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Abstract. We analyze, by simulation, the finite-sample properties of goodness-of-fit
tests based on residual autocorrelation coefficients (simple and partial) obtained using
different estimators frequently used in the analysis of autoregressive moving-average time-
series models. The estimators considered are unconditional least squares, maximum
likelihood and conditional least squares. The results suggest that although the tests based
on these estimators are asymptotically equivalent for particular models and parameter
values, their sampling properties for samples of the size commonly found in economic
applications can differ substantially, because of differences in both finite-sample estimation
efficiencies and residual regeneration methods.

Keywords. Autoregressive-moving average model; conditional least squares; maxi-
mum likelihood; goodness-of-fit test; partial autocorrelation; residual autocorrelation;
unconditional least squares.

1. INTRODUCTION

Suppose that a time series Xt is generated by the stationary and invertible
autoregressive moving-average (ARMA) (p, q) process of the form

ð1� /1B� � � � � /pB
pÞXt ¼ ð1� h1B� � � � � hqBqÞat; ð1Þ

where B jXt ¼ Xt)j and at is zero-mean Gaussian white noise with variance r2a.
Several diagnostic goodness-of-fit tests have been proposed based on the residual
autocorrelation coefficients (simple or partial). A popular goodness-of-fit test,
proposed by Box and Pierce (1970) and improved by Ljung and Box (1978), uses
the statistic

QLB ¼ nðnþ 2Þ
Xm
k¼1

ðn� kÞ�1r̂2k ; ð2Þ

where r̂k is the kth-order sample autocorrelation and n is the number of
observations in the series. Under the hypothesis of correct model specification,
QLB has an asymptotic chi-square (v2) distribution with (m ) p ) q) degrees of
freedom. It is well known that the empirical size of the QLB test in finite samples
could be much different from those given by the asymptotic theory, and that even
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for moderate sample sizes, QLB has low power and often fails to detect model
misspecification (Davies and Newbold, 1979).

Alternatively, Monti (1994) proposed a goodness-of-fit test based on residual
partial autocorrelations. Let ŵk be the kth-order sample residual partial
autocorrelation coefficients. Monti showed that

QMT ¼ nðnþ 2Þ
Xm
k¼1

ðn� kÞ�1ŵ2
k ð3Þ

is asymptotically chi-square distributed with (m ) p ) q) degrees of freedom if the
model fitted is appropriate. Monti’s simulation results indicated that the empirical
sizes of QMT are adequate in moderate sample sizes and the test is more powerful
than QLB when the fitted model understates the order of the moving-average
component. However, Kwan and Wu (1997) found that the size of QMT can be
affected considerably by m and the empirical power of QMT is similar to that of
QLB if m is properly chosen.

In this paper we analyze, by means of simulation, the effect of the choice of
estimation procedures on the finite-sample behaviors of QLB and QMT tests. The
estimators considered are unconditional least squares (ULS), maximum likelihood
(ML), and conditional least squares (CLS). The issue is motivated by the fact that
although these estimators are asymptotically equivalent, they differ appreciably
from one another in finite samples. Consequently, the finite-sample properties of
the goodness-of-fit tests which are based on the residual autocorrelation or partial
autocorrelation coefficients are likely to depend on how model parameters are
estimated. Furthermore, these estimators use different residual regeneration
methods, leading to different residual series and hence, to diverse behaviors of
residual autocorrelation or partial autocorrelation coefficients.

2. THREE ESTIMATORS

Given n observations X1, X2,. . ., Xn on such a time series by eqn (1) and the
further assumption that the innovations at are independent and normally
distributed, the ML function can be written as follows:

� 1

2r2a
X0X�1X � 1

2
lnðjXjÞ � n

2
lnðr2aÞ; ð4Þ

where r2aX is the variance of the vector X ¼ fX1, X2,. . ., Xng0 as a function of the
/ and h parameters, and jÆj denotes the determinant. The ML estimate of r2a is

1

n
X0X�1X

and the log-likelihood concentrated with respect to r2a can be taken up to additive
constants as
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� n
2
lnðX0X�1X Þ � 1

2
lnðjXjÞ: ð5Þ

For a stationary, invertible Gaussian process given in eqn (1), the ML estimates
are consistent, asymptotically normally distributed (Whittle, 1951) and
asymptotically efficient (Aigner, 1971). In general, it is difficult to find closed
analytical expressions for ML estimators. In this study, the concentrated log-
likelihood function (5) is maximized via nonlinear least squares using
Marquardt’s method.

The ULS method is also referred to as the exact least-squares (ELS) method.
For ULS, the estimates minimize

Xn
t¼1

~a2t ¼
Xn
t¼1

ðXt � CtV
�1
t ðX1;X2; . . . ;Xt�1Þ0Þ2 ¼ X0X�1X; ð6Þ

where Ct is the covariance matrix of Xt and (X1, X2, . . . ,Xt)1), and Vt is the
variance matrix of (X1, X2, . . . ,Xt)1). Therefore, the ULS estimates are obtained
by minimizing the sum of squared residuals rather than using the log-likelihood
(5) as the criterion function. Note that for large n, the quantity (5) will be
dominated by X0X)1X.

The CLS estimates are conditional on the assumption that the past unobserved
errors are equal to their expected value. The series (1) can be represented in terms
of the previous observations:

Xt ¼ at þ
X1
i¼1

piXt�i:

The p weights are computed from the ratio of the / and h polynomials, as follows:

/ðBÞ
hðBÞ ¼ 1�

X1
i¼1

piBi:

The CLS method produces estimates minimizing

Xn
t¼1

â2t ¼
Xn
t¼1

Xt �
X1
i¼1

p̂iXt�i

 !2

; ð7Þ

where the unobserved past values of Xt are set to zero. Note that there are n values
of at in eqn (7), in contrast to that only n ) p values of at contributes to the sum
of squares in the CLS method of residual regeneration described in Section 7.1 by
Box et al. (1994).

It is well known that these three estimators are asymptotically equivalent. In
general, ML estimates are more expensive to compute than ULS and especially,
than CLS estimates. However, ML estimates may be preferable in some cases
(Ansley and Newbold, 1980).

529GOODNESS-OF-FIT TESTS IN TIME SERIES MODELS

� Blackwell Publishing Ltd 2005



By contrasting eqns (6) and (7), we can see that the residuals regenerated from
the CLS method are based on infinite memory forecasts (also called conditional
forecasts), which may be different from those obtained from ULS or ML methods
in which finite-memory forecasts (or unconditional forecasts) are used. Although
the difference in residual regeneration methods is of less consequence for the
estimation, it has serious size and power implications on the tests and will be
discussed more completely in Section 3.

3. MONTE CARLO EXPERIMENTS AND SIMULATION RESULTS

An exhaustive simulation study is carried out to explore the finite-sample
properties of QLB and QMT based on residuals obtained using different estimators.
Both the accuracy of the chi-square approximation to the distributions of QLB

and QMT and the powers of the tests under a number of alternative models are
considered. We have chosen model parameterizations of fXtg not only to conform
with other previously published studies such as Davies and Newbold (1979) and
Koreisha and Fang (1999, 2001), but also to provide a representative set of
examples of possible autocorrelated error structures. Without loss of generality,
we assume that r2a ¼ 1.

Our computations were performed on a Dell Pentium III computer using SAS
Window release 8.1 programs. All simulations are based on 10,000 replications
and the pseudo-random number generator, rannor, is used to generate
independent Gaussian deviates. Although we simulate tens of thousands of
trials, for brevity, we report results only for tests with the 5% nominal size based
on n ¼ 50 with m ¼ 5, 10 and 20. For illustrative purposes, however, we also
provide results on n ¼ 100 and 200 for selected models. The general conclusions
reached for the results presented here extend to tests with other nominal values
and wider class of models with other parameters also.

3.1. The sizes of the tests

Tables I–IV contrast the theoretical and empirical values of the size, mean,
standard deviation and skewness of the QLB and QMT tests based on three
estimators. The tables correspond to the AR(1) and MA(1), AR(2) and MA(2),
ARMA(1,1), and ARMA(1,2) and ARMA(2,1) models, respectively, with
selected parameter values.

The results show that the behaviours of both QLB and QMT depend on the
choice of the estimators, in addition to levels of m and model structures and
parameterizations. In general, for models with parameters not close to the
boundary of the invertibility or stationarity region, the impact of estimators is
relatively negligible, as exemplified by cases of the AR(1) process with /1 ¼ )0.5
and the MA(1) process with h1 ¼ 0.5 (Table I), little differentiation can be made
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TABLE I

Theoretical and Empirical Values of the Size, Mean, Standard Deviation, and Skewness of

the 5% QLB and QMT Tests under the AR(1) or MA(1) Null Hypothesis (n ¼ 50)

Model m Theoretical

QLB QMT

ULS ML CLS ULS ML CLS

AR(1)
/1 ¼ )0.5

5
Test size 5% 5.19% 5.06% 5.02% 5.71% 5.72% 5.68%
Mean 4.000 4.117 4.081 4.068 4.259 4.252 4.237
St. dev. 2.828 2.835 2.818 2.818 2.913 2.915 2.915
Skewness 1.414 1.511 1.520 1.518 1.369 1.369 1.369

10
Test size 5% 5.78% 5.63% 5.63% 6.01% 5.99% 5.95%
Mean 9.000 9.064 9.020 9.003 9.430 9.421 9.406
St. dev. 4.243 4.465 4.442 4.441 4.306 4.307 4.309
Skewness 0.943 1.305 1.301 1.304 0.906 0.905 0.906

20
Test size 5% 7.20% 6.96% 7.05% 4.36% 4.37% 4.36%
Mean 19.000 18.970 18.906 18.886 19.223 19.214 19.198
St. dev. 6.164 7.166 7.128 7.131 5.889 5.891 5.893
Skewness 0.649 1.203 1.196 1.202 0.510 0.510 0.511

AR(1)
/1 ¼ 0.9

5
Test size 5% 4.67% 4.71% 7.04% 5.11% 5.07% 7.34%
Mean 4.000 4.078 4.060 4.496 4.164 4.154 4.570
St. dev. 2.828 2.772 2.765 3.096 2.755 2.755 3.017
Skewness 1.414 1.631 1.549 1.588 1.307 1.316 1.251

10
Test size 5% 5.36% 4.94% 7.58% 4.36% 4.23% 6.62%
Mean 9.000 8.893 8.771 9.550 8.984 8.941 9.672
St. dev. 4.243 4.458 4.406 4.812 4.038 4.050 4.334
Skewness 0.943 1.399 1.399 1.442 0.855 0.864 0.830

20
Test size 5% 6.44% 5.98% 8.56% 3.10% 2.97% 4.52%
Mean 19.000 18.643 18.478 19.643 18.489 18.419 19.479
St. dev. 6.164 7.082 7.032 7.530 5.637 5.680 5.861
Skewness 0.649 1.356 1.334 1.396 0.508 0.509 0.472

MA(1)
h1 ¼ 0.5

5
Test size 5% 4.92% 4.69% 4.67% 5.37% 4.91% 4.97%
Mean 4.000 3.998 3.956 3.930 4.118 4.042 4.020
St. dev. 2.828 2.767 2.762 2.757 2.806 2.769 2.769
Skewness 1.414 1.523 1.536 1.559 1.305 1.306 1.333

10
Test size 5% 5.50% 5.14% 5.22% 5.60% 5.21% 5.27%
Mean 9.000 8.864 8.826 8.793 9.176 9.112 9.075
St. dev. 4.243 4.366 4.356 4.345 4.164 4.145 4.141
Skewness 0.943 1.311 1.320 1.333 0.842 0.840 0.852

20
Test size 5% 6.52% 6.35% 6.49% 3.96% 3.70% 3.98%
Mean 19.000 18.713 18.645 18.623 18.959 18.897 18.843
St. dev. 6.164 6.937 6.928 6.926 5.743 5.735 5.745
Skewness 0.649 1.195 1.209 1.204 0.465 0.464 0.479

MA(1)
h1 ¼ )0.9

5
Test size 5% 6.35% 6.45% 5.77% 7.14% 6.85% 6.18%
Mean 4.000 4.486 4.443 4.266 4.681 4.579 4.411
St. dev. 2.828 2.917 2.974 2.913 2.997 2.977 2.941
Skewness 1.414 1.485 1.539 1.558 1.284 1.302 1.337
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TABLE I

continued

Model m Theoretical

QLB QMT

ULS ML CLS ULS ML CLS

10
Test size 5% 6.32% 6.79% 6.03% 6.69% 6.35% 5.66%
Mean 9.000 9.289 9.301 9.056 9.670 9.567 9.323
St. dev. 4.243 4.527 4.604 4.548 4.306 4.301 4.255
Skewness 0.943 1.303 1.325 1.345 0.861 0.873 0.900

20
Test size 5% 7.49% 7.82% 7.46% 4.58% 4.51% 4.02%
Mean 19.000 19.109 19.180 18.866 19.340 19.225 18.915
St. dev. 6.164 7.247 7.355 7.308 5.903 5.896 5.840
Skewness 0.649 1.219 1.244 1.244 0.512 0.516 0.520

TABLE II

Theoretical and Empirical Values of the Size, Mean, Standard Deviation, and Skewness of

the 5% QLB and QMT Tests under the AR(2) or MA(2) Hypothesis (n ¼ 50)

Model m Theoretical

QLB QMT

ULS ML CLS ULS ML CLS

AR(2)
(/1, /2) ¼
(1.42, )0.73)

5
Test size 5% 5.42% 4.31% 7.25% 4.27% 3.97% 6.90%
Mean 3.000 3.269 3.047 3.424 3.207 3.076 3.395
St. dev. 2.449 2.430 2.264 2.813 2.221 2.172 2.601
Skewness 1.633 1.868 1.859 2.371 1.426 1.469 1.883

10
Test size 5% 3.76% 2.88% 5.33% 2.96% 2.84% 5.77%
Mean 8.000 7.344 7.021 7.548 7.491 7.371 7.933
St. dev. 4.000 3.845 3.645 4.342 3.562 3.553 4.162
Skewness 1.000 1.569 1.522 2.153 0.971 0.990 1.285

20
Test size 5% 3.52% 3.00% 5.09% 2.54% 2.44% 3.08%
Mean 18.000 15.833 15.408 16.188 16.031 15.925 16.625
St. dev. 6.000 6.143 5.908 6.732 5.151 5.166 5.576
Skewness 0.667 1.354 1.283 1.789 0.881 0.881 0.702

AR(2)
(/1, /2) ¼
(1.60, )0.64)

5
Test size 5% 5.34% 4.37% 10.67% 4.66% 4.21% 10.41%
Mean 3.000 3.199 3.027 4.151 3.194 3.088 4.110
St. dev. 2.449 2.392 2.242 2.949 2.265 2.215 2.816
Skewness 1.633 2.024 1.989 1.614 1.495 1.551 1.325

10
Test size 5% 4.13% 4.05% 8.86% 3.46% 3.38% 8.27%
Mean 8.000 6.710 6.528 9.067 6.821 6.725 9.201
St. dev. 4.000 3.844 3.654 4.581 3.531 3.526 4.224
Skewness 1.000 1.559 1.526 1.338 0.998 1.025 0.840

20
Test size 5% 3.91% 3.82% 8.97% 3.15% 3.18% 5.38%
Mean 18.000 14.794 14.456 19.001 15.902 15.809 19.079
St. dev. 6.000 6.548 6.330 7.249 5.717 5.747 5.997
Skewness 0.667 1.192 1.147 1.235 0.727 0.754 0.471
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between estimators. In these two simple cases, regardless of the choice of the
estimators, the size of QLB is close to the nominal level if m is chosen to be
relatively small but may be well above the nominal level for relatively large m and
appears to increase monotonically as m increases. The size of QMT first increases
slightly above and then falls back below the nominal level as m goes from 5 to 20.
The empirical mean and standard deviations of both QLB and QMT are close to
those of the theoretical values based on the asymptotic chi-square distribution.
The empirical skewness of QLB (QMT) exhibits, however, a persistent tendency to
be larger (smaller) than its theoretical counterpart. We note that the empirical
skewness of QLB can be considerably larger than the theoretical value if m is
relatively large, while the empirical skewness of QMT has somewhat better
agreement with that of chi-square distribution across all levels of m examined.

More substantial differences emerge in models with parameters close to the
boundary of the invertibility or stationarity region. For example, consider the
AR(2) process with (/1, /2) ¼ (1.60, )0.64) (Table II) and the ARMA(2,1)
process with (/1, /2, h1) ¼ (1.40, )0.60, )0.80) (Table IV). In both cases, tests

TABLE II

continued

Model m Theoretical

QLB QMT

ULS ML CLS ULS ML CLS

MA(2)
(h1, h2) ¼
(1.42, )0.73)

5
Test size 5% 6.29% 6.11% 4.96% 6.98% 5.86% 4.94%
Mean 3.000 3.551 3.373 3.048 3.671 3.390 3.078
St. dev. 2.449 2.431 2.424 2.360 2.502 2.377 2.357
Skewness 1.633 1.647 1.892 1.861 1.497 1.643 1.732

10
Test size 5% 4.93% 4.27% 3.77% 4.27% 3.79% 3.36%
Mean 8.000 7.475 7.375 7.034 7.927 7.604 7.255
St. dev. 4.000 3.717 3.799 3.775 3.705 3.623 3.619
Skewness 1.000 1.554 1.751 1.617 0.959 1.014 1.075

20
Test size 5% 3.86% 4.31% 3.81% 2.56% 2.38% 1.77%
Mean 18.000 15.856 15.855 15.389 16.547 16.233 15.683
St. dev. 6.000 6.023 6.144 6.149 5.224 5.166 5.144
Skewness 0.667 1.323 1.346 1.424 0.584 0.597 0.608

MA(2)
(h1, h2) ¼
(0.3, )0.5)

5
Test size 5% 3.60% 3.27% 2.93% 4.73% 4.16% 3.98%
Mean 3.000 2.850 2.763 2.710 3.071 2.907 2.857
St. dev. 2.449 2.107 2.080 2.054 2.336 2.231 2.219
Skewness 1.633 1.352 1.446 1.404 1.340 1.382 1.386

10
Test size 5% 2.84% 2.70% 2.59% 3.96% 3.58% 3.37%
Mean 8.000 7.017 7.025 6.958 7.652 7.520 7.468
St. dev. 4.000 3.428 3.481 3.437 3.678 3.638 3.628
Skewness 1.000 1.090 1.149 1.087 0.877 0.890 0.886

20
Test size 5% 3.13% 3.04% 2.90% 2.59% 2.20% 2.19%
Mean 18.000 15.679 15.734 15.661 16.634 16.518 16.460
St. dev. 6.000 5.641 5.723 5.667 5.220 5.194 5.195
Skewness 0.667 1.028 1.072 1.003 0.522 0.524 0.521
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TABLE III

Theoretical and Empirical Values of the Size, Mean, Standard Deviation, and Skewness of

the 5% QLB and QMT Tests under the ARMA(1,1) Null Hypothesis

Model m Theoretical

QLB QMT

ULS ML CLS ULS ML CLS

ARMA(1,1)
(/1, h1) ¼
(0.8, 0.7)

n ¼ 50
5
Test size 5% 6.51% 5.78% 6.18% 6.81% 6.12% 6.04%
Mean 3.000 3.285 3.252 3.253 3.347 3.320 3.321
St. dev. 2.449 2.497 2.471 2.480 2.539 2.525 2.533
Skewness 1.633 1.607 1.590 1.598 1.534 1.544 1.553

10
Test size 5% 6.10% 5.42% 5.80% 6.53% 5.46% 6.33%
Mean 8.000 8.015 7.969 7.971 8.349 8.315 8.314
St. dev. 4.000 4.043 4.013 4.023 4.012 3.999 4.008
Skewness 1.000 1.230 1.217 1.222 0.877 0.878 0.886

20
Test size 5% 6.02% 5.36% 5.74% 5.48% 4.92% 5.38%
Mean 18.000 17.643 17.581 17.575 18.127 18.089 18.073
St. dev. 6.000 6.489 6.461 6.458 5.654 5.655 5.646
Skewness 0.667 1.060 1.054 1.053 0.487 0.487 0.494

ARMA(1,1)
(/1, h1) ¼
( ) 0.8, 0.7)

n ¼ 50
5
Test size 5% 4.65% 4.25% 3.52% 5.72% 5.07% 4.27%
Mean 3.000 3.308 3.142 2.837 3.399 3.254 2.938
St. dev. 2.449 2.263 2.202 2.158 2.343 2.304 2.258
Skewness 1.633 1.473 1.531 1.573 1.415 1.460 1.509

10
Test size 5% 4.03% 3.72% 3.36% 3.96% 3.73% 3.35%
Mean 8.000 7.612 7.449 7.072 7.867 7.742 7.317
St. dev. 4.000 3.759 3.716 3.729 3.714 3.699 3.684
Skewness 1.000 1.227 1.211 1.253 0.964 0.963 0.977

20
Test size 5% 4.59% 4.31% 4.19% 2.84% 2.72% 2.07%
Mean 18.000 16.822 16.561 15.993 17.145 17.022 16.254
St. dev. 6.000 6.310 6.211 6.273 5.454 5.446 5.461
Skewness 0.667 1.122 1.087 1.121 0.557 0.555 0.561

n ¼ 100
5
Test size 5% 5.40% 4.76% 4.33% 5.52% 5.18% 4.71%
Mean 3.000 3.240 3.130 2.933 3.280 3.184 2.988
St. dev. 2.449 2.405 2.323 2.293 2.430 2.375 2.349
Skewness 1.633 1.612 1.587 1.643 1.516 1.526 1.618

10
Test size 5% 4.16% 4.01% 3.65% 4.12% 3.98% 3.53%
Mean 8.000 7.713 7.614 7.374 7.833 7.754 7.501
St. dev. 4.000 3.887 3.829 3.832 3.807 3.775 3.771
Skewness 1.000 1.295 1.219 1.238 0.992 0.985 1.027

20
Test size 5% 4.84% 4.53% 4.25% 3.85% 3.82% 3.36%
Mean 18.000 16.982 16.862 16.496 17.310 17.242 16.816
St. dev. 6.000 6.244 6.180 6.211 5.763 5.743 5.743
Skewness 0.667 1.108 1.100 1.109 0.702 0.695 0.709
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TABLE III

continued

Model m Theoretical

QLB QMT

ULS ML CLS ULS ML CLS

n ¼ 200
5

Test size 5% 4.73% 4.64% 4.48% 5.12% 5.06% 4.78%
Mean 3.000 3.160 3.130 3.025 3.193 3.165 3.058
St. dev. 2.449 2.385 2.372 2.348 2.415 2.407 2.378
Skewness 1.633 1.593 1.599 1.637 1.573 1.580 1.611

10
Test size 5% 4.55% 4.45% 4.29% 4.64% 4.64% 4.52%
Mean 8.000 7.844 7.811 7.662 7.922 7.899 7.745
St. dev. 4.000 3.905 3.897 3.885 3.906 3.902 3.878
Skewness 1.000 1.069 1.073 1.100 0.999 1.001 1.009

20
Test size 5% 4.54% 4.45% 4.36% 4.25% 4.21% 3.89%
Mean 18.000 17.355 17.315 17.051 17.582 17.563 17.273
St. dev. 6.000 6.028 6.018 6.017 5.832 5.831 5.800
Skewness 0.667 0.916 0.915 0.980 0.667 0.667 0.683

TABLE IV

Theoretical and Empirical Values of the Size, Mean, Standard Deviation, and Skewness of

the 5% QLB and QMT Tests under the ARMA(1,2) or ARMA(2,1) Null Hypothesis (n ¼ 50)

Model m Theoretical

QLB QMT

ULS ML CLS ULS ML CLS

ARMA(1,2)
(/, h1, h2) ¼
()0.8, 1.4, )0.6)

5
Test size 5% 8.99% 7.54% 4.04% 10.85% 8.23% 4.91%
Mean 2.000 3.301 3.068 1.946 3.405 3.153 2.017
St. dev. 2.000 2.437 2.288 1.949 2.608 2.467 2.153
Skewness 2.000 1.862 1.970 2.616 2.266 2.506 3.335

10
Test size 5% 4.71% 3.75% 2.24% 4.79% 3.90% 2.33%
Mean 7.000 6.892 6.626 5.438 7.172 6.873 5.635
St. dev. 3.742 3.701 3.554 3.396 3.725 3.586 3.470
Skewness 1.069 1.557 1.582 1.686 1.394 1.443 1.648

20
Test size 5% 3.66% 3.20% 2.30% 2.72% 2.36% 1.34%
Mean 17.000 14.951 14.596 12.889 15.465 15.190 13.200
St. dev. 5.831 6.140 5.948 5.870 5.594 5.467 5.330
Skewness 0.686 1.167 1.203 1.327 0.694 0.709 0.884

ARMA(1,2)
(/, h1, h2) ¼
(0.3, )0.5, 0.3)

5
Test size 5% 8.15% 7.99% 8.21% 9.53% 8.84% 9.33%
Mean 2.000 3.193 3.068 2.966 3.321 3.152 3.056
St. dev. 2.000 2.493 2.421 2.430 2.708 2.572 2.595
Skewness 2.000 1.650 1.638 1.746 1.933 1.889 2.011

10
Test size 5% 7.36% 7.50% 6.40% 8.39% 8.08% 7.71%
Mean 7.000 7.777 7.636 7.514 8.268 8.029 7.907
St. dev. 3.742 3.956 3.909 3.928 4.175 4.066 4.078
Skewness 1.069 1.226 1.208 1.242 1.085 1.075 1.098
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based on either ULS or ML estimator perform generally quite well for
appropriately selected values of m. We note that some differences in sizes of the
tests based on ULS and ML estimators are noticeable. This can be partly
explained by the fact that in such cases, it becomes much more difficult to obtain
accurate estimates. Consequently, the properties of test statistics are sensitive to
the estimation methods which are subject to more tangible variations.

On the contrary, tests based on CLS do not appear to be reliable in the
circumstances that model parameters are close to the boundary of the invertibility
or stationarity region. As the cases of the AR(2) process with (/1, /2) ¼
(1.60, )0.64) and the ARMA(2,1) process with (/1, /2, h1) ¼ (1.40, )0.60, )0.80)
indicate, tests based on CLS tend to reject the null hypothesis too frequently
regardless of the values of m, except in the cases of QMT with relatively large m for

TABLE IV

continued

Model m Theoretical

QLB QMT

ULS ML CLS ULS ML CLS

20
Test size 5% 6.77% 7.30% 6.06% 5.86% 5.99% 5.10%
Mean 17.000 17.200 17.052 16.890 17.891 17.604 17.463
St. dev. 5.831 6.442 6.372 6.408 5.774 5.683 5.699
Skewness 0.686 1.052 1.045 1.050 0.582 0.575 0.585

ARMA(2,1)
(/1, /2, h1) ¼
(1.4, )0.6, )0.8)

5
Test size 5% 8.43% 6.44% 14.49% 8.83% 6.95% 16.30%
Mean 2.000 3.062 2.783 4.008 3.093 2.846 4.218
St. dev. 2.000 2.361 2.080 2.987 2.333 2.120 3.141
Skewness 2.000 2.180 1.827 1.671 1.764 1.723 1.437

10
Test size 5% 5.31% 4.36% 11.65% 5.94% 4.96% 14.11%
Mean 7.000 6.862 6.535 8.700 7.174 6.889 9.708
St. dev. 3.742 3.659 3.545 4.560 3.639 3.465 4.694
Skewness 1.069 1.824 1.349 1.468 1.077 1.065 0.854

20
Test size 5% 4.55% 4.08% 10.26% 4.82% 4.47% 10.00%
Mean 17.000 14.959 14.516 18.595 15.660 15.307 19.502
St. dev. 5.831 6.028 5.696 7.160 5.563 5.434 6.149
Skewness 0.686 1.293 1.071 1.229 0.593 0.591 0.526

ARMA(2,1)
(/1, /2, h1) ¼
(0.3, )0.5, 0.3)

5
Test size 5% 10.88% 10.10% 10.48% 12.29% 11.73% 12.12%
Mean 2.000 2.784 2.708 2.689 2.908 2.833 2.818
St. dev. 2.000 2.592 2.512 2.550 2.864 2.741 2.807
Skewness 2.000 2.537 2.414 2.493 3.196 2.778 3.053

10
Test size 5% 7.39% 6.87% 7.12% 9.87% 8.33% 9.59%
Mean 7.000 7.352 7.255 7.227 7.783 7.700 7.663
St. dev. 3.742 4.050 3.946 4.004 4.235 4.145 4.182
Skewness 1.069 1.714 1.576 1.690 1.471 1.312 1.414

20
Test size 5% 7.06% 6.43% 6.74% 6.51% 6.20% 6.41%
Mean 17.000 16.743 16.619 16.584 17.489 17.413 17.349
St. dev. 5.831 6.459 6.315 6.417 5.841 5.782 5.812
Skewness 0.686 1.371 1.216 1.396 0.751 0.678 0.715
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the AR(2) process. In contrast to the earlier cases [i.e. the AR(1) process with
/1 ¼ )0.5 and the MA(1) process with h1 ¼ 0.5], the empirical mean, standard
deviation and skewness of the two tests are sensitive to the choice of the
estimators.

It is interesting to note that the imprecision of parameter estimates does not
necessarily imply a poor approximation of the test statistics to the chi-square
distribution, as demonstrated in the case of the ARMA(1,1) process with /1 ¼
)0.8 and h1 ¼ 0.7 (Table III), where ML estimates are preferable (see the biases
and mean-squared errors of the estimators in Table Va) but both QLB and QMT

based on ULS perform better in terms of the empirical size for n ¼ 50 and all m
values considered. We note that as the sample size n increases, the differences
appear to diminish by contrasting the tests based on ULS and ML estimators for
various sample sizes ranging from 50 up to 200 in Table III.

This point is further reinforced by the ARMA(1,1) process with /1 ¼ 0.8 and
h1 ¼ 0.7 in Table III, where the autoregressive and moving-average operators are
nearly cancelled out, so that there is near parameter redundancy in the model.
When there is near cancellation in the autoregressive and moving-average
operators, all three estimators tend to be severely biased towards zero, with
unacceptably large mean-squared errors (Table Vb). However, both QLB and
QMT generally perform rather well in terms of size (Table III). Note that the
approximation of r̂kðŵkÞ to rk(wk) depends on parameter estimates via mainly the
term X ðb̂ � bÞ, where b ¼ (/1, . . . ,/p, h1, . . . , hq) and X is an m � (p þ q) matrix
with entries given by eqn (16) in McLeod (1978). In the ARMA(1,1) case:

X ¼

�1 1
�/1 h1
..
. ..

.

�/m�1
1 hm�1

1

0
BBB@

1
CCCA:

If /1 is close to h1, although one experiences difficulties in obtaining accurate
parameter estimates, the magnitude of the product of X and ðb̂ � bÞ may not be
any great cause for concern.

Table V indicates that the differences in estimation efficiencies between CLS
and ULS (or ML) may be small. This suggests that the substantial differences in
the empirical sizes of the tests between CLS and ULS (or ML) reported earlier can
not be wholly due to the difference in estimation efficiencies. Recall from

TABLE V

Estimated Coecient Biases and Mean Squared Errors for ARMA(1,1) Models (n ¼ 50)

Bias /̂1 MSE /̂1 Bias ĥ1 MSE ĥ1

ULS ML CLS ULS ML CLS ULS ML CLS ULS ML CLS

(a) (/1, h1) ¼ ()0.8, 0.7)
0.040 0.039 0.039 0.013 0.012 0.012 0.137 0.108 )0.040 0.046 0.038 0.034

(b) (/1, h1) ¼ (0.8, 0.7)
)0.653 )0.653 )0.655 0.813 0.798 0.803 )0.631 )0.629 )0.631 0.784 0.767 0.768
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Section 2, CLS adopts a residual regeneration method based on AR
representation with infinite memory. On the contrary, ULS and ML use finite-
memory forecasts to regenerate residuals. The difference in residual regeneration
methods may have an effect in the performance of those test statistics. To examine
this issue, Table VI reports the sizes of both QLB and QMT based on the true
model parameter values (after restoring the full degrees of freedom for assessing
the statistics) for two ARMA(1,1) processes. In order to compare the results with
those based on estimated model parameters, we also present (in parentheses) the
corresponding empirical sizes of tests based on the estimated model parameters.

By eliminating the estimation aspect, it becomes evident from Table VI that if
the p weights of AR representation decay very quickly as lag increases [as in the
case of the ARMA(1,1) process with /1 ¼ 0.8 and h1 ¼ 0.7 in Table VIb], the
sizes of the tests based on CLS are very similar to those based on ULS or ML
(ULS and ML use the same residual regeneration method and hence yield the
identical residuals when the true parameter values are used). With respect to test



TABLE VII

Empirical Powers of the 5% QLB and QMT Tests

Actual model m

QLB QMT

ULS ML CLS ULS ML CLS

(a) Fitting AR(1) model
MA(1) h1 ¼ 0.5 n ¼ 50

5 19.40 19.12 19.11 24.53 24.50 24.53
10 16.44 16.30 16.29 17.82 17.81 17.78
20 17.14 16.84 16.86 11.45 11.41 11.43

n ¼ 100
5 35.30 35.15 35.10 42.88 42.91 42.85
10 26.06 25.86 25.88 30.59 30.59 30.57
20 22.60 22.44 22.47 20.38 20.38 20.37

n ¼ 200
5 68.39 68.27 68.24 74.68 74.69 74.67
10 51.61 51.47 51.42 59.30 59.33 59.33
20 38.61 38.52 38.48 41.78 41.77 41.77

MA(2)
(h1, h2) ¼ (1.42, )0.73)

n ¼ 50
5 96.55 96.22 95.99 99.09 99.02 98.95
10 84.36 83.21 83.11 95.09 95.00 94.85
20 70.99 69.87 69.87 80.79 80.81 80.72

ARMA(1,1)
(/1, h1) ¼ ()0.8, 0.7)

n ¼ 50
5 68.67 68.25 67.62 85.63 85.88 85.47
10 55.17 53.67 53.79 71.95 71.80 71.27
20 48.29 47.01 47.34 49.92 49.74 49.41

ARMA(2,1)
(/1, /2, h1) ¼ (0.3, )0.5, 0.3)

n ¼ 50
5 82.41 82.41 82.40 83.96 83.95 83.96
10 71.13 71.14 71.14 68.42 68.43 68.42
20 61.18 61.25 61.22 44.04 44.04 44.04

(b) Fitting MA(1) model
AR(1) /1 ¼ 0.5 n ¼ 50

5 15.06 15.37 15.19 16.68 16.65 16.61
10 13.45 13.61 13.56 11.98 12.02 12.06
20 14.12 14.41 14.52 7.84 7.87 7.82

AR(2)
(/1, /2) ¼ (0.3, )0.5)

n ¼ 50
5 49.87 51.15 51.23 62.81 62.54 62.62
10 36.76 37.96 38.02 42.90 42.75 42.75
20 31.49 32.58 32.61 23.50 23.40 23.46

n ¼ 100
5 89.51 89.95 89.96 93.83 93.81 93.77
10 76.94 77.48 77.52 84.00 83.95 83.94
20 63.82 64.55 64.56 67.10 67.01 66.98

n ¼ 200
5 99.91 99.92 99.92 99.95 99.95 99.95
10 99.35 99.35 99.35 99.70 99.70 99.70
20 96.60 96.72 96.73 98.11 98.11 98.11

ARMA(1,1)
(/1, h1) ¼ (0.8, 0.7)

n ¼ 50
5 5.74 5.81 5.79 6.00 5.92 5.97
10 5.54 5.58 5.54 5.77 5.76 5.69
20 6.83 6.85 6.82 4.17 4.15 4.18

ARMA(2,1)
(/1, h1, h2) ¼ (0.3, )0.5, 0.3)

n ¼ 50
5 73.85 75.12 75.09 83.59 83.48 83.40
10 58.69 60.20 60.33 69.18 68.99 68.93
20 50.88 52.01 52.49 49.10 48.76 49.14

Note: All Values are Percentages.
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The results suggest that the choice of the criterion function used in ULS and ML
estimators [namely, eqn (5) or (6)] has a little effect on the asymptotic
approximations of QLB and QMT to the chi-square distribution, especially when
the model parameters are not close to the boundary of the invertibility or
stationarity region. Further analysis also reveals that the substantial differences of
empirical sizes of tests between CLS and ULS (or ML) are due to differences in
both estimation efficiencies and residual regeneration methods, and could be
primarily due to the difference in residual regeneration methods if the p weights of
AR representation of the process decay relatively slowly as lag increases.

3.2. The power of the tests

Table VII reports the empirical powers of QLB and QMT when, erroneously, an
AR(1) or a MA(1) model is fitted to the data. Four alternative ARMA processes
are considered in each case. In general, there do not appear to have vast
differences between powers of tests based on three estimators.

The evidence in Table VII suggests that both QLB and QMT have reasonable
powers against a wide range of alternatives, excluding the case of the ARMA(1,1)
process with /1 ¼ 0.8 and h1 ¼ 0.7 (in Table VIIb). In this case, regardless of the
choice of m and estimation methods, both QLB and QMT do not distinguish
between the ARMA(1,1) and MA(1) because this ARMA(1,1) process is close to
the white noise due to the near cancellation in the autoregressive and moving
average operators.

For various alternatives examined here, it is clear that QMT is generally more
powerful than QLB if m is relatively small, while QLB may be preferable for large
values of m. On the whole, the powers of the tests appear to improve significantly
as n increases but decline as m increases for fixed n.

Finally, Monti (1994) suggested that when the fitted model underestimates the
order of the moving average component, QMT is more powerful than QLB. The
results from Table VII, however, present rather a mixed picture. The powers of
QLB and QMT depend greatly on the value of m (as pointed out by Kwan and Wu,
1997) and the estimator.

4. CONCLUDING REMARKS

Although ULS, ML and CLS estimators are asymptotically equivalent, it is found
that, for particular models and parameter values in the null and alternative
hypotheses, the size and power of tests based on these estimators can differ
substantially. The implication of the results is that the choice of estimators will
matter in finite samples whether one has a sensible goodness-of-fit testing strategy.

In general, we would recommend that CLS not be used, especially in situations
involving processes that the p weights of AR representation decay relatively
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slowly as lag increases. Tests based on either ULS or ML generally yield reliable
inferences. It is well known that the ML estimator is generally preferable in terms
of the bias and mean squares error in parameter estimates. However, our results
show that it does not necessarily imply that tests based on ML should perform
best. At least there seems to be no justification that tests based on ML are
markedly superior to tests based on ULS.

ACKNOWLEDGEMENTS

The author would like to thank an anonymous referee for helpful comments
leading to a significantly improved article.

NOTE

Corresponding author: Yue Fang, Lundquist College of Business, University of
Oregon, Eugene, OR 97403, USA. Tel.: (541) 346-3265; E-mail: yfang@darkwing.
uoregon.edu

REFERENCES

Aigner, D. J. (1971) A compendium on estimation of the autoregressive-moving average model from
time series data. International Economic Review 12, 348–71.

Ansley, C. F. and Newbold, P. (1980) Finite sample properties of estimators for autoregressive
moving average models. Journal of Econometrics 13, 159–83.

Box, G. E. P. and Pierce, D. A. (1970) Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American Statistical Association 65,
1509–26.

Box,G. E. P., Jenkins,G. M. and Reinsel,G. C. (1994) Time Series Analysis. Princeton, NJ: Prentice-
Hall, Inc.

Davies, N. and Newbold, P. (1979) Some power studies of a portmanteau test of time series model
specification. Biometrika 66, 153–5.

Koreisha, S. and Fang, Y. (1999) The impact of measurement errors on ARMA prediction. Journal of
Forecasting 18, 95–109.

Koreisha, S. and Fang, Y. (2001) GLS estimation of regression models with misspecified serial
correlation structures. Journal of the Royal Statistical Society, Series B 63, 515–31.

Kwan, A. C. C. and Wu, Y. (1997) Further results on the finite-sample distribution of Monti’s
portmanteau test for the adequacy of an ARMA(p, q) model. Biometrika 84, 733–6.

Ljung,G. M. and Box,G. E. P. (1978) On a measure of lack of fit in time series models. Biometrika 65,
67–72.

McLeod, A. I. (1978) On the distribution of residual autocorrelations in Box–Jenkins models. Journal
of the Royal Statistical Society, Series B 40, 296–302.

Monti, A. C. (1994) A proposal for a residual autocorrelation test in linear models. Biometrika 81,
776–80.

Whittle, P. (1951) Hypothesis Testing in Time Series. Uppsala: Almqvist and Wiksells.

541GOODNESS-OF-FIT TESTS IN TIME SERIES MODELS

� Blackwell Publishing Ltd 2005


