapping (2.1), the weight
functions WB

k,µ at (1.2) is related to the weight function hκ,µ by the following relation:

(4.1) h2
κ,µ(x, xd+1), (x, xd+1) ∈ Sd

+ ⇐⇒ WB
κ,µ(x), x ∈ Bd.

We consider the inner product on the unit ball

〈f, g〉B = aκ,µ

∫
Bd

f(x)g(x)WB
κ,µ(x)dx,

where aκ,µ is the normalization constant of Wκ,µ. Let Vn(WB
κ,µ) denote the space

of orthogonal polynomials of degree n with respect to 〈f, g〉B . Several explicit bases
of Vn(WB

κ,µ) are known explicitly; see, for example, [10]. In the case of the classical
weight function

Wµ(x) = (1− ‖x‖2)µ−1/2, x ∈ Bd,
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which is the same as WB
0,µ(x), some of these bases can be traced back to Hermite (see

[3, 11]). What we need, however, is the relation between orthogonal polynomials on
Bd and those on Sd. This relation follows as a consequence of Lemma 2.1.

Proposition 4.1. Write y = r(x, xd+1), r = ‖y‖ and x ∈ Bd. Then

Hn(h2
κ,µ;Sd) = Vn(WB

κ,µ)⊕ xd+1Vn−1(WB
κ,µ+1).

More precisely, if {Pn
α } is a basis of Vn(WB

κ,µ) and {Qn−1
α } is a basis of Vn−1(WB

κ,µ+1),
then the functions rnPn

α (y1, . . . , yd) and rnyd+1Q
n−1
α (y1, . . . , yd) are homogeneous

polynomials and their restriction on Sd form a basis for Hn(h2
κ,µ, S

d).
The proposition establishes the relation between orthogonal polynomials on the

sphere and those on the unit ball. It shows, in particular, that

Vn(WB
κ,µ) = span

{
P

(
x,

√
1− ‖x‖2

)
: P ∈ Hn(h2

κ,µ;Sd), P is even in xd+1

}
.

In other words, orthogonal polynomials with respect to WB
κ,µ on Bd correspond one-

to-one to spherical h-harmonics associated with h2
κ,µ that are even in xd+1. Note that

the ordinary spherical harmonics on Sd corresponds to the orthogonal polynomials
with respect to W0(x) = (1−‖x‖2)−1/2 on Bd, while the orthogonal polynomials with
respect to the Lebesgue measure dx on Bd correspond to the h-spherical harmonics
associated to |xd+1|dω on Sd.

The mapping (2.1) goes deeper than just inducing a correspondence. It turns out
that, under this mapping, the spherical h-Laplacian ∆h,0 in (3.1) becomes [30]

(4.2) DB
κ,µ := ∆h − 〈x,∇〉2 − 2λµ〈x,∇〉, λµ := |κ|+ µ+

d− 1
2

,

where ∇ = (∂1, . . . , ∂d) is the gradient and ∆h is the h-Laplacian associated to h̃κ.
The orthogonal polynomials in Vn(WB

κ,µ) become eigenfunctions of DB
κ,µ, see (3.2),

(4.3) DB
κ,µP = −n(n+ 2λµ)P, P ∈ Vn(WB

κ,µ).

For the classical weight function Wµ, κ = 0, this is the second order partial differential
equation satisfied by the classical orthogonal polynomials on Bd.

Because of the equation (2.3) and the mapping (2.1), we define an operator

(4.4) V B
κ,µf(x, xd+1) = cµ

∫ 1

−1

Ṽκ [f(·, xd+1t)] (x)(1− t2)µ−1dt, x ∈ Rd,

where Ṽκ is the intertwining operator for h̃κ and it is given explicitly in (3.5) with
d+ 1 replaced by d. Recall that Vκ,µ denote the intertwining operator for hκ,µ. The
new operator is simply [Vκ,µ(x, xd+1) + Vκ,µ(x,−xd+1)]/2.

Using (2.3) and (3.4), the reproducing kernel Pn(WB
κ,µ;x, y) of Vn(WB

κ,µ) becomes

(4.5) Pn(WB
κ,µ;x, y) =

n+ λµ

λµ
V B

κ,µ

[
Cλ

n (〈·, Y 〉)
]
(X)

where X = (x,
√

1− ‖x‖2) and Y = (y,
√

1− ‖y‖2) with x, y ∈ Bd, which is an
integral formula according to the explicit formula (3.5). In particular, for the classical
weight function Wµ, the explicit integral formula becomes ([28])

Pn(Wµ;x, y) = cµ
n+ λµ

λµ

∫ 1

−1

Cλµ
n

(
〈x, y〉+

√
1− ‖x‖2

√
1− ‖y‖2 t

)
(1− t2)µ−1dt,
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where λµ = µ+ d−1
2 . The projection operator L2(WB

κ,µ) → Vn(WB
κµ) is defined by

(4.6) projVn(B)f(x) := aκ,µ

∫
Bd

f(y)Pn(WB
κ,µ;x, y)WB

κ,µ(y)dy.

The explicit formula (4.5) of the reproducing kernel plays an important role in the
study of the converngence of orthogonal expansions on Bd.

4.2. Weighted approximation on the ball. The operator V B
κ,µ can be used to

define, setting xd+1 =
√

1− ‖x‖2, a convolution structure ∗B
κ,µ between f ∈ L1(Wκ)

and g ∈ L1(wλµ
; [−1, 1]), just as in (3.6),

(4.7) (f ∗B
κ,µ g)(x) =

∫
Bd

f(y)V B
κ,µ [g(〈·, X〉)] (Y )WB

κ,µ(y)dy, X =
(
x,

√
1− ‖x‖2

)
.

The equation (4.5) and (4.6) show that projVn(B) can be written as a convolution of f

with the Gagenbauer polynomial Cλµ
n under ∗B

κ,µ. It turns out that this convolution
structure is related to the convolution structure ∗κ,µ on the unit sphere:

(4.8) (f ∗B
κ,µ g)(x) = (F ∗κ,µ g)

(
x,

√
1− ‖x‖2

)
where F is defined by F (x, xd+1) := f(x). Clearly we can also take this equation
as the definition of ∗B

κ,µ. It follows immediatly from (2.3) that f ∗B
κ,µ g also satisfies

Young’s inequality. We can define an analogue of the weighed spherical means, TB
θ ,

as follows: For f ∈ L1(WB
κ,µ), the operator TB

θ f is defined implicitly by

(4.9) bλ

∫ π

0

TB
θ f(x)g(cos θ)(sin θ)2λ+2µdθ = (f ∗B

κ,µ g)(x)

for every g ∈ L1(wλ, [−1, 1]). Since the convolutions on Bd and on Sd are related by
(4.8), it follows readily that the following relation holds:

(4.10) TB
θ f(x) = Tκ

θ F
(
x,

√
1− ‖x‖2

)
, x ∈ Bd,

where F (x, xd+1) = f(x), which can also be taken as the definition of TB
θ . As a

consequence of this relation, the properties of this operator follows immediately from
those of Tκ,µ

θ in Proposition 3.2:
Proposition 4.2. The means TB

θ f satisfy the following properties:
1. Let f0(x) = 1; then TB

θ f0(x) = 1.
2. If f ∼

∑∞
n=0 projVn(B)f , then

TB
θ f ∼

∞∑
n=0

Cλ
n(cos θ)
Cλ

n(1)
projVn(B)f.

3. For f ∈ Lp(WB
κ,µ), 1 ≤ p <∞, or f ∈ C(Bd),

‖TB
θ f‖W B

κ,µ,p ≤ ‖f‖W B
κ,µ,p and lim

θ→0
‖TB

θ f − f‖W B
κ,µ,p = 0.

The operator TB
θ is called the generalized translation operator in [36], since the

property (2) in the Proposition 4.2 implies that

projVn(B)T
B
θ f =

Cλ
n(cos θ)
Cλ

n(1)
projVn(B)f

9



which becomes, when d = 1 and κ = 0, the property satisfied by the translation
operator Ts for the Gegenbauer weight function wλ(t) = (1− t2)λ−1/2 on [−1, 1]. The
translation operator Ts is usually defined by

(4.11) Tsf(t) = bλ−1/2

∫ 1

−1

f
(
st+ u

√
1− s2

√
1− t2

)
(1− u2)λ−1du,

which plays an important role in the study of orthogonal expansions in Gegenbauer
polynomials (see, for example, [4, 5, 7, 18, 22]). For d = 1 and κ = 0, we have
TB

θ = Tcos θ. Furthermore, in [36] an analogue of (4.11) is found for the classical
weight function Wµ:

Proposition 4.3. Let U(x) be the unitary matrix whose first column is x/‖x‖
and D(x) = diag{

√
1− ‖x‖2, 1, . . . , 1}. Then the generalized translation operator for

Wµ is an integral transform

TB
θ f(x) = aµ

∫
Bd

f (cos θx+ sin θyD(x)U(x)) (1− ‖y‖2)µ−1dy,

where y is considered as a row vector and yD(x) is the matrix multiplication.
The mapping (2.1) and (4.10) can be used to give an integral equation for the

weighted spherical means Tκ
θ for the weight function hκ(x) = |xd+1|µ on the sphere

Sd. We do not know if such an integral formula holds for TB
θ with respect to the

weight function WB
κ,µ or equivalently for Tκ

θ for h2
κ defined in (1.1).

As a consequence of the property (3) of the Proposition 4.2 we can define a
modulus of smoothness on Bd as follows: For r > 0, 1 ≤ p ≤ ∞, and f ∈ Lp(WB

κ,µ),

(4.12) ωr(f, t)W B
κ,µ,p = sup

0<θ≤t
‖(I − TB

θ )r/2f‖W B
κ,µ,p.

By (4.10), this modulus of smoothness is related to the modulus ωr(f ; t)κ,µ,p associ-
ated with hκ,µ as defined in (3.8). In fact, we have

(4.13) ω(f ; t)W B
κ,µ,p = ωr(F ; t)κ,µ,p, F (x, xd+1) = f(x).

Hence, properties of ωr(f ; t)W B
κ,µ,p follow from those satisfied by ωr(f ; t)κ,µ,p.

Using the differential-difference operator DB
κ,µ in (4.2), we can also define a K-

functional as follows: For f ∈ Lp(WB
κ,µ), r > 0,

(4.14) Kr(f ; t)W B
κ,µ,p := inf

{
‖f − g‖W B

κ,µ,p + tr‖(−DB
κ,µ)r/2g‖W B

κ,µ,p

}
,

where the infimum is taken over all g ∈ Lp(WB
κ,µ) for which ‖(−DB

κ,µ)r/2g‖W B
κ,µ,p is

finite. Since the operator DB
κ,µ is deduced from that of ∆h,0, there is also a connection

between the K-functionals Kr(f ; t)W B
κ,µ,p and Kr(f ; t)κ,µ,p associated with hκ,µ as

definded in (3.9). If fact, we also have

(4.15) K(f ; t)W B
κ,µ,p = Kr(F ; t)κ,µ,p, F (x, xd+1) = f(x).

Consequently, the following equivalence follows from Theorem 3.3 right away:
Theorem 4.4. For f ∈ Lp(WB

κ,µ), 1 ≤ p ≤ ∞,

c1ωr(f ; t)W B
κ,µ,p ≤ Kr(f ; t)W B

κ,µ,p ≤ c2ωr(f ; t)W B
κ,µ,p,

10



where c1 and c2 are constants independent of f .
Again these two gadgets can be used to characterize the best approximation by

polynomials. For f ∈ Lp(WB
κ,µ), 1 ≤ p ≤ ∞, let

En(f)W B
κ,µ,p := inf

{
‖f − P‖W B

κ,µ,p : P ∈ Πd
n

}
denote the error of the best approximation by polynomials of degree at most n. Using
the basic relations (2.1) and (2.2), we can prove that

En(f)W B
κ,µ,p = En(F )κ,µ,p, F (x, xd+1) = f(x).

Consequently, the following theorem follows immediately from Theorem 3.4.
Theorem 4.5. For f ∈ Lp(WB

κ,µ), 1 ≤ p ≤ ∞,

En(f)W B
κ,µ,p ≤ c ωr(f ;n−1)W B

κ,µ,p.

On the other hand,

ωr(f ;n−1)W B
κ,µ,p ≤ c n−r

n∑
k=0

(k + 1)r−1Ek(f)W B
κ,µ,p.

To further illustrate how the results on the unit ball can be derived from those
on the sphere, we state and prove a theorem analogous to Proposition 3.5. Let η ∈
Ck[0,∞) as in (3.12). We define a sequence of operators ηB

n by

(4.16) ηB
n f :=

∞∑
k=0

η
(k
n

)
projVk(B)f.

Proposition 4.6. Let f ∈ Lp(WB
κ,µ), 1 ≤ p < ∞, and f ∈ C(Bd) if p = ∞. If

k ≥ bλc+ 1 then
1. ηB

n f ∈ Π2n−1 and ηB
n P = P for P ∈ Πn;

2. for n > 0, ‖ηB
n f‖W B

κ,µ,p ≤ c‖f‖W B
κ,µ,p;

3. for n > 0, ‖f − ηB
n f‖W B

κ,µ,p ≤ cEn(f)W B
κ,µ,p.

Proof. Using the definition of the operator V B
κ , it follows easily from (3.4) and

(4.5) that

Pn(WB
κ,µ;x, y) =

1
2

[
Pn(h2

κ,µ; (x,
√

1− ‖x‖2), (y,
√

1− ‖y‖2))(4.17)

+Pn(h2
κ,µ; (x,

√
1− ‖x‖2), (y,−

√
1− ‖y‖2))

]
,

from which we derive from (3.3) and (4.6) that the following relation holds:

projVn(B)f(x) = projHn
F

(
x,

√
1− ‖x‖2

)
, F (x, xd+1) := f(x).

Consequently, ηB
n f(x) = ηnF (x,

√
1− ‖x‖2), from which the stated results follow

from the equation (2.3) and Proposition 4.6.

5. Analysis on the simplex. In this section we show how results on the simplex
can be deduced from those on the ball. Since the basic relation (2.4) amounts to a
non-linear change of variables, the deduction is more complicated than the deduction
from the sphere to the ball.
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Recall the weight function WT
κ,µ given in (1.3). We will consider Lp(WT

κ,µ) space
with norm ‖ · ‖W T

κ,µ,p defined similarly as ‖ · ‖W B
κ,µ,p. Recall the map ψ in (2.5).

Using (2.6), it is easy to see that f ∈ Lp(WT
κ,µ) is equivalent to f ◦ ψ ∈ Lp(WB

κ,µ);
furthermore, we have

‖f‖W T
κ,µ,p = ‖f ◦ ψ‖W B

κ,µ,p

5.1. Orthogonal polynomials on the simplex. Under the mapping ψ,WT
κ,µ(x),

x ∈ T d, becomes WB
κ,µ(x), x ∈ Bd, since the Jacobian of changing variables from

x 7→ ψ(x) is 2−d(x1 · · ·xd)−1/2. Let Vn(WT
κ,µ) denote the space of orthogonal polyno-

mials of degree n with respect to the inner product

〈f, g〉T := aκ,µ

∫
T d

f(x)g(x)WT
κ,µ(x)dx

on T d. Under the mapping (2.5), the inner product 〈·, ·〉T is related to 〈·, ·〉B by

〈f, g〉T = 〈f ◦ ψ, g ◦ ψ〉B ,

from which the relation between Vn(WT
κ,µ) and Vn(WB

κ,µ) follows immediately. Let
us define GV2n(WB

κ,µ) := V2n(WB
κ,µ) ∩ GΠ2n on Bd, which contains polynomials in

V2n(WB
κ,µ) that are invariant under Zd

2 (invariant under sign changes).
Proposition 5.1. The mapping (2.5) induces an one-to-one correspondence

between R ∈ Vn(WT
κ ) and R ◦ ψ ∈ GV2n(Wκ).

Since f ◦ψ is invariant under Zd
2, the mapping ψ also translates the operator DB

κ,µ

defined in (4.2) to the differential operator DT
κ,µ ([30]) defined by

(5.1) DT
κ,µ :=

d∑
i=1

xi(1− xi)∂2
i − 2

∑
1≤i<j≤d

xixj∂i∂j +
d∑

i=1

((
κi +

1
2

)
− λµxi

)
∂i,

and the orthogonal polynomials in Vn(WT
κ,µ) are the eigenfunctions of DT

κ,µ,

DT
κP = −n(n+ λµ)P, P ∈ Vn(WT

κ,µ).

This is the classical partial differential equations satisfied by orthogonal polynomials
on T d. Since the elements in GV2n(WT

κ,µ) are of the form R ◦ ψ with R ∈ Vn(WT
κ,µ),

the reproducing kernel of Vn(WT
κ,µ) satisfies

(5.2) Pn(WT
κ,µ;x, y) = 2−d

∑
ε∈Zd

2

P2n(WB
κ,µ;x1/2, εy1/2)

where x1/2 := (
√
x1, . . . ,

√
xd) and εu = (ε1u1, . . . , εdud). This equation suggests the

definition of the following operator defined on functions on Rd+1,

(5.3) V T
κ,µF (x, xd+1) = 2−d

∑
ε∈Zd

2

V B
κ,µF (εx, xd+1),

where V B
κ,µ is defined in (4.4). Using the fact that Cλ

n(t) = cp
(λ−1/2,−1/2)
n (2t2 − 1),

where c is a constant and p(α,β)
n denotes the orthonormal Jacobi polynomial of degree

n, it follows from (5.2) and (5.3) that

(5.4) Pn(WT
κ,µ;x, y) = p

(λµ− 1
2 ,− 1

2 )
n (1)V T

κ,µ

[
p
(λµ− 1

2 ,− 1
2 )

n

(
2〈·, Y 1/2〉2 − 1

)]
(X1/2),
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where X1/2 =
(√
x1, . . . ,

√
xd,

√
1− x1 − . . .− xd

)
and Y 1/2 is defined similarly. By

the definition of V B
κ,µ and the equation (3.5), this gives an explicit compact formula

for the kernel. Again, the projection operator L2(WT
κ,µ) → Vn(WT

κ,µ) is defined by

projVn(T )f(x) := aκ,µ

∫
T d

f(y)Pn(WT
κ,µ;x, y)WT

κ,µ(y)dy.

The formula (5.4) of the reproducing kernel plays an essential role in the study of
orthogonal expansions on T d. It shows, in particular, that the expansions on T d are
connected to Jacobi expansions, rather than Gegenbauer expansions.

5.2. Weighted approximation on the simplex. Using the operator V T
κ,µ, we

can define a convolution f ∗T
κ,µ g for f ∈ L1(Wκ) and g(2{·}2 − 1) ∈ L1(wλ, [−1, 1])

on T d as in (4.7). The basic mapping (2.5) shows that

(5.5)
(
(f ∗T

κ,µ g) ◦ ψ
)
(x) =

(
(f ◦ ψ) ∗B

κ,µ g
(
2{·}2 − 1

))
(x),

which can also be taken as a definition of ∗T
κ,µ. The equations (5.4) shows that

projVn(T ) can be written as a convolution of f and the Jacobi polynomial. Using the
convolution, we can define an analogue of a gneralized translation operator TT

θ by

(5.6) bλ

∫ π

0

TT
θ f(x)g(cos 2θ)(sin θ)2λµdθ = (f ∗T

κ,µ g)(x)

for every g ∈ L1(wλ, [−1, 1]). Note that we have g(cos 2θ) in contrast to g(cos θ) in
(4.9), which comes from 2 cos2 θ − 1 = cos 2θ. From the relation (5.5) it follows that

(5.7)
(
(TT

θ f) ◦ ψ
)
(x) = TB

θ (f ◦ ψ)(x), x ∈ T d,

from which the properties of TT
θ follows from those in Proposition 4.2.

Proposition 5.2. The means TT
θ f satisfy the following properties:

1. Let f0(x) = 1; then TT
θ f0(x) = 1.

2. If f ∼
∑∞

n=0 projVn(T )f , then

TT
θ f ∼

∞∑
n=0

p
(λ− 1

2 ,− 1
2 )

n (cos 2θ)

p
(λ− 1

2 ,− 1
2 )

n (1)
projVn(T )f.

3. For f ∈ Lp(WT
κ,µ), 1 ≤ p <∞, or f ∈ C(T d),

‖TT
θ f‖W T

κ,µ,p ≤ ‖f‖W T
κ,µ,p and lim

θ→0
‖TT

θ f − f‖W T
κ,µ,p = 0.

Just like the case of Bd, the last property of this proposition suggests the following
definition of a modulus of smoothness on T d: For r > 0 and 1 ≤ p ≤ ∞,

(5.8) ωr(f, t)W T
κ,µ,p = sup

0<θ≤t
‖(I − TT

θ )r/2f‖W T
κ,µ,p.

Under the mapping (2.5) the relation (5.7) and (4.12) immediately show that

(5.9) ωr(f, t)W T
κ,µ,p = ωr(f ◦ ψ, t)W B

κ,µ,p.
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As in the case of Bd, we can use the operator DT
κ,µ in (5.1) to define a K-functional

as follows: For f ∈ Lp(WT
κ,µ), r > 0,

(5.10) Kr(f ; t)W T
κ,µ,p := inf

{
‖f − g‖W T

κ,µ,p + tr‖(−DT
κ,µ)r/2g‖W T

κ,µ,p

}
,

where the infimum is taken over all g ∈ Lp(WT
κ,µ) for which ‖(−DT

κ,µ)r/2g‖W T
κ,µ,p is

finite. Since DT
κ,µ is obtained from DB

κ,µ by a change of variable (2.5), it follows that

(5.11) Kr(f ; t)W T
κ,µ,p = Kr(f ◦ ψ; 2t)W B

κ,µ,p,

Consequently, the following equivalence follows from Theorem 3.3 right away:
Theorem 5.3. For f ∈ Lp(WT

κ,µ), 1 ≤ p ≤ ∞,

c1ωr(f ; t)W T
κ,µ,p ≤ Kr(f ; t)W T

κ,µ,p ≤ c2ωr(f ; t)W T
κ,µ,p,

where c1 and c2 are constants independent of f .
As before, the two gadgets can be used to characterize the best approximation

by polynomials. For f ∈ Lp(WT
κ,µ), 1 ≤ p ≤ ∞, let

En(f)W T
κ,µ,p := inf

{
‖f − P‖W T

κ,µ,p : P ∈ Πd
n

}
denote the error of the best approximation by polynomials of degree at most n. Using
(2.5) and taking into consideration of the symmetry of P ◦ ψ, we can show that

En(f)W T
κ,µ,p = En(f ◦ ψ)W B

κ,µ,p.

Hence, the following characterization follows immediately from Theorem 4.5 and (5.9):
Theorem 5.4. For f ∈ Lp(WT

κ,µ), 1 ≤ p ≤ ∞,

En(f)W T
κ,µ,p ≤ c ωr(f ;n−1)W T

κ,µ,p.

On the other hand,

ωr(f ;n−1)W T
κ,µ,p ≤ c n−r

n∑
k=0

(k + 1)r−1Ek(f)W T
κ,µ,p.

5.3. Additional difficulty for analysis on the simplex. In the above dis-
cussion we put our emphasis on the similarity between results on the ball and on the
simplex. In fact, most of the results on these two domains appear to be equivalent in
the sense that they can be deduced from each other, and both can be deduced from
the results on the sphere. However, for certain problems, the simplex is more difficult
to work with. The difficulty appears in the connection between Pn(WT

κ,µ; ·, ·) and

P2n(WB
κ,µ; ·, ·) shown in (5.2), which forces us to switch from Cλ

n(t) to p(λ−1/2,1/2)
n (t)

as in (5.4). As a consequence, the results for certain problems on T d will not follow as
an exact consequence of those on Bd. This is so especially for the study of orthogonal
expansions.

To illustrate this point, let η ∈ Ck[0,∞) as in (3.12) and define operators ηT
n by

(5.12) ηT
n f :=

∞∑
k=0

η
(k
n

)
projVk(T )f.

The main properties of ηT
n f is the following theorem analogous to Proposition 4.6:

Proposition 5.5. Let f ∈ Lp(WT
κ,µ), 1 ≤ p < ∞, and f ∈ C(T d) if p = ∞. If

k ≥ bλc+ 1 then
14



1. ηT
n f ∈ Π2n−1 and ηT

nP = P for P ∈ Πn;
2. for n > 0, ‖ηT

n f‖W T
κ,µ,p ≤ c‖f‖W T

κ,µ,p;
3. for n > 0, ‖f − ηT

n f‖W T
κ,µ,p ≤ cEn(f)W T

κ,µ,p.
This theorem, however, does not follow as a consequence of Proposition 4.6. In

fact, the relation (5.4) shows that projVk(T ) is related to projV2k(B), which shows that
there is no direct relation between ηT

n and ηB
n , as each is a sum over k from 0 to n.

The proof of this theorem can be modeled after the proof of Proposition 3.5 in [34],
which goes back to [14].

The same phenomenon also appears when we try to find the critical index of
the Cesàro (C, δ)-means of the orthogonal expansions. In fact, for WB

κ,µ on Bd, the
sharp critical index was established in [16], whiles for WT

κ,µ on T d the result was
not established for all parameter ranges. The study of (C, δ)-means of orthogonal
expansions on T d does not follow from the one on Bd. See [16] for details.

For d = 1, WT
κ (x) = xκ1−1/2(1− x)κ1−1/2 is the Jacobi weight function on [0, 1].

However, TT
θ is not the usual translation operator associated with the product formula

of the Jacobi series. In fact, it corresponds to the “wrong” product formula

P (α,β)
n (x)P (α,β)

n (y) = cn

∫ 1

−1

∫ 1

−1

Cα+β+1
2n (z(t, s, x, y))(1− s2)α−1/2(1− t2)β−1/2dsdt

where z(t, s, cos θ, cosφ) = cos θ cosφs+sin θ sinφt. Finally, we mention that it would
be interesting to find if TT

θ can be written as an integral transform, like the formula
of TB

θ for Wµ in Proposition 4.3.

6. Other problems on the unit ball and on the simplex. Besides orthogo-
nal polynomials and approximation discussed in the previous sections, the connection
between Sd, Bd and T d can be useful in several other problems in analysis. In this
section we briefly discuss three other problems.

6.1. Polynomial of least deviation from zero. For x = (x1, . . . , xd) ∈ Rd

and α = (α1, . . . , αd) ∈ Nd
0, we define the monomial xα = xα1

1 · · ·xαd

d . The degree
of the monomial xα is |α| = α1 + . . . + αd. Let Ω be a region in Rd. If p∗(x) is a
polynomial of best approximation to the monomial xα in the uniform norm on Ω,
then xα − p∗(x) is called the polynomial of least deviation from zero. We shall also
call p∗(x) a least polynomial.

Using the basic relations (2.1) and (2.5) between the three domains and the
relations between polynomial spaces as given in Lemma 2.1 and Lemma 2.2, one can
often reduce the problem of finding least polynomials on Bd to that of Sd and to that
of T d. As an illustration we state one such result ([32]).

Theorem 6.1. Let α ∈ Nd
0 and write 2α = (2α1, . . . , 2αd) and |α| = n. If

p∗(x) is a least polynomial for xα on T d, then p∗(x2
1, . . . , x

2
d) is a least polynomial

for x2α on Bd; conversely, if q∗ is a least polynomial for x2α on Bd in the form
q∗(x) = p∗(x2

1, . . . , x
2
d), then p∗(x) is a least polynomial for xα on T d.

For d = 2, the least polynomials to xnym from Π2
n+m−1 on the domain B2 and

T 2 were known. Their relation as stated in the theorem was used in [6]. For d > 2,
only a few examples of least polynomials were known, see [1, 2, 19, 21, 32]. The
above theorem can be used to find least polynomials for monomials of lower degrees.
It shows, in particular, that in order to find a least polynomial for x2α on Bd, it
is enough to work with xα, which has lower degree, on T d. For example, one least
polynomial for x1x2x3 on T 3 is given by ([32])

R3(x) = 72x1x2x3 − 4(x1 + x2 + x3) + 4(x1 + x2 + x3)2 − 8(x1x2 + x2x3 + x1x3) + 1,
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which gives immediately a least polynomial for x2
1x

2
2x

2
3 on B3 using the theorem.

6.2. Cubature formula. The formulas (2.3) and (2.6) relate the integral in
three regions. Together with the connection of the polynomials on these domains,
they lead to relations between cubature formulas on Sd, Bd and T d. These relations
were discussed in [26, 27] and they were used in [12, 13] to generate new cubature
formulas. We state only one theorem that captures the spirit of such a result.

Theorem 6.2. If there is a cubature formula of degree M on T d giving by

(6.1)
∫

T d

f(u)WT
κ,µ(u)du =

N∑
i=1

λif(ui),

with all ui ∈ T d, then there is a cubature formula of degree 2M + 1 on Bd given by

(6.2)
∫

Bd

g(x)WB
κ,µ(x)dx =

N∑
i=1

λi2−k(ui)
∑
ε∈Zd

2

f(ε1
√
ui,1, . . . εd

√
ui,d)

where k(u) denote the number of non-zero components in u. Moreover, a cubature
formula of degree 2M + 1 in the form of (6.1) on Bd implies a cubature formula of
degree M in the form of (6.2) on T d.

A similar result holds for cubature formulas on Sd and on Bd, which also extends
to a relation between cubature formulas on Sd and on T d. We note that a cubatue
for the surface measure on Sd corresponds to a cubature for “Chebyshev” weight
function W0(x) on Bd, which in turn corresponds to a cubature for “Chebyshev”
weight function WT

0 (x) on T d.

6.3. Polynomial Interpolation. The relation (2.1) between polynomial spaces
on Bd and those on Sd can also be used in the problem of polynomial interpolation.

Let Md
n = dim Πd

n. We consider the following interpolation problem on Bd:

Problem 1. Let E be a set of Md
n points on Bd. Find conditions on E such that,

for any given data {fi}, there is a unique polynomial Q ∈ Πd
n satisfying Q(xi) = fi,

for xi ∈ E and 1 ≤ i ≤Md
n,

Let Nd
n = dim Πn(Sd). The interpolation problem on Sd that we consider is:

Problem 2. Let X be a set of Nd
n distinct points on Sd. Find conditions on X such

that, for any given data {fi}, there is a unique polynomial S ∈ Πn(Sd) satisfying
S(yi) = fi, for yi ∈ X and 1 ≤ i ≤ Nd

n.

We call the point set X on Sd symmetric if x = (x′, xd+1) ∈ X implies that
(x′,−xd+1) ∈ X, where x′ = (x1, . . . , xd). From the relation (2.1) between polynomi-
als spaces, solutions of these two problems are related as follows [33]:

Theorem 6.3. Let E be a set of Md
n points on Bd that solves Problem 1. Assume

that E contains exactly Md
n − Md

n−1 points on the boundary Sd−1 of Bd and that
E◦ := E \ (E ∩ Sd−1) solves Problem 1 for Πd

n−1. Define

XE = {(x′, 0) : x′ ∈ E ∩ Sd−1}
⋃ {

(x′,±xd+1) : xd+1 =
√

1− ‖x′‖2, x′ ∈ E◦
}
.

Then XE solves Problem 2. On the other hand, if X solves Problem 2, X is symmetric,
and there are exactly Md

n −Md
n−1 points on the hyperplane {x ∈ Rd+1 : xd+1 = 0},

then EX = {x′ : (x′, xd+1) ∈ X ∩ Sd+1
+ } solves Problem 1.
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The relation (2.5) and the relation between the polynomial spaces on Bd and
T d as described in Lemma 2.2 can also be used for interpolation problem. However,
because the mapping x 7→ ψ(x) is nonlinear, a polynomial of degree n that interpolates
on Nd

n points on T d corresponds to an interpolation polynomial on Bd that belongs
to a subspace of Πd

2n; see [33] for a discussion in the case of d = 2.
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[3] P. Appell and J. K. de Fériet, Fonctions hypergéométriques et hypersphériques, Polynomes
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