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Abstract. The topic of serial correlation in regression models has attracted a great deal
of research in the last 50 years. Most of these studies have assumed that the structure of
the error covariance matrix X was known or could be consistently estimated from the data.
In this article, we describe a new procedure for generating forecasts for regression models
with serial correlation based on ordinary least squares and on an approximate
representation of the form of the autocorrelation. We prove that the predictors from
this specification are asymtotically efficient under some regularity conditions. In addition,
we show that there is not much to be gained in trying to identify the correct form of the
serial correlation since efficient forecasts can be generated using autoregressive approx-
imations of the autocorrelation. A large simulation study is also used to compare the finite
sample predictive efficiencies of this new estimator vis-à-vis estimators based on ordinary
least squares and generalized least squares.

Keywords. Autocorrelation; autoregressive moving average; least squares; model
identification; prediction.

1. INTRODUCTION

It is well known that under some regularity conditions, ordinary least squares
(OLS) yield unbiased, but inefficient estimates for parameters in regression models
with serially correlated error structures, and that these OLS regression estimates
usually have larger sampling variances than those obtained from procedures such
as generalized least squares (GLS) that deal explicitly with the autocorrelation of
the residuals. Furthermore, and of particular concern for us in this article, that for
finite samples forecasts generated from such models can be seriously inefficient,
not just because of issues associated with parameter estimation, but also because
the error between the fitted and actual value in the last observation is apt to
persist into the future.

Most estimation methods that deal explicitly with serial correlation such as
generalized least squares or transfer functions presuppose that the structure of
the covariance matrix can be correctly identified and estimated consistently
from the data. The practical reality is, as reported by Thursby (1987),
Koreisha and Pukkila (1987), among others, is quite different. For finite
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samples identification of the serial correlation structure in regression models
can be quite elusive.

In this article, we present an efficient, easy to implement forecasting procedure
based solely on least squares which does not require a priori knowledge of
covariance matrix for regression models with serial correlation. In Section 2, we
describe the new two-step ordinary least squares (2SOLS) forecasting procedure,
and prove that it is asymptotically efficient. Here we also show that as the sample
size increases, predictive efficiency does not dependent on efficient estimates; the
crucial factor in generating efficient forecast, as we shall demonstrate, is in dealing
with the residual autocorrelation which we do by using an AR(~p) approximation.
We show that for sufficiently large T (sample size) and ~p, the L-step ahead
forecasting error associated with 2SOLS has the same limiting distribution as that
of GLS. This implies that there is not much to be gained in trying to identify the
correct form of the autocorrelation since efficient forecasts can be generated using
AR(~p) approximations. In Section 3, we present results from an exhaustive
simulation study for sample sizes ranging from 50 to 500 observations and
covering a wide spectrum of ARMA (p,q) serial correlation structures. We
compare the efficiency of forecasts generated by the 2SOLS method with other
approaches based on OLS and GLS. In Section 4, we demonstrate the forecasting
performance of the proposed new method using real economic data. Finally, in
Section 5, we offer some concluding remarks.

2. TWO-STEP FORECASTING PROCEDURES BASED ON OLS

2.1. The procedure

Suppose the serial correlation of the regression model,

yt ¼ b0 þ
Xk

i¼1
bixi;t þ at; ð1Þ

for which we are interested in generating forecasts follows a stationary and
invertible ARMA process (Box and Jenkins, 1976),

UðBÞat ¼ HðBÞvt; ð2Þ

where U(B) and Q(B) are finite polynomials of orders p and q respectively in the
back shift operator B, such that Bjwt ¼ wt�j, and fvtg is a white noise process with
variance r2

v .
The two-step forecasting procedure consists in first obtaining OLS estimates for

the residual series ât of the regression model (1). Then, assuming that the form of
the ARMA serial correlation can be approximated by an AR(~p) process (Box and
Jenkins, 1976; Koreisha and Fang, 2001), an augmented regression model that
includes ~p additional first-step residual variables,
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yt ¼ b0 þ
Xk

i¼1
bixi;t þ

X~p

j¼1
qjât�j þ ut ð3Þ

is estimated using OLS yielding new 2SOLS residuals and estimates for bi, namely
b̂2SOLS

i . Based on the thus derived b̂2SOLS
i as well as q̂j from (3), the L-step ahead

forecasts at time T can be constructed by sequentially generating future estimates
for âTþL from

âTþL ¼
X~p

j¼1
q̂jâTþL�j;

thus yielding the forecasts for yTþL, namely,

ŷ2SOLS
TþL ¼ b̂2SOLS

0 þ
Xk

i¼1
b̂2SOLS

i xi;TþL þ âTþL: ð4Þ

The selection of an appropriately large ~p, as we shall demonstrate, is necessary
to establish the efficiency of the forecasting method. Later in this section, we will
present some guideline for selecting ~p based on sample size.

It should also be noted that this 2SOLS procedure could be allowed to iterate
until convergence based on some criterion such as mean square error (MSE) is
established (see, for example, Kapetanios (2003) for discussions on whether such
iterative procedures converge in small samples). In this study, we will only present
the results associated with the first iteration. This is because in preliminary trials
we did not observe significant gains in forecasting efficiencies after a few
iterations.

2.2. Asymptotic properties

Although extensive research has been conducted on the properties of predictors
from serially correlated regression models, there are very few studies that focus on
predictors obtained when the form of the autocorrelation is misspecified. [In fact,
the preponderance of these studies assume that the form of the residual
correlation is known, and, because of estimation issues, that it is governed by
an AR process, e.g. Yamamoto (1976), Bhansali (1978), and Baille (1979).] Of the
few who have considered this problem like Fang and Koreisha (2004), practically
all used predictors based on GLS estimation.

In this section, we will show that under classic regression regularity conditions
the predictor based on the 2SOLS procedure is asymptotically efficient, i.e. for
sufficiently large T, and an appropriately selected AR order ~p, the L-step ahead
forecasting error of ŷ2SOLS

TþL obtained from (4) is essentially the same as the one
based on GLS. In the process, we also show that the b2SOLS

i estimates are
consistent.
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As in Amemiya (1985) and Judge et al. (1985) among others, we begin by
making the following assumptions on the design matrix and residuals:

Assumption 1. fatg are invertible and stationary. The coefficients of Q(B)U�1(B)
and U(B)Q�1(B), f#jg and fujg, are absolutely summable.

Assumption 2. p limT!1(X
0X/T) is finite and nonsigular.

Assumption 3. p limT!1(X
0A/T) ¼ 0.

where X is the T � k design matrix and A is an T � ~p matrix with the (i, j) �
entry ai,j ¼ aT�i�jþ1.

These assumptions ensure that the OLS estimates of bi obtained from (1) are
consistent. However, because some of the regressors (namely, the estimated
residuals from (1)) are correlated with the error term in (3), to demonstrate that
the b2SOLS

i estimates are consistent, it is necessary to show that, as the lag ~p in (3)
goes to infinity, these correlations will approach zero in probability. Lemmas 1
and 2 below provide the basis for establishing our first theorem demonstrating the
consistency of the b2SOLS

i estimates.
Consider the autoregression of order ~p,

at ¼
X~p

j¼1
/jat�j þ ut:

Let U be an T-dimensional vector defined by

U ¼
X1

j¼~pþ1
/jaT�k�j þ vT�k

( )T�1

k¼0

and fcjg is the covariance function of at.

Lemma 1. Under Assumptions 1–3, it can be shown that

(1)

p limT!1
A0U

T
¼

P1
j¼~pþ1 /jcj�1P1
j¼~pþ1 /jcj�2

..

.P1
j¼~pþ1 /jcj�~p

0
BBBB@

1
CCCCA;

(2) p limT!1
A0A
T is finite and nonsigular, where
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p limT!1
A0A
T
¼

c0 c1 � � � c~p�1
c1 c0 � � � c~p�2
: : : :
: : : :
: : : :

c~p�2 c~p�3 � � � c1
c~p�1 c~p�2 � � � c0

0
BBBBBBBB@

1
CCCCCCCCA

;

(3)

p limT!1
X 0U

T
¼ 0:

Proof. For all k ¼ 0; 1; 2; . . . ; ð~p � 1Þ, it can be shown that

T�1
XT

i¼1
ðaT�i�kÞ

X1
j¼~pþ1

/jaT�j�iþ1 þ vT�iþ1

 !( )

¼
X1

j¼~pþ1
/jðT�1

XT

i¼1
aT�i�kaT�i�jþ1Þ þ T�1

XT

i¼1
aT�i�kvT�iþ1;

which has the limit
P1

j¼~pþ1 /jcjj�k�1j. Hence, T�1A0U converges to the desired
limit. Similarly, under Assumptions 1–3, the convergence results of T�1A0A and
T�1X0U follow from direct matrix algebra manipulation. u

Since OLS residuals fâtg have the same asymptotic distribution as fatg [Judge
et al., p. 172 (1985)], the covariance matrix of fâtg approximates that of fatg as
T ! 1. Hence, we have,

Lemma 2. The results in Lemma 1 hold for the autoregression of order ~p based on
OLS residuals fâtg,

ât ¼
X~p

j¼1
/jât�j þ wt:

Now let b denote the vector of unknown regression parameters and b̂2SOLS

the corresponding vector of 2SOLS estimates.

Theorem 1. Under Assumptions 1–3,

p limT!1b̂2SOLS ¼ b:

Proof. Consider the regression model

yt ¼ b0 þ
Xk

i¼1
bixi;t þ

X~p

j¼1
/jat�j þ ut: ð5Þ
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Let b� � ðb0; b1; b2; . . . ; bk;/1;/2; . . . ;/~pÞ0 be the OLS coefficients of the
regressors and b̂� the corresponding estimates, then

b̂� � b� ¼ N0N
T

� ��1N0U
T

; ð6Þ

where N ¼ (X,A), and U and A as defined in Lemma 1.
Note that the first term on the right-hand side of (6)

N0N ¼ X 0

A0

� �
X Að Þ ¼ X 0X X 0A

A0X A0A

� �
:

Therefore,

T ðN0NÞ�1¼ T ðX 0X Þ�1þðX 0X Þ�1ðX 0AÞB�1ðA0X ÞðX 0X Þ�1 �ðX 0X Þ�1ðX 0AÞB�1
�B�1ðA0X ÞðX 0X Þ�1 B�1

� �
;

where B ¼ A0A � (A0X)(X0X)�1(X0A).
From the general assumptions and the results of Lemma 1, it can be verified

that

TB�1 ¼ T ðA0AÞ�1 þ opð1Þ;

T ½ðX 0X Þ�1 þ ðX 0X Þ�1ðX 0AÞB�1ðA0X ÞðX 0X Þ�1� ¼ T ðX 0X Þ�1 þ opð1Þ;

and

T ðX 0X Þ�1ðX 0AÞB�1 ¼ opð1Þ:

Thus,

T ðN0NÞ�1 ¼ T ðX 0X Þ�1 0

0 ðA0AÞ�1
� �

þ opð1Þ;

which has a finite and non-singular limit.
The second term on the right-hand side of (6),

N0U
T
¼

X 0U
A0U

� �
T

:

Let b�ðkÞ � ðb0; b1; b2; . . . ;bkÞ0 be first k-entries of b� and b̂�ðkÞ the corresponding
estimates. Note that ðb̂�ðkÞ � b�ðkÞÞ, is an k-dimensional vector consisting of the first
k-entries of the ðk þ ~pÞ-dimensional vector ðb̂� � b�Þ. Since T�1A0A ¼ Op(1)
and T�1A0U ¼ op(1) by Lemma 1, we have

b̂�ðkÞ � b�ðkÞ ¼ T ðX 0X Þ�1 X 0U
T
þ opð1Þ:
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The first term on the right-hand side of the above equation, T ðX 0X Þ�1 X 0U
T ,

converges to zero in probability by Assumption 2 and the results of Lemma 1.
Therefore, b̂2SOLS ¼ b þ opð1Þ by Lemma 2. u

Now expanding the mean square error of the forecasts based on our 2SOLS
procedure,

yTþL � ŷ2SOLS
TþL

� �2¼ ½x0TþLðb� b̂2SOLSÞ þ ðaTþL � âTþLÞ�2

yields,

ðx0TþLðb� b̂2SOLSÞÞ2 þ ðaTþL � âTþLÞ2 þ 2ðx0TþLðb� b̂2SOLSÞÞðaTþL � âTþLÞ:

From Theorem 1, ðb � b̂2SOLSÞ and hence x0TþLðb � b̂2SOLSÞ converge to zero
in probability as T goes to infinity. Consequently, to show that these forecasts are
asymptotically efficient, it will be necessary to just demonstrate that the term
relating to the difference between actual future residuals and our estimated AR(~p)
approximation, (aTþL � âTþL), converges to the minimum mean square L-step
prediction error for YTþL. Below we derive this result for sufficiently large T and
~p.

Lemma 3. Given � > 0, one can find T0(�) and ~p0ð�Þ such that for T > T0(�)
and ~p > ~p0ð�Þ,

jEðâTþL � aTþLÞ2 � r2
Lj < �;

where r2
L is the minimum mean square L-step prediction error based on

faT,aT�1,. . .g, which is independent of T and given by r2
v

PL�1
j¼0 #

2
j .

The proof is given in the Appendix.
Therefore,

Theorem 2. Under Assumptions 1–3, given L > 0 and d > 0, for any � > 0,
one can find T0(�) and ~p0ð�Þ such that for T > T0(�) and ~p > ~p0ð�Þ,

P ½jðŷ2SOLS
TþL � yTþLÞ2 � r2

Lj > dÞ < �;

where r2
L is defined in Lemma 3.

It should be noted that the 2SOLS procedure does not, in general, yield
efficient estimates of the regression parameters b�s. (As in Zyskind (1967), it can
be shown that 2SOLS will be efficient if and only if X ¼ QC, where Q contains
the characteristic vectors of X, and C is a non-singular matrix.) Hence,
alternative methods based on GLS (see Koreisha and Fang, 2001) should be
used if model estimation and inference are the main focus of the study.
However, forecasting efficiency, as we just demonstrated, does not depend on
the use of efficient estimators. The key to obtaining efficient forecasts lies in
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dealing with the serial correlation. In fact, from Theorem 2, we see that the
2SOLS predictor ŷ2SOLS

TþL is efficient for all L, provided that T and ~p are
sufficiently large. In Section 3, using a large simulation study, we will
demonstrate that even for sample sizes generally available to model builders,
ŷ2SOLS

TþL can yield comparable forecasts to those generated from GLS using the
correct form of the residual autocorrelation structure. We will also decompose
the predictive mean square errors into their component parts, namely the
portion attributable to the estimation of the regression parameters and the
portion associated with the serial correlation to gain additional insights on
relative causes of the forecast inefficiencies.

2.3. Choosing the lag order ~p

The rationale for using an AR(~p) approximation is based on the fact that any
stationary and invertible ARMA(p,q) model can be expressed as an infinite
autoregression, at ¼ P(B)atþvt, where PðBÞ ¼

P1
i¼1 piBi. Hence the serially

correlated regression model (3) and (4) can be rewritten as

yt ¼ b0 þ
Xk

i¼1
bixi;t þPðBÞat þ vt: ð7Þ

To operationalize the proposed 2SOLS procedure it is necessary to select the
value of ~p as an input. Since the coefficients in P(B) in (7) may be effectively zero
beyond some finite lag in the sense of Hannan (1970), the infinite autoregressive
representation may be approximated by an AR(~p) process whose order ~p depends
on the number of observations, and the rate for which the AR coefficients
converge to zero, i.e. ~p ¼ pðT Þ. For time-series models typically ~p ¼ OðT kÞ for
some positive k (Berk, 1974; Bhansali, 1978) or ~p ¼ OfðlnT Þag for a > 0
(Hannan et al., 1980; Saikkonen, 1986). It is well-known that one needs to allow
the order of the AR process, ~p, to go to infinity as T ! 1 to obtain efficient
ARMA estimates (Wahlberg, 1989). Not much, however, is known about such
types of convergence rates in the context of regressions with serially correlated
ARMA residuals nor in finite sample cases.

Through extensive experimentation Poskitt and Salau (1995) in demonstrating
asymptotic equivalency of the Koreisha and Pukkila (1990) generalized least
squares estimation procedure for univariate and vector ARMA processes vis-à-vis
Gaussian estimation procedures, have shown that for sample sizes similar to the
ones used in our study, ~p must be less than or equal to (lnT)1.8. Pukkila et al.
(1990) have also provided some basis for fixing ~p at kT1/2, where k ranged from
0.5 to 1.5.

There are other methods that can be used for determining the lag length ~p.
Koreisha and Pukkila (1987), for instance, �experimented with several order
determination criteria to determine the lag length ~p, [but] found them to be
unsatisfactory. For example, BIC (Schwartz, 1987) often chose an AR(3)
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structure to fit an MA(1) model with h ¼ 0.9.� It may also be possible that cross-
validation methods (Burman, 1989; Shao, 1993) could be useful in selecting the
lag order ~p, but such methods can be computationally complex and expensive,
thus making their use not always practical (Shao, 1993; Racine, 1997).

3. FINITE SAMPLE PROPERTIES

3.1. The simulation design

In this section, we contrast the forecast performance of 2SOLS procedure based
on an AR(~p) approximation of the residual autocorrelation with the predictive
performance of models obtained from OLS; estimated GLS (EGLS), i.e. correctly
specified X with estimated parameters; as well as estimated GLS-AR(~p)
representations of the serial correlation (EARGLS) which Koreisha and Fang
(2004) demonstrated yield efficient forecasts. Here, we adopt the same, simple
data-driven procedure for selection the autoregressive order (~p) proposed in Fang
and Koreisha (2004), by allowing ~p to increase as the sample size increases, i.e. we
set ~p ¼ ½

ffiffiffiffi
T
p

=2�.
Using the SAS random number subroutine RANNOR, we generated, for

sample sizes of 50 to 500 observations, 1,000 realizations for each of a variety of
stationary and invertible Gaussian ARMA(p,q) structures with varying parameter
values as the residuals of a regression model with one exogenous variable
generated by an AR(1) process. The parameter values for the residual ARMA
structures were chosen to not only conform with other previously published
studies of Engle (1974), Pukkila et al. (1990), Zinde-Walsh and Galbraith (1991),
and Fang and Koreisha (2004), but also to provide a representative set of
examples of possible autocorrelated error structures in regression models.

Then, we created the regression model

yt ¼ 2:0þ 0:5xt þ at; ð8Þ

where the generating process for the exogenous variable xt followed an AR(1)
process, (1 � uB)xt ¼ wt, with wt � IN(0,1), and E(at,ws) ¼ 0, for all t and s, and
u ¼ f0.0,0.5,0.9g. Only one set of random numbers was generated for each of the
AR(1) model structures of the exogenous variable used in (8).

Breusch (1980) has shown that for a fixed regressor the distribution of
ðb̂EGLS � bÞ=r does not depend on b and r2. In addition, the result also holds if
the covariance matrix is misspecified (Koreisha and Fang, 2001). This implies that
in simulation studies, only one point in the parameter space (b,r2) needs to be
considered for estimated EGLS and EARGLS. This also holds for 2SOLS if ~p and
T are sufficiently large.

Ten additional observations were generated for each sample size to evaluate the
forecast performance of all methods. The relative predictive efficiencies among
estimation methods based on predictive mean squared error (PMSE),
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n̂i=jðT þ LÞ �
P
ðŷðiÞTþL � yTþLÞ2P
ðŷðjÞTþL � yTþLÞ2;

i; j ¼ f2SOLS, OLS, EGLS, EARGLSg; and i 6¼ j; ð9Þ

where ŷðmÞTþL represents the forecasted value based on method m for time T þ L,
yTþL is the actual generated value (true model) at T þ L, was calculated for four
forecast horizons, L ¼ f1,5,10g. A ratio less than 1 indicates that forecasts
obtained from method i in (9) are more efficient than those generated from
method j.

3.2. Simulation results

Tables I and II contrast selected predictive relative mean squared error efficiencies
among 2SOLS and 3 other procedures: OLS, GLS based on the correct residual
model structures but with estimated ARMA coefficients (EGLS and to be
considered as the performance benchmark); and EARGLS based on an
approximating AR(~p) correction with lag ~p, as with 2SOLS, set equal to the
closest integer part of

ffiffiffiffi
T
p

=2 (denoted as EARGLS). (We also experimented with
other autoregressive corrective order (multiples of

ffiffiffiffi
T
p

), but like Fang and
Koreisha (2004), found that for sample sizes considered in the study, ~p set at
½
ffiffiffiffi
T
p

=2� yielded the best forecasts.) SAS procedures (PROC ARIMA and PROC
AUTOREG) were used to obtain the GLS estimates from which the forecasts were
generated. To provide an idea of the magnitude of the actual PMSE we also
included in these tables the actual estimates for PMSE(2SOLS). For the sake of
brevity and to avoid a great deal of repetitiveness, these tables do not include all
permutations of sample sizes and parameterizations of the serial correlation
structure. Additional results can be obtained from the authors website: http://
darkwing.uoregon.edu/�sergiok/JTSA08.

In examining the results from the tables we see that the predictive efficiencies
of estimated GLS (correct and approximating) procedures and of the 2SOLS
approach are higher than those obtained from OLS for short and medium
term horizons (L 	 5) for practically all model structures and
parameterizations. Of the few cases in which OLS generated forecasts with
lower mean square error than 2SOLS, none were by more than 5% when
L 	 5. In fact, the differences in efficiencies in most, if not all these cases
(particularly in comparison to EGLS and EARGLS, cannot be distinguished
from sampling variation.

For these horizons the degree of improvement in the relative predictive
efficiency of 2SOLS (as well as EGLS and EARGLS) vis-à-vis OLS depends on
the structure of the serial correlation. The improvement in predictive efficiency
of 2SOLS over OLS, for instance, as expected, ranges from comparable for
error processes which are close to a white noise, such as the AR(1) and
MA(1) parameterizations with /1 ¼ h1 ¼ 0.5 and the ARMA(1,1) structure with
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/1 ¼ 0.8 and h1 ¼ 0.7 (Table I), to two to ten times for error processes which
have strong autocorrelations, such as some of the mixed ARMA(p, q)
parameterizations in Table II.

In general, for short to medium forecast horizons (L 	 5), the predictive
efficiency of the 2SOLS method is comparable to that of EGLS and EARGLS
with ~p ¼ ½

ffiffiffiffi
T
p

=2� and does not seem to depend on u. For the majority of error
structures, we see that n̂2SOLS

EGLS
and n̂ 2SOLS

EARGLS
are much less than 1.08. The most notable

exception to this observation occurs for the nearly nonstationary AR(2) serial
correlation structure with (/1, /2) ¼ (1.8, �0.9) when L ¼ 1 and T 	 100
observations (Table II). In this case increasing the sample size improves the
predictive performance of the 2SOLS procedure. When T ¼ 500 for (/1, /2) ¼
(1.8, �0.9) the predictive efficiency of 2SOLS relative to EARGLS, i.e.
n̂ 2SOLS

EARGLS
ðT þ 1Þ, decreases to 0.997, 1.002 and 1.017 for u ¼ 0, 0.5, and 0.9

respectively (derived from Table III). The corresponding relative efficiencies,
n̂2SOLS

EGLS
ðT þ 1Þ are respectively 1.023, 1.028 and 1.043. As the forecast horizon

increases even for this serial correlation structure the differences in the PMSEs
become almost trivial, i.e. for u ¼ 0,0.5 and 0.9, n̂ 2SOLS

EARGLS
ðT þ 5Þ are respectively

0.988, 1.016 and 1.011, and respectively 1.006, 1.035 and 1.030 for n̂2SOLS
EGLS
ðT þ 5Þ.

It is also interesting to note that for this AR(2) parameterization the predictive
efficiency of 2SOLS is more than an order of magnitude higher than that of OLS
for all values of u.

As the forecast horizon increases the differences in predictive efficiencies
decrease among all methods. As L reaches 10, n̂i=j nearly always approaches 1
regardless of the value of u or sample size. For example, consider the case of the
ARMA(1,1) error structure with (/1, h1) ¼ (�0.8, 0.7) in Table I when u ¼ 0.5
and T ¼ 200; n̂2SOLS

OLS
changes from 0.149 when L ¼ 1, to 0.444 when L ¼ 2 (not

shown in the table), to 0.893 when L ¼ 5, and approaches 1 when L ¼ 10.
To gain additional insights on the relative causes of the forecast inefficiencies

we have decomposed the predictive mean square errors associated with 2SOLS,
EGLS and EARGLS into their component parts, i.e.

MSEi ¼ E½ðb0 þ b1xt þ atÞ � ðb̂0 þ b̂1xt þ âtÞ�2 ¼ Ef½ðb0 þ b1xtÞ
� ðb̂0 þ b̂1xtÞ� þ ðat � âtÞg2

¼ E½ðb0 þ b1xtÞ � ðb̂0 þ b̂1xtÞ�2 þ Eðat � âtÞ2 þ 2Ef½ðb0 þ b1xtÞ
� ðb̂0 þ b̂1xtÞ�ðat � âtÞg
�MSERegi þMSEAutoi þMSECrossi;

where i ¼ f2SOLS, EGLS, EARGLSg.
Table III contrasts the decomposed predictive mean square errors for some

selected autocorrelation structures among the various estimation methods for
sample sizes of 100 and 500 observations. As can be seen across all structures
and estimation methods the dominant component of the predictive mean square
error is the portion attributable to the serial correlation. For any given sample
size, the magnitude of MSE-Autoi increases as the forecast horizon increases
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whereas, as expected, the magnitude of MSE-Regi remains relatively constant as
the forecast horizon increases. It is also important to note that the cross term
component (MSE-Crossi) plays a significant role in the adjustment (negative) of
the total predictive mean square error for short forecasting horizons. For long
horizons such as L ¼ 10, its role is minor. MSE-Autoi overshadows the other
components. In fact, the ratio of the MSE-Autoi to MSE-Totali typically exceeds
92% across all estimation procedures. The stochastic nature of the exogenous
variable does not appear to have an impact on the relative magnitude of the
predictive error components. Finally, as anticipated by Theorem 2, MSE-Regi

decreases remarkably fast as T increases from 100 to 500 observations, e.g. for
the ARMA(2,1) parametrization when L ¼ 1 and u ¼ 0, MSE-Reg2SOLS

changes from 0.802 to 0.179, MSE-RegEARGLS changes from 0.741 to 0.175,
and MSE-RegEGLS changes from 0.722 to 0.175. The corresponding changes
for u ¼ 0.9 are respectively, from 1.100 to 0.329, from 0.753 to 0.178, and
0.734 to 0.177.

4. EMPIRICAL EXAMPLES

We also compared the forecasting performance of the 2SOLS procedure with
other methods using real economic and business data. The data used to construct
the models below can be found at the specified sources and more conveniently at
the authors� website (http://darkwing.uoregon.edu/�sergiok/JTSA08).

Example 1. Interest Rates, Aggregate Demand, and Liquid Assets.

Pindyck and Rubinfeld (1998) constructed a model to explain and forecast the
movement of monthly interest rates, R3t (3-month US Treasury bill rate, percent
per year) based on industrial production, IPt (Federal Reserve Board Index,
1987 ¼ 100); the rate of growth of nominal money supply, GM2t

((M2t � M2t�1)/M2t�1); and the lagged rate of wholesale price inflation,
GPWt�1 (GPWt ¼ (PWt � PWt�1)/PWt�1, where PW is the producer price
index for all commodities). Noting that the residuals from the OLS regression
(from January 1960 to August 1995) relating these variables were serially
correlated, Pindyck and Rubinfeld estimated a combined regression-time-series
model using an ARMA(8,2) process for the residuals. Because they did not
tabulate the actual forecasts generated from their model [the forecasts were only
reported in graphical form (p. 600)], we had to re-estimate their model to generate
predictions. Our estimates differ slightly from those reported by Pindyck and
Rubinfeld. This may be due to the fact we used a more modern transfer function
program with maximum likelihood procedures (Scientific Computing Associates)
than they had available at the time they estimated the serially correlated
regression model.
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Table IV contrasts the forecasts generated by our re-estimated transfer function
model with those obtained from 2SOLS (~p ¼ 10) and OLS for the same 6 out-of-
sample periods used by Pindyck and Rubinfeld. As can be seen for all six horizons
the 2SOLS (~p ¼ 10) forecasts tracked the actual series much more closely than all
forecasts generated by the other methods. The predictive efficiency (based on
average MSE) of the 2SOLS (~p ¼ 10) forecasts is more than 50% higher (better)
than that of the forecasts generated by the transfer function model with an
ARMA(8,2) serial correlation correction, and more than an order of magnitude
higher than of the OLS forecasts.

Example 2. New York & London IBM Stock Prices.

Since the London Stock Exchange closes earlier than the New York Stock
Exchange DeLurgio (1998) attempted to predict the closing price of IBM stock in
New York, NYPt, using the closing price in London, LONPt. After differencing
the data covering the period from 12/31/93 to 12/5/94 (242 observations) to
remove trends and carrying out appropriate prewhitening and pretreatment of the
series, he discovered that the �direction of the causality [was] in the opposite
direction than [originally] hypothesized.� An analysis of the cross correlations
between these series indicated that New York price changes preceded London
price changes by one period. Noting that the residuals from the simple model
relating the changes in prices were autocorrelated, he estimated the following
transfer function model,

rLONPt ¼ 0:6205rNYPt�1 þ ð1� 0:5067BÞat;
ð0:0172Þ ð0:0559Þ

where r is the difference operator.
We replicated his results using the entire set of observations, and then

re-estimated the model leaving out 10 observations to compare the forecasts
generated by the transfer function model with those obtained from 2SOLS and
OLS. Table V contains the one-step-ahead as well as multi-step-ahead forecasts
generated by the three approaches. (Because the transfer function model was
formulated in terms of differences, forecasts for future London prices require
using either predicted or actual London prices for the immediately preceding
period. The one-step ahead forecasts were generated using actual data while the
multi-step ahead forecasts were obtained from predicted values.) The predictive
efficiency (based on average MSE) of the 2SOLS (~p ¼ 8) one-step-ahead forecasts
is almost 50% higher (better) than that of the one-step-ahead forecasts generated
by the transfer function model, and the predictive efficiency of the 2SOLS (~p ¼ 8)
multi-step-ahead forecasts is more than an order of magnitude higher than of
corresponding transfer function forecasts. Although the average mean square
error of the one-step-ahead predictions based on OLS appears to be comparable
to that of 2SOLS, the average mean square error of the OLS multi-step-ahead
forecasts is more than 50% larger (worst) than the average generated from the
2SOLS (~p ¼ 8) forecasts. The transfer function forecasts were quite accurate for
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TABLE IV

Comparison of the Models and Forecasts Generated for Monthly Interest Rates (From

Sep. 95 to Feb. 96)

Variable Value STD Error T-value

Panel A. OLS
R3t ¼ b0 þ b1IPt þ b2GM2t þ b3GPWt�1 þ at

CONST 1.1731 0.5478 2.141
IPt 0.0484 5.46E-03 8.850
GM2t 142.8995 35.7825 3.994
GPWt�1 104.4443 17.3183 6.031

Panel B. 2SOLS(10)
R3t ¼ b0 þ b1IPt þ b2GM2t þ b3GPWt�1 þ

P~p
j¼1 cjât�j þ at

CONST 2.1844 0.2234 9.780
IPt 0.0438 2.12E-03 20.638
GM2t 57.3354 15.0601 3.807
GPWt�1 58.0009 6.5693 8.830
ât�1 0.6917 0.0472 14.639
ât�2 0.1150 0.0547 2.101
ât�3 0.0699 0.0549 1.274
ât�4 �0.0682 0.0552 �1.235
ât�5 0.1733 0.0550 3.151
ât�6 �0.0910 0.0549 �1.658
ât�7 �0.0165 0.0548 �0.301
ât�8 0.1316 0.0545 2.414
ât�9 0.1153 0.0548 2.105
ât�10 �0.1309 0.0451 �2.902

Panel C. Pindyck and Rubinfeld transfer function�

R3t ¼ b0 þ b1IPt þ b2GM2t þ b3GPWt�1 þ (1 � h1B � h2B
2)/(1 � /1B � /2B

2 � . . . � /8B
8)at

CONST �1.8423 9.7921 �0.188
IPt 0.1722 0.0400 4.305
GM2t �30.9312 7.9909 �3.871
GPWt�1 5.7963 2.0811 2.785
h1 0.8201 0.1982 4.138
h2 �0.4459 0.1395 �3.196
/1 2.1646 0.1961 11.038
/2 �2.1382 0.3242 �6.595
/3 1.3960 0.2665 5.238
/4 �0.6855 0.1910 �3.589
/5 0.5112 0.1668 3.065
/6 �0.6379 0.1568 �4.068
/7 0.6131 0.1351 4.538
/8 �0.2254 0.0694 �3.248

Panel D. Predictions

Pindyck-Rubinfeld 2SOLS(10) OLS

l Period Actual Forecast MSE Forecast MSE Forecast MSE

1 Sep. 95 0.0528 0.0550 4.84E-06 0.0519 7.63E-07 0.0746 4.77E-04
2 Oct. 95 0.0528 0.0556 7.84E-06 0.0527 1.81E-08 0.0744 4.67E-04
3 Nov. 95 0.0536 0.0563 7.29E-06 0.0529 5.54E-07 0.0761 5.06E-04
4 Dec. 95 0.0514 0.0563 2.40E-05 0.0543 8.41E-06 0.0776 6.85E-04
5 Jan. 96 0.0500 0.0562 3.84E-05 0.0547 2.21E-05 0.0782 7.96E-04
6 Feb. 96 0.0483 0.0600 1.37E-04 0.0561 6.09E-05 0.0825 1.17E-03
Ave MSE 3.66E-05 1.55E-05 6.83E-04

Notes: *Based on their estimates Pindyck and Rubinfeld noted that the out-of-sample 6 month fore-
casts ��track[ed] the actual series until the last 2 months, when it diverge[d] significantly.��
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TABLE V

Comparison of the Models and Forecasts Generated for Daily IBM Stock Prices (Between

12/31/93 and 12/5/94)

Variable Value STD Error T-value

Panel A. OLS
rLONPt ¼ b0 þ b1rNYPt�1 þ at

CONST �0.0137 0.0243 �0.565
rNYPt�1 0.6216 0.0219 28.390

Panel B. 2SOLS(8)
rLONPt ¼ b0 þ b1rNYPt�1 þ

P~p
j¼1 cjât�j þ at

CONST �0.0046 0.0223 �0.208
rNYPt�1 0.6288 0.0200 31.403
ât�1 �0.4919 0.0690 �7.126
ât�2 �0.3275 0.0769 �4.258
ât�3 �0.1520 0.0802 �1.894
ât�4 �0.0804 0.0816 �0.985
ât�5 0.0707 0.0824 0.858
ât�6 �0.0859 0.0828 �1.037
ât�7 �0.0154 0.0787 �0.196
ât�8 �0.0029 0.0698 �0.041

Panel C. DeLurgio’s transfer function
rLONPt ¼ w0rNYPt�1 þ (1 � h1B)at

w0 0.6193 0.0178 34.792
h1 0.5065 0.0576 8.793

Panel D. One-step ahead predictions

DeLurgio 2SOLS(8) OLS

Period Actual Forecast MSE Forecast MSE Forecast MSE

11/22/94 46.5 46.1388 0.1305 46.0632 0.1908 45.8822 0.3817
11/23/94 44.25 44.2034 0.0022 44.6387 0.1511 44.5438 0.0863
11/24/94 44.438 44.3582 0.0064 44.3394 0.0097 44.3917 0.0021
11/25/94 44.939 44.5905 0.1215 44.7014 0.0565 44.6573 0.0793
11/28/94 45.438 44.8227 0.3786 45.0698 0.1355 45.1583 0.0782
11/29/94 45.125 44.7453 0.1442 45.4611 0.1130 45.3466 0.0491
11/30/94 45.25 44.7453 0.2547 45.1035 0.0215 45.1113 0.0193
12/1/94 45.063 44.8227 0.0577 45.2956 0.0541 45.3140 0.0630
12/2/94 44.438 44.0486 0.1516 44.2893 0.0221 44.2723 0.0275
12/5/94 45.75 45.2098 0.2918 45.5981 0.0231 45.5897 0.0257
Ave MSE 0.1539 0.0777 0.0812

Panel E. Multi-step ahead predictions

DeLurgio 2SOLS(8) OLS

l Period Actual Forecast MSE Forecast MSE Forecast MSE

1 11/22/94 46.5 46.1388 0.1305 46.0632 0.1908 45.8822 0.3817
2 11/23/94 44.25 43.8422 0.1663 44.2020 0.0023 43.9260 0.1050
3 11/24/94 44.438 43.9504 0.2378 44.2914 0.0215 44.0677 0.1372
4 11/25/94 44.939 44.1029 0.6991 44.5547 0.1477 44.2870 0.4251
5 11/28/94 45.438 43.9866 2.1066 44.6856 0.5662 44.5063 0.8680
6 11/29/94 45.125 43.2939 3.3529 44.7087 0.1733 44.4149 0.5042
7 11/30/94 45.25 42.9142 5.4560 44.6872 0.3168 44.4012 0.7205
8 12/1/94 45.063 42.4869 6.6363 44.7328 0.1091 44.4651 0.3575
9 12/2/94 44.438 41.4725 8.7942 43.9591 0.2294 43.6744 0.5831
10 12/5/94 45.75 42.2443 12.2899 45.1192 0.3980 44.8261 0.8536
Ave MSE 3.9869 0.2155 0.4936
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the first three forecast horizons, but for the remaining periods it consistently
underestimated the actual values by a substantial amount. The absolute percent
deviation from actual associated with the transfer function multi-step-ahead
forecasts for L ¼ 5 and 10 were respectively 3.194% and 7.663%. Comparable
values for the 2SOLS(~p ¼ 8) forecasts were 1.658% and 1.379%, respectively.

It should be noted that although the 2SOLS forecasts appear to be quite good,
as DeLurgio observed, ��whether one can make money in the stock market using
th[ese] relationship[s] is speculative.��

5. CONCLUSION

In this article, we proposed a new procedure for generating forecasts for
regression models with serial correlation based on ordinary least squares and on
the fact that the autocorrelation can be adequately represented by a finite AR
process. We showed that predictors based on our approach are efficient for all L,
provided T and ~p are sufficient large. Moreover, from a large simulation study we
found that for finite samples the predictive efficiency of our two-step linear
approach using an AR(~p) approximation with ~p ¼ ½

ffiffiffiffi
T
p

=2� for the serial
correlation is higher than that of OLS for short and medium horizons. In
addition, we showed that the predictive efficiency of the 2SOLS method is very
comparable to that of GLS based on AR(~p) corrections with ~p ¼ ½

ffiffiffiffi
T
p

=2� and
EGLS, i.e. with known but estimated X. This suggests that for predictive purposes
there is not much to be gained in trying to identifying the correct order and form
of the serial correlation or in using more efficient estimation methods such as
generalized least squares or maximum likelihood procedures which often require
inversion of large matrices. We have shown that it is more important to tackle the
serial correlation than to obtain the most efficient parameter estimates. For longer
horizons, OLS yields forecasts that are as efficient as those generated by 2SOLS
and GLS approaches.

APPENDIX

Proof of Lemma 3. Using the spectral representation of at, we have

aTþL ¼
Z p

�p
eiðTþLÞkdZðkÞ:

Consider the predictor

~aTþL ¼
X1
j¼0

cjaT�j;

and its spectral representation
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~aTþL ¼
Z p

�p
eiTkCðe�ikÞdZðkÞ;

where CðzÞ ¼
P1

j¼0 cjzj:
Using the fact that the fdZ(k)g is orthogonal to G(z) � P(z)Q�1(z), it can be shown that

r2
L � Eð~aTþL � aTþLÞ2 ¼ ð2pÞ�1r2

v

Z p

�p
jeiLkGðe�ikÞ � Cðe�ikÞGðe�ikÞj2dk: ðA1Þ

Note that G(e�ik) and C(e�ik)G(e�ik) are backward transforms. Therefore, r2
L is

minimized by choosing C(e�ik) so that C(e�ik)G(e�ik) is the backward part of eiLkG(e�ik).
Using the same approach as in Priestley (1981), we decompose eiLkG(e�ik) as the sum of the

backward and forward transforms

eiLkGðe�ikÞ ¼ Gþðe�ikÞ þ G�ðe�ikÞ;

where Gþ(z) ¼ [z�LG(z)]þ and G�(z) ¼ [z�LG(z)]�. Substituting the above decomposition

into (A1) and using the orthogonality properties of spectral functions, we have

r2
L ¼ ð2pÞ

�1r2
v

Z p

�p
jG�ðe�ikÞj2dðkÞ þ

Z p

�p
jGþðe�ikÞ � Cðe�ikÞGðe�ikÞj2dðkÞ

	 

; ðA2Þ

which is minimized by choosing

Cðe�ikÞ ¼ Gþðe�ikÞ
Gðe�ikÞ :

The second term in (A2) vanishes with the above choice of C(e�ik). Thus, the minimum
L-step mean square prediction error is

r2
L ¼ ð2pÞ

�1r2
v

Z p

�p
jG�ðe�ikÞj2dðkÞ:

Noting that ~aTþL can also be written as an MA(1) process

~aTþL ¼
X1
j¼0

#jþLvt�j;

or equivalently,

~aTþL ¼ ½z�LGðzÞ�þ=GðzÞat;

yields

Eð~aTþL � aTþLÞ2 ¼ r2
v

XL�1
j¼0

#2j :

Since one can always find an AR process of finite order, say, AR(~p) such that

jC~pðe�ikÞ � Gþðe�ikÞ=Gðe�ikÞj < �

for all k 2 [�p,p] [see, for example, Fuller (1996)], it follows that for any given � > 0, one

can also find T0(�) and ~p0ð�Þ such that for T > T0(�) and ~p > ~p0ð�Þ,

jEð~aTþL � aTþLÞ2 � r2
Lj < �:
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Finally, the above result holds if one replaces ~aTþL by âTþL since the OLS residuals
obtained from (1) converges in probability to at. u

NOTE

Corresponding author: Sergio G. Koreisha, University of Oregon, Eugene, OR
97403, USA. E-mail: sergiok@lcbmail.uoregon.edu
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