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Abstract

Generalized method of moments (GMM) is used to develop tests for discriminating discrete
distributions among the two-parameter family of Katz distributions. Relationships involving mo-
ments are exploited to obtain identifying and over-identifying restrictions. The asymptotic relative
e5ciencies of tests based on GMM are analyzed using the local power approach and the ap-
proximate Bahadur e5ciency. The paper also gives results of Monte Carlo experiments designed
to check the validity of the theoretical 9ndings and to shed light on the small sample properties
of the proposed tests. Extensions of the results to compound Poisson alternative hypotheses are
discussed. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most prominent families of discrete distributions whose successive prob-
abilities satisfy 9rst-order recurrence relations has been formulated by Katz (1965).
The Katz family of distributions cover a wide spectrum including binomial, negative
binomial, and Poisson distributions. It has been used as a basis of developing more
general families of distributions such as distributions de9ned by a discrete analogue to
the Pearson system of continuous distributions studied in Ord (1967a, b, 1972), and
the extended Katz family of Gurland and Tripathi (1975) and Tripathi and Gurland
(1977, 1979). These distributions often serve as embryonic forms of data generating
distributions and provide an ideal benchmark in many applications such as econometric
modeling, industrial quality control, risk and insurance, and sampling theory, among
others.
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A major motivation of Katz’s (1965) work was the problem of discriminating among
binomial, negative binomial, and Poisson distributions when a given set of data is
known to come from one or other of them. More speci9cally, Katz suggested the
use of a test based on the 9rst two sample moments as a discriminating test statistic
for testing the null hypothesis of equi-dispersion (the Poisson distribution) against the
alternative hypothesis of under- or over-dispersions (the binomial or negative binomial
distribution).

The aim of this paper is to investigate discriminating tests for discrete distribu-
tions in the generalized method of moments (GMM) framework developed by Hansen
(1982). The paper analyzes formally the asymptotic and 9nite-sample properties of
discriminating tests which are based on a 9nite set of moment restrictions for the null
hypothesis of a Poisson distribution. In particular, it is concerned with the potential
for e5ciency gains from using additional moment restrictions other than the 9rst two
moments utilized in the Katz test. The results of the GMM tests are also compared
to the performance of the Poisson index of dispersion, a commonly used statistic for
testing hypothesis concerning the Poisson distribution, attributed to Fisher. The 9nal
section of the paper extends the discussion to compound Poisson distributions. We
show that since compound Poisson distributions exhibit over-dispersion, the results of
the negative binomial hold qualitatively for compound Poisson alternatives.

The paper is organized as follows. Section 2 introduces brieGy the Katz family of
distributions and GMM estimators. Section 3 discusses identifying and over-identifying
moment restrictions. Section 4 analyzes the asymptotic relative e5ciency of the tests.
Section 5 presents 9nite-sample power results of tests against binomial and negative
binomial alternatives. Section 6 extends the results to compound Poisson distributions.
Section 7 concludes. All proofs are given in the Appendix.

2. The Katz family and GMM estimators

2.1. The Katz family

For the Katz family of distributions, the recurrence relation for probabilities can be
written as

Pj+1

Pj
=

� + �j
1 + j

; j = 0; 1; 2; : : : ; (1)

where �¿ 0 and �¡ 1. It is understood that if � + �j¡ 0 then Pj+i = 0 for all i¿ 0.
The probability generating function for distributions de9ned in (1), g(t), satis9es the
equation (Johnson et al., 1992):

d log g(t)
dt

=
�

1 − �t



Y. Fang / Journal of Statistical Planning and Inference 110 (2003) 55–73 57

with g(1) = 1. Hence,

g(t) =

{
e�(t−1) if � = 0;

[(1 − �t)=(1 − �)]−�=� otherwise:

The moments about the origin are

r+1 ≡ E(X r+1) =
r∑

j=0

(
r

j

)
(�j + �j+1): (2)

In particular, the mean 1 = �=(1 − �) and the variance �2 ≡ 2 − (1)2 = �=(1 − �)2.
It can be shown that �¡ 0, 0¡�¡ 1, and � = 0 give rise to the binomial dis-

tribution (B(N; P)), negative binomial distribution (NB(k; p)) and Poisson distribution
(P(�)), respectively, with parameters N = − �=�; P = �=(� − 1), k = �=�; p= �, and
�= �. The area of the (�; �) plane occupied by these three distributions can be found,
for example, in Katz (1965). Distributions in the Katz family have the property of be-
ing equi-, under-, or over-dispersed. The Poisson distribution has �2=1 = 1 and exhibits
equi-dispersion. The binomial and negative binomial distributions are under-dispersed
(�2=1 ¡ 1) and over-dispersed (�2=1 ¿ 1), respectively. For many discrete distribu-
tions, in particular binomial and negative binomial distributions, violation of the vari-
ance assumption is a su5cient condition for a violation of the Poisson assumption.

2.2. GMM estimators

Let (x1; x2; : : : ; xn) be a sample from a discrete population with a parameter �. Sup-
pose that we are interested in estimating � based on the 9rst q moment restrictions,

E[f(xi; �)] = 0; (3)

where f(xi; �) = (xi − 1; x2
i − 2; : : : ; x

q
i − q)′: The jth moment about the origin of

the Poisson distribution, j, is given by (2) with �= � and � = 0. We note that if one
multiplies both sides of (3) by a q×q non-singular matrix �, one obtains an equivalent
set of moment restrictions which are based on diMerent model parameterizations. For
example, if � is taken to be the lower triangular matrix with 1 as diagonal elements and
Stirling numbers of the 9rst kind as the lower triangular elements, then the moment
restrictions E[�f(xi; �)] = 0 are based on the factorial moments (see, for example,
Chapter 3 of Stuart and Ord, 1987).

System (3) is overdetermined if q¿ 1. One way to reconcile the conGicting estimates
that will emerge from this overdetermined system is to minimize the quadratic form

Qn(�) =fn(�)′W−1fn(�); (4)

where fn(�) ≡ n−1∑n
i=1 f(xi; �) and W is a positive de9nite weighting matrix which

may be a function of data. The estimators de9ned by choosing � to minimize (4) are
minimum distance estimators. Under certain regularity conditions on W the minimum
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distance estimator is consistent. See Malinvaud (1970) and Amemiya (1985) for dis-
cussions on minimum distance estimators. See also Gerlein and Pincus (1978) for an
approach based on the concept of w-divergence introduced by Kagan (1975).

The Hansen’s GMM estimate of �, �̂, is the value of � that minimizes (4) by taking
W ≡ Vn, where Vn is a consistent estimator of V = limn→∞ Var[n1=2fn(�)]. The use of
this weighted criterion in which the weights are inversely proportional to the variances
of the moments is based on the logic that motivates generalized least squares (GLS).

Hansen (1982) showed that the optimal weighting matrix W in (4) turns out to
be given by Vn. It can be veri9ed that the (i; j)th element of V is (i+j − ij).
Under a model of Poisson �̂ is

√
n-consistent and asymptotically normally distributed.

Furthermore, since Px is su5cient for � one has the following result.

Proposition 2.1. For q¿ 1, n1=2(�̂− �) d→N(0; �).

3. Testing over-identifying restrictions

When the number of moment restrictions in (3) exceeds the number of parameters
(q¿ 1), the model is over-identi9ed. In the over-identi9ed case, Hansen (1982) sug-
gested a test of whether all of the sample moments represented by fn(�̂) are as close
to zero as would be expected if the corresponding population moments (3) were truly
zero. Applying Hansen’s results, one can show that if a Poisson distribution is the true
data generator and Qn(�) is evaluated at the GMM estimate �̂, then

Jn(q) ≡ nfn(�̂)′V−1
n (�̂)fn(�̂) d→ !2

q−1: (5)

Hansen’s !2 test, Jn(q), can be used to test the null hypothesis that the 9rst q moments
of the population coincide with their Poisson counterparts for some �, that is,

H0 : E[f(xi; �)] = 0 (6)

against an alternative hypothesis

Ha : E[f(xi; �)] �= 0: (7)

To analyze the properties of Jn(q) we follow Sowell (1996) to decompose the pop-
ulation moment restrictions in the null hypothesis (6) into

HI
0 :DV−1=2E[f(xi; �)] = 0

and

HO
0 : (Iq×q − D)V−1=2E[f(xi; �)] = 0;

where D ≡ M (M ′M)−1M ′ and M ≡ V−1=2E(F) with F ≡ dfn(�)=d�. The moment
restriction in HI

0 is the identifying restriction for �. It represents the part of the mo-
ment restrictions which actually goes into parameter estimation. In fact, the 9rst-order
conditions associated with the minimization of (4) with W =Vn(�̂) are

@Qn(�̂)
@�

=F(�̂)′V−1
n (�̂)fn(�̂) = [V−1=2

n (�̂)F(�̂)]′V−1=2
n (�̂)fn(�̂) = 0: (8)
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This characterization of the GMM estimator yields an interesting interpretation that
V−1=2
n (�̂)fn(�̂) lies in the null space of [V−1=2

n (�̂)F(�̂)]′.
Sowell (1996) has shown that the information about � in (8) is equivalent to the

information in

D̂V−1=2
n (�̂)fn(�̂) = 0

with D̂ ≡ M̂ (M̂
′
M̂)−1M̂

′
and M̂ ≡ V−1=2

n F̂ , which is the sample analog to HI
0 (see

also Hall, 2001). Therefore, although one begins with (3), GMM estimation is actually
based on information in HI

0. Since the projection of V−1=2
n (�̂)fn(�̂) on to the column

space of [V−1=2
n (�̂)F(�̂)]′ is zero, the rank of D̂ is 1. Hence restrictions in (6) set only

1 linear combination of the q vector E[f(xi; �)] to zero (see Proposition 3.3 for the
identifying moment restriction).

On the other hand, moment restrictions in HO
0 are over-identifying restrictions. Un-

like the moment restriction in HI
0 which is used to obtain the GMM estimate of �, the

moment restrictions in HO
0 will be satis9ed by the Poisson distribution but not by the

binomial or negative binomial distribution. In our case, the over-identifying restrictions
contain (q − 1) linear combinations of E[f(xi; �)] = 0. Since the over-identifying re-
strictions are not imposed it is possible to test whether they hold in the sample. Under
the decomposition described above it is clear that H0 = HI

0 ∩ HO
0 .

Results stated in the following two propositions are useful in determining identifying
and over-identifying restrictions speci9ed in HI

0 and HO
0 .

Proposition 3.1. Under H0, (M ′M)−1 = �.

Proposition 3.2. Under H0, the q× q matrix (FF ′)V−1 has rank 1 and

(FF ′)V−1 = [ − (M ′M)F;O]; (9)

where O is a q× (q− 1) zero matrix.

The identifying and over-identifying moment restrictions are given in Propositions
3.3 and 3.4, respectively.

Proposition 3.3. For any q¿ 1, the identifying moment restriction in HI
0 is E(xi) = 1.

Proposition 3.4. The over-identifying restrictions are (Iq×q + [F;O])E[f(xi; �)] = 0,
where O is a q× (q− 1) zero matrix.

From Propositions 3.3 and 3.4, both identifying and over-identifying moment restric-
tions are formulated by E[f(xi; �)], which, by de9nition, is based on the 9rst q moments
about the origin. Note that there are q − 1 over-identifying restrictions since the 9rst
element of vector F is −1. If we assume that the identifying restriction is satis9ed
by the sample the over-identifying restrictions simplify to E(xji ) = j, for j = 2; 3; : : : ; q
(Proposition 3.4).
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Before we discuss the asymptotic power of Jn(q), two simple examples are appro-
priate to demonstrate the method. The 9rst example, the case in which q= 2, yields a
GMM version of the Katz’s (1965) test. The second one, utilizing the 9rst three mo-
ments (q= 3), serves as an alternative test, which will be used in the power comparison
analysis in later sections.

Example 1 (Jn(2) and the Katz test). When q= 2, fn(�) = ( Px − �; m2 − (� + �2))′,
where m2 = n−1 ∑ x2

i . The variance matrix is

V =

[
� 2�2 + �

2�2 + � 4�3 + 6�2 + �

]
:

It can be shown that the GMM test statistic is

Jn(2) =
n
2

(
s2 − Px

Px

)2

; (10)

where s2 =
∑

(xi − Px)2=n. Jn(2) follows asymptotically a !2
1 distribution by (5).

Note that Jn(2) is equivalent to the test proposed by Katz (1965), in which the square
root of Jn(2),

√
n=2((s2 − Px)= Px), is distributed asymptotically as the standard normal

distribution. Therefore, we can analyze the Katz test using the results established above.
By Propositions 3.3 and 3.4, the identifying and over-identifying restrictions in HI

0

and HO
0 are (E(xi) − 1) = 0 and (E(x2

i ) − 2) = 0, respectively. The interpretation
of the decomposition result is that in the Katz’s test or in the Jn(2) statistic, the
9rst-moment restriction, which is automatically satis9ed by the sample, is used in
estimating the population mean, resulting the MME, which is also the MLE estimator.
The second-moment restriction is satis9ed by the Poisson distribution but not by the
binomial or negative binomial distribution. In fact, the second-moment restriction for
binomial and negative binomial distributions is

0 =E(x2
i ) − (E(xi) + [E(xi)]2) =

{
−NP2 binomial;

kp2 negative binomial:
(11)

It is apparent that Jn(2) has power against violation of the over-identifying restriction
for any departures from the Poisson distribution. We will have formal discussion on
the asymptotic power of Jn(2) in Section 4 and on its 9nite-sample power properties
in Section 5.

Example 2 (Jn(3)). If q= 3, fn(�) = ( Px− �; s2 − (�+ �2); m3 − (�+ 3�2 + �3))′, where
m3 = n−1∑ x3

i . It can be veri9ed that

V =




� � + 2�2 � + 6�2 + 3�3

� + 2�2 � + 6�2 + 4�3 � + 14�2 + 21�3 + 6�4

� + 6�2 + 3�3 � + 14�2 + 21�3 + 6�4 � + 30�2 + 84�3 + 54�4 + 9�5


 :
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The Jn(3) test statistic is given by

Jn(3) = *̂22(s2 − Px)2 + 2*̂23(s2 − Px)(m′
3 − Px) + *̂33(m′

3 − Px)2; (12)

where *̂ij is the (i; j)th element of V̂
−1
n , and m′

3 = n−1 ∑ (xi − Px)3. The direct but te-
dious calculation of V−1 yields that *22 = 2−1�−3(3+7�+3�2), *23 =−2−1�−3(1+�),
and *33 = 6−1�−3. Therefore, *̂22 = 2−1 Px−3(3 + 7 Px + 3 Px2), *̂23 = − 2−1 Px−3(1 + Px), and
*̂33 = 6−1 Px−3. (The expression of V−1, and hence V−1

n , may be obtained from Mathe-
matica (see, for example, Wolfram, 1999 for more information on the software), which
provides a useful tool to derive the required elements of V−1, especially for V with
high values of q.)

Again, the identifying restriction is E(xi) = 1. In contrast to the case of q= 2,
the over-identifying restrictions consist of two equations: E(x2

i ) = 2 and E(x3
i ) = 3

(Proposition 3.4). The two over-identifying moment restrictions for the binomial and
negative binomial alternative hypotheses are given by (11) and the following equation:

0 = E(x3
i ) − [E(xi) + 3[E(xi)]2 + [E(xi)]3]

=

{−3NP2 + 2NP3 − 3N 2P3 binomial;

3kp2 + 2kp3 − 3k2p3 negative binomial:
(13)

4. Asymptotic power

This section 9rst investigates the asymptotic power of Jn(q) using a local power
analysis. To this end, we introduce the following sequences of local alternatives to HI

0

and HO
0 :

HI
A :DV−1=2E[f(xi; �)] = n−1=2*I (14)

and

HO
A : (Iq×q − D)V−1=2E[f(xi; �)] = n−1=2*O; (15)

in which *I �= 0 and *O �= 0. Since it is always possible to decompose V−1=2E[f(xi; �)]
into

V−1=2E[f(xi; �)] =DV−1=2E[f(xi; �)] + (Iq×q − D)V−1=2E[f(xi; �)];

HI
0 and HO

0 translate directly into sequences of local alternatives to V−1=2E[f(xi; �)] = 0,
which is equivalent to H0: E[f(xi; �)] = 0. The following proposition is adapted from
Hall (1999), showing that for local alternatives given in (14) and (15), Jn(q) follows
asymptotically a non central !2 distribution.
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Proposition 4.1. If the data satisfy HI
0 ∩ HO

A, Jn(q) ∼ !2
q−1(*′O*O).

Proposition 4.1 implies that Jn(q) has power against the alternative HO
A whenever

*′O*O ¿ 0. In Proposition 4.1, we assume that the identifying restriction is satis9ed.
Note that Jn(q) has the same asymptotic distribution !2

q−1 under HO
0 regardless of

whether HI
0 or HI

A holds (Newey, 1985; Hall, 1999). Hence, Jn(q) has no power to
discriminate between HI

0 or HI
A. This implies that the rejection of H0 indicates the

invalidity of HO
0 .

Proposition 4.2. If the data satisfy HI
0 ∩ HO

A, *′O*O = nE[f(xi; �)′]V−1E[f(xi; �)].

An alternative approach to analyze the power of tests is to study the approximate
slope of a test, which has been proposed by Bahadur (1960) and further studied by Ba-
hadur (1967) and Geweke (1981), among others. Although the Bahadur’s e5ciency is
asymptotically equivalent to the local power method under certain regularity conditions
(Proposition 4.3; see also Sievers, 1969; Wieand, 1976; Groeneboom and OosterhoM,
1981, who compared the Bahadur e5ciency measure with other methods), it has an
intuitively appealing aspect in understanding the role of E[f(xi; �)′]V−1E[f(xi; �)] in
determining the asymptotic power of the test. According to Bahadur (1960) the ap-
proximate slope of a test is de9ned to be the rate at which the logarithm of the
asymptotic marginal signi9cance level of the test decreases as sample size increases.
Geweke (1981) has shown that if the test statistic’s limiting distribution under the null
hypothesis is a !2 distribution, then the approximate slope of the test equals the prob-
ability limit of the statistic divided by the sample size n. Let cq be the approximate
slope of Jn(q). Applying Geweke’s result, we have

Proposition 4.3. cq = E[f(xi; �)′]V−1E[f(xi; �)]:

For any given q, it is straightforward to apply Proposition 4.3 to calculate cq
under diMerent alternative hypotheses. For example, consider once again the case q= 2
discussed in Example 1 of Section 3. When q= 2, we have that the approximate slope

c2 = (0; E(x2
i ) − (E(xi) + [E(xi)]2))


 1+3E(xi)+4[E(xi)]2

2[E(xi)]2 − 1+2E(xi)
2[E(xi)]2

− 1+2E(xi)
2[E(xi)]2

1
2[E(xi)]2




×
(

0

E(x2
i ) − (E(xi) + [E(xi)]2)

)

=
[E(x2

i ) − {E(xi) + [E(xi)]2}]2

2[E(xi)]2 =

{
1
2NP3 binomial;
1
2kp

3 negative binomial:
(16)

Note that the approximate slopes of Jn(2) for binomial and negative binomial distribu-
tions are identical if NP3 = kp3.



Y. Fang / Journal of Statistical Planning and Inference 110 (2003) 55–73 63

Approximate slopes can also be used in making comparisons across diMerent q. For
example, under the binomial alternative, c3 is given by the following equation:

c3 =
18P − 12P2 + 4P3 + 57P2N − 24P3N + 54P3N 2 − 12P4N 2 + 18P4N 3

6N
:

It can be shown that c3¿ c2 on the parameter space of N and P. The diMerence between
c3 and c2 is less signi9cant when both N and P are small but becomes enormous as
either N or P increases.

Theoretically speaking, any violations in either one of the two over-identifying re-
strictions of (11) and (13) can be tested by Jn(3). One can argue that Jn(3) should
be more asymptotically e5cient than Jn(2) since an additional moment condition is
used in Jn(3). The inequality c3¿ c2 indicates that including an additional moment
restriction will not reduce asymptotic e5ciency. However, one must be cautious since
asymptotic results may not be valid in 9nite samples (see 9nite-sample properties of
tests in Section 5).

5. Finite-sample results

5.1. The simulation setup

In this section we will compare the 9nite-sample properties of GMM tests for dis-
criminating discrete distributions via Monte Carlo simulations under the Poisson null
and the binomial and negative binomial alternative hypotheses. Other alternatives in-
cluding compound Poisson and a zero truncated geometric distributions are examined
in Section 6.

Since the use of GMM tests with q¿ 3 is computationally inconvenient and our
results (not reported here for brevity) indicate that there is no major gain by using
GMM tests with high values of q for hypotheses investigated in this study, we will
focus only on Jn(2) and Jn(3). All simulations are based on 3000 replications. The
nominal signi9cance level is taken to be 1%, 5% and 10%.

For comparison, we also report the results of Monte Carlo experiments performed
for the Poisson index of dispersion Z, which is de9ned as

Z=
∑

(xi − Px)2= Px:

If the xi’s follow a Poisson distribution then Z is approximately !2 with n−1 degrees
of freedom (Fisher, 1950; Cochran, 1936, 1954).

5.2. The size

To gauge the quality of asymptotic approximations in Section 3, we perform simula-
tion experiments for Jn(2), Jn(3) and Z under the Poisson null hypothesis with various
values of � and sample sizes. Results, which are presented in Table 1, show that for
5% and 10% signi9cance levels, the empirical sizes of Jn(2) and Jn(3) are close to
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Table 1
Sizes of testsa

Sample size � Size of 1% test Size of 5% test Size of 10% test

Jn(2) Jn(3) Z Jn(2) Jn(3) Z Jn(2) Jn(3) Z

10 1 0.008 0.011 0.008 0.026 0.027 0.047 0.042 0.046 0.072
2.5 0.016 0.013 0.016 0.029 0.030 0.056 0.060 0.055 0.113
5 0.009 0.022 0.009 0.022 0.039 0.042 0.062 0.050 0.097

10 0.011 0.016 0.010 0.019 0.034 0.040 0.055 0.046 0.092
20 0.007 0.024 0.007 0.029 0.044 0.047 0.063 0.062 0.110
30 0.012 0.023 0.010 0.031 0.040 0.052 0.067 0.063 0.102

20 1 0.011 0.010 0.011 0.048 0.043 0.053 0.089 0.076 0.090
2.5 0.014 0.018 0.014 0.030 0.036 0.051 0.071 0.062 0.098
5 0.008 0.019 0.008 0.033 0.037 0.045 0.074 0.060 0.092

10 0.007 0.017 0.007 0.041 0.046 0.054 0.085 0.068 0.104
20 0.012 0.022 0.012 0.044 0.052 0.056 0.102 0.076 0.107
30 0.006 0.025 0.007 0.035 0.042 0.037 0.068 0.077 0.081

50 1 0.005 0.013 0.007 0.041 0.040 0.051 0.085 0.075 0.099
2.5 0.009 0.019 0.011 0.044 0.048 0.045 0.092 0.085 0.092
5 0.008 0.021 0.009 0.037 0.054 0.047 0.081 0.083 0.096

10 0.008 0.013 0.007 0.041 0.040 0.045 0.099 0.073 0.089
20 0.011 0.014 0.012 0.052 0.051 0.055 0.101 0.082 0.109
30 0.013 0.023 0.012 0.045 0.045 0.061 0.104 0.088 0.096

100 1 0.008 0.019 0.100 0.039 0.046 0.043 0.087 0.074 0.083
2.5 0.009 0.028 0.011 0.041 0.058 0.052 0.099 0.083 0.099
5 0.013 0.023 0.015 0.047 0.056 0.055 0.097 0.096 0.108

10 0.010 0.022 0.011 0.039 0.045 0.044 0.088 0.078 0.100
20 0.013 0.014 0.012 0.049 0.053 0.052 0.106 0.092 0.105
30 0.008 0.014 0.008 0.047 0.039 0.049 0.092 0.091 0.106

aEmpirical sizes of nominal 1%, 5% and 10% signi9cance GMM tests of the Poisson (�) null hypothesis.
The statistic Jn(q) is asymptotically !2 with degree of freedom q − 1. For comparison, the empirical sizes
of the Poisson index of dispersion, Z, which is asymptotically !2 with degree of freedom n − 1, are also
reported. The simulation experiment is based on 3000 replications.

their nominal values for sample sizes ¿ 20 and are considerably below their nominal
values for sample sizes ¡ 20. For the 1% nominal signi9cance level, the empirical size
of Jn(2) is close to its nominal value but the empirical size of Jn(3) is substantially
above its nominal value for all sample sizes. In contrast to the two statistics based on
GMM, empirical sizes of Z are close to their nominal values regardless of the sample
size and the signi9cance level.

5.3. The power

Table 2 reports the power of Jn(2), Jn(3) and Z at the 1%, 5% and 10% signi9-
cance levels against the binomial alternative. The values of two parameters of binomial
distribution, P and N , were chosen to not only conform with other previously pub-
lished studies such as Rao and Chakravarti (1956), and Darwin (1957), but also to
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Table 2
Power of tests against binomial alternativesa

Sample size N P 1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Z Jn(2) Jn(3) Z Jn(2) Jn(3) Z

10 5 0.10 0.004 0.006 0.004 0.012 0.011 0.028 0.017 0.027 0.030
5 0.25 0.000 0.001 0.000 0.004 0.026 0.005 0.049 0.052 0.011
5 0.50 0.000 0.000 0.000 0.017 0.005 0.000 0.176 0.072 0.000
5 0.75 0.000 0.003 0.000 0.153 0.006 0.000 0.667 0.283 0.000

10 0.10 0.004 0.000 0.003 0.013 0.025 0.025 0.036 0.040 0.047
10 0.25 0.000 0.000 0.000 0.004 0.002 0.003 0.060 0.023 0.011
10 0.50 0.000 0.000 0.000 0.020 0.000 0.000 0.185 0.019 0.000
10 0.75 0.000 0.004 0.000 0.155 0.000 0.000 0.686 0.081 0.000

25 0.10 0.004 0.001 0.004 0.018 0.021 0.034 0.052 0.043 0.070
25 0.25 0.000 0.000 0.000 0.006 0.003 0.002 0.059 0.013 0.026
25 0.50 0.000 0.000 0.000 0.019 0.000 0.001 0.163 0.005 0.002
25 0.75 0.000 0.007 0.000 0.172 0.000 0.000 0.682 0.027 0.000

20 5 0.10 0.003 0.004 0.003 0.014 0.010 0.012 0.030 0.029 0.028
5 0.25 0.000 0.003 0.000 0.027 0.027 0.003 0.125 0.062 0.006
5 0.50 0.003 0.002 0.000 0.251 0.130 0.000 0.550 0.307 0.000
5 0.75 0.264 0.127 0.000 0.947 0.747 0.000 0.988 0.922 0.000

10 0.10 0.002 0.006 0.002 0.017 0.017 0.022 0.072 0.052 0.034
10 0.25 0.002 0.003 0.000 0.048 0.018 0.003 0.153 0.069 0.008
10 0.50 0.007 0.002 0.000 0.307 0.086 0.000 0.557 0.265 0.000
10 0.75 0.257 0.020 0.000 0.957 0.652 0.000 0.993 0.986 0.000

25 0.10 0.003 0.006 0.003 0.018 0.020 0.016 0.062 0.037 0.036
25 0.25 0.002 0.002 0.001 0.057 0.014 0.005 0.151 0.054 0.012
25 0.50 0.005 0.000 0.000 0.303 0.047 0.000 0.586 0.200 0.000
25 0.75 0.251 0.002 0.000 0.955 0.570 0.000 0.994 0.887 0.000

50 5 0.10 0.000 0.003 0.001 0.025 0.018 0.007 0.081 0.057 0.023
5 0.25 0.020 0.021 0.000 0.163 0.092 0.000 0.331 0.174 0.000
5 0.50 0.490 0.343 0.000 0.886 0.682 0.000 0.964 0.832 0.000
5 0.75 0.999 0.996 0.000 1.000 1.000 0.000 1.000 1.000 0.000

10 0.10 0.003 0.008 0.002 0.047 0.035 0.013 0.114 0.068 0.030
10 0.25 0.021 0.010 0.000 0.191 0.082 0.000 0.348 0.167 0.000
10 0.50 0.490 0.239 0.000 0.888 0.658 0.000 0.957 0.824 0.000
10 0.75 0.999 0.992 0.000 1.000 0.999 0.000 1.000 1.000 0.000

25 0.10 0.004 0.002 0.001 0.051 0.027 0.011 0.114 0.066 0.033
25 0.25 0.026 0.009 0.000 0.188 0.071 0.000 0.340 0.159 0.004
25 0.50 0.512 0.221 0.000 0.878 0.684 0.000 0.956 0.840 0.000
25 0.75 1.000 0.996 0.000 1.000 1.000 0.000 1.000 1.000 0.000

(continued on next page)
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Table 2 (continued)

Sample size N P 1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Z Jn(2) Jn(3) Z Jn(2) Jn(3) Z

100 5 0.10 0.006 0.010 0.000 0.064 0.044 0.002 0.146 0.083 0.009
5 0.25 0.131 0.085 0.000 0.418 0.249 0.000 0.596 0.389 0.000
5 0.50 0.976 0.898 0.000 0.998 0.986 0.000 1.000 0.998 0.000
5 0.75 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000

10 0.10 0.008 0.010 0.001 0.070 0.043 0.010 0.156 0.085 0.020
10 0.25 0.139 0.078 0.000 0.432 0.256 0.000 0.594 0.390 0.000
10 0.50 0.973 0.884 0.000 0.999 0.985 0.000 1.000 0.995 0.000
10 0.75 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000

25 0.10 0.007 0.006 0.001 0.077 0.041 0.009 0.156 0.092 0.023
25 0.25 0.124 0.047 0.000 0.418 0.224 0.000 0.598 0.358 0.000
25 0.50 0.967 0.863 0.000 0.998 0.981 0.000 0.999 0.998 0.000
25 0.75 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000

aPower of GMM tests (Jn(q)) against the binomial (N; P) alternative hypothesis. For comparison, the power
of the Poisson index of dispersion (Z) are also reported. The simulation experiment is based on 3000
replications.

provide a representative set of examples of possible models commonly encountered in
practice. As can be seen from Table 2, two tests based on GMM are comparable for
the binomial alternative. However, Z has no power against binomial distributions re-
gardless of the values of binomial parameters, signi9cance levels and sample sizes — a
well-known result reported in previous studies (see, for example, Nass, 1959; Olkin
et al., 1981). For two GMM test statistics Jn(2) and Jn(3), the power depends largely
on P rather than on N . For a 9xed sample size, the power increases as P increases.
For small P (P6 0:25), both Jn(2) and Jn(3) are not powerful unless the sample size
is relatively large (n¿ 20 for 5% and 10% signi9cance levels, and n¿ 50 for 1%
signi9cance level). The results also suggest that although the approximate slope cq in-
creases with q, there appears to be no gain of using Jn(3) over Jn(2) in 9nite samples
with sample sizes up to at least 100. This may be attributed to the imprecision with
which the higher moments are estimated for a 9xed sample size. The results indicate
that the local power (and the approximate slope) comparisons discussed in Section 4
are only strictly valid asymptotically. It is, therefore, inappropriate in 9nite, especially
in small samples (Bahadur, 1967; Geweke, 1981; Faust, 1992).

Table 3 reports the results for the negative binomial alternative with parameters p
and k. For comparison, we use the same parameter values for p and k as those of P
and N of binomial distributions. Although the local power (and the approximate slope)
of test statistics based on GMM against the negative binomial distribution is the same
as that against the binomial distribution (see Section 4), the results show that both
Jn(2) and Jn(3) are, in general, much powerful against the negative binomial than the
binomial alternative except for a few cases in which p is high and the sample size is
large. As expected, similar to the binomial case, the power increases as either p or
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Table 3
Power of tests against negative binomial alternativesa

Sample size k p 1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Z Jn(2) Jn(3) Z Jn(2) Jn(3) Z

10 5 0.10 0.010 0.009 0.010 0.033 0.033 0.075 0.044 0.048 0.087
5 0.25 0.044 0.040 0.042 0.082 0.071 0.129 0.115 0.089 0.194
5 0.50 0.108 0.107 0.107 0.174 0.164 0.224 0.218 0.208 0.318
5 0.75 0.195 0.190 0.191 0.296 0.272 0.350 0.325 0.332 0.458

10 0.10 0.019 0.017 0.018 0.031 0.032 0.071 0.054 0.050 0.110
10 0.25 0.041 0.042 0.039 0.083 0.077 0.131 0.128 0.123 0.229
10 0.50 0.119 0.135 0.118 0.179 0.192 0.247 0.229 0.228 0.356
10 0.75 0.188 0.212 0.185 0.284 0.308 0.366 0.358 0.358 0.472

25 0.10 0.016 0.024 0.015 0.046 0.046 0.082 0.083 0.075 0.148
25 0.25 0.037 0.054 0.033 0.084 0.102 0.138 0.128 0.141 0.219
25 0.50 0.102 0.141 0.099 0.182 0.210 0.252 0.234 0.270 0.356
25 0.75 0.195 0.227 0.192 0.294 0.297 0.377 0.358 0.358 0.488

20 5 0.10 0.025 0.025 0.025 0.053 0.046 0.086 0.088 0.070 0.138
5 0.25 0.078 0.086 0.080 0.139 0.141 0.194 0.191 0.183 0.293
5 0.50 0.195 0.200 0.196 0.291 0.279 0.355 0.353 0.341 0.485
5 0.75 0.341 0.327 0.349 0.475 0.460 0.553 0.543 0.535 0.670

10 0.10 0.032 0.037 0.033 0.066 0.065 0.087 0.101 0.091 0.143
10 0.25 0.069 0.080 0.069 0.134 0.134 0.185 0.187 0.176 0.259
10 0.50 0.183 0.199 0.186 0.278 0.289 0.376 0.364 0.360 0.513
10 0.75 0.339 0.361 0.340 0.465 0.474 0.548 0.541 0.538 0.668

25 0.10 0.022 0.026 0.022 0.063 0.064 0.091 0.098 0.099 0.171
25 0.25 0.070 0.096 0.073 0.140 0.153 0.193 0.197 0.201 0.301
25 0.50 0.190 0.215 0.191 0.310 0.311 0.391 0.385 0.375 0.504
25 0.75 0.358 0.379 0.362 0.494 0.491 0.571 0.561 0.547 0.676

50 5 0.10 0.039 0.049 0.042 0.088 0.082 0.125 0.137 0.126 0.212
5 0.25 0.128 0.138 0.143 0.229 0.224 0.301 0.300 0.273 0.419
5 0.50 0.403 0.390 0.423 0.550 0.515 0.626 0.625 0.604 0.735
5 0.75 0.693 0.663 0.707 0.804 0.776 0.853 0.853 0.837 0.908

10 0.10 0.041 0.045 0.047 0.087 0.084 0.121 0.133 0.122 0.214
10 0.25 0.150 0.146 0.160 0.246 0.244 0.321 0.323 0.308 0.443
10 0.50 0.432 0.432 0.449 0.567 0.566 0.669 0.671 0.642 0.768
10 0.75 0.711 0.674 0.723 0.825 0.796 0.874 0.874 0.844 0.929

25 0.10 0.029 0.040 0.031 0.075 0.079 0.110 0.132 0.128 0.193
25 0.25 0.108 0.128 0.125 0.239 0.246 0.311 0.318 0.319 0.437
25 0.50 0.374 0.383 0.387 0.533 0.513 0.610 0.609 0.599 0.750
25 0.75 0.681 0.669 0.712 0.818 0.790 0.872 0.871 0.844 0.919

(continued on next page)
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Table 3 (continued)

Sample size k p 1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Z Jn(2) Jn(3) Z Jn(2) Jn(3) Z

100 5 0.10 0.059 0.077 0.070 0.115 0.124 0.174 0.187 0.176 0.268
5 0.25 0.231 0.246 0.264 0.401 0.370 0.489 0.489 0.456 0.602
5 0.50 0.682 0.650 0.712 0.838 0.780 0.888 0.888 0.844 0.934
5 0.75 0.926 0.914 0.935 0.967 0.956 0.981 0.981 0.972 0.992

10 0.10 0.069 0.063 0.080 0.122 0.130 0.178 0.188 0.182 0.276
10 0.25 0.231 0.224 0.258 0.377 0.352 0.481 0.483 0.427 0.600
10 0.50 0.690 0.652 0.728 0.826 0.800 0.883 0.883 0.854 0.936
10 0.75 0.945 0.926 0.953 0.978 0.966 0.987 0.987 0.979 0.995

25 0.10 0.059 0.078 0.069 0.127 0.146 0.176 0.188 0.199 0.294
25 0.25 0.206 0.212 0.231 0.378 0.345 0.487 0.490 0.450 0.609
25 0.50 0.717 0.676 0.750 0.830 0.808 0.889 0.889 0.858 0.941
25 0.75 0.940 0.932 0.952 0.976 0.970 0.987 0.987 0.979 0.996

aPower of GMM tests (Jn(q)) against the negative binomial (k; p) alternative hypothesis. For comparison,
the power of the Poisson index of dispersion (Z) are also reported. The simulation experiment is based on
3000 replications.

the sample size increases. Again, it seems that Jn(2) is as powerful as Jn(3). Note that
Z is either comparable to or more commonly, slightly more powerful than Jn(2) and
Jn(3).

To understand why the power of GMM tests for the binomial can be lower than
that for the negative binomial in 9nite samples (especially in small samples), consider
Jn(2) or equivalently, Z statistic. Results from CramTer (1946, p. 354) asserts that

E(Z) =
√
n

2
(�2 − 1)

1
+ O

(
1

n1=2

)
and

Var(Z) = 2,2 +
,(,− 1)(3,− 1)

1
+ O

(
1

n1=2

)
;

where ,= �2=1. From these expressions it is apparent that when N = k and P =p,
binomial and negative binomial distributions will have approximately the same |E(Z)|
and hence, c2 in (16), but diMerent Var(Z) because ,¡ 1 for the binomial and ,¿ 1
for the negative binomial distribution. The diMerence in power observed in Tables 2
and 3 is attributed mainly to the second-order dynamics of Z, namely Var(Z), which
behaves fundamentally diMerent for over- and under-dispersed distributions.

6. Extensions

Since compound Poisson distributions have been frequently used as an alternative
to the Poisson distribution, it is natural and practically important to extend the power
analysis to compound Poisson alternatives. Asymptotic results for compound Poisson
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Table 4
Power of tests against compound poisson alternativesa

Panel A: Poisson(�) ∧ Rectangular(0; 3)
1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Z Jn(2) Jn(3) Z Jn(2) Jn(3) Z

3
1 0.037 0.038 0.037 0.076 0.074 0.117 0.113 0.105 0.186
2 0.094 0.084 0.095 0.164 0.144 0.227 0.225 0.201 0.320
3 0.147 0.136 0.151 0.271 0.246 0.347 0.342 0.323 0.483
4 0.261 0.251 0.262 0.426 0.409 0.532 0.520 0.517 0.666
5 0.408 0.414 0.415 0.550 0.559 0.643 0.631 0.633 0.760
6 0.521 0.525 0.525 0.668 0.681 0.759 0.743 0.741 0.845
7 0.632 0.655 0.643 0.765 0.782 0.824 0.815 0.830 0.884
8 0.721 0.746 0.726 0.832 0.852 0.884 0.876 0.894 0.936
9 0.797 0.822 0.800 0.870 0.879 0.907 0.901 0.917 0.955

10 0.855 0.884 0.859 0.926 0.938 0.956 0.946 0.955 0.975

Panel B: Poisson(�) ∧ Lognormal(5; �2)

5 �
0 0.1 0.010 0.011 0.010 0.026 0.029 0.047 0.066 0.054 0.089

0.5 0.017 0.026 0.017 0.039 0.041 0.052 0.071 0.073 0.104
1 0.692 0.676 0.693 0.752 0.743 0.792 0.792 0.774 0.847

1 0.1 0.013 0.020 0.014 0.042 0.036 0.058 0.086 0.065 0.101
0.5 0.043 0.057 0.044 0.096 0.095 0.143 0.147 0.133 0.230
1 0.971 0.971 0.971 0.984 0.980 0.989 0.988 0.989 0.992

aPower of GMM tests (Jn(q)) against compound Poisson alternative hypotheses. For comparison, the power
of the Poisson index of dispersion (Z) are also reported. The simulation experiment is based on 3000
replications with sample size 20.

distributions can be developed along the similar lines as those provided for the binomial
and negative binomial in Section 4. Extensive simulation experiments indicate that Jn(q)
for various values of q and Z are comparable and there is no major gain in using Jn(q)
with q¿ 2 than Jn(2) for a wide variety of compound Poisson distributions. See Table
4 in which, for illustrative purposes, we report the results of power of test statistics
against two compound Poisson alternatives: Poisson-rectangular and Poisson-log-normal
distributions.

Combining the results from the previous section, we conclude that, against binomial,
negative binomial and many compound Poisson alternatives, Jn(2) is comparable to
Jn(3) in power. The key intuition for these results is that for all alternative distri-
butions studied so far, the population mean is not equal to the population variance.
Hence, Jn(2) is able to detect a departure from the Poisson distribution by compar-
ing the sample mean to the sample variance (the moment restriction in HO

0 ). In fact,
since most commonly used mixed distributions are over-dispersed, by applying Satterth-
waite’s (1942) result, the corresponding compound Poisson distributions (including two
compound Poisson distributions in Table 4) are also over-dispersed. The 9nite-sample
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Table 5
Power of tests against the geometric alternativea

Sample size 1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Z Jn(2) Jn(3) Z Jn(2) Jn(3) Z

10 0.036 0.073 0.035 0.061 0.136 0.082 0.153 0.192 0.116
20 0.050 0.155 0.048 0.146 0.288 0.094 0.246 0.408 0.132
50 0.080 0.526 0.064 0.194 0.748 0.119 0.280 0.846 0.166

100 0.105 0.909 0.068 0.224 0.980 0.131 0.315 0.992 0.176
aPower of GMM tests (Jn(q)) against the geometric (p= 0:5) alternative hypothesis. For comparison, the
power of the Poisson index of dispersion (Z) are also reported. The simulation experiment is based on 3000
replications.

power properties of Jn(2), Jn(3) and Z in Table 4 are, therefore, similar to those
against the negative-binomial distribution (Table 3).

To see what happens if the distribution in the alternative hypothesis has its mean
equal to the variance, we consider the following geometric distribution with positive
integers as the sample space

p(j) =pqj−1; j = 1; 2; 3; : : : ; (17)

where 06p6 1 and q= 1−p. Assuming the observational apparatus becomes active
only when at least one event occurs, this distribution has mean 1=p and variance
q=p2. Table 5 presents the power results for Jn(2), Jn(3) and Z against this geometric
alternative with p= 1

2 in which the distribution has a mean equal to its variance. Since
both Jn(2) and Z rely only on the 9rst two moments, they have di5culty distinguishing
between the Poisson distribution and the geometric distribution de9ned in (17). It can
be seen from Table 5 that with the inclusion of the third moment, Jn(3) is much
more powerful than both Jn(2) and Z across all signi9cance levels and sample sizes
considered.

These results also emphasize the fact that as semi-parametric tests, Jn(q)s (as well as
Z), which rely solely on moments, may not utilize e5ciently all available information
such as that on the sample space of the variable.

7. Concluding remarks

This paper uses the generalized method of moments framework to investigate dis-
criminating tests for discrete distributions with a focus on the two-parameter family of
Katz and with an extension to compound Poisson distributions. It shows that although it
has less asymptotic power, Katz’s test statistic, which is based on the 9rst two moments
is, in general, comparable in 9nite-sample power with other GMM test statistics based
on higher-order moments against binomial, negative binomial and various compound
Poisson distributions with variances noticeably not equal to the means. The results also
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suggest that tests based on GMM have reasonable power against the over-dispersed
alternatives. However, although they show substantially better power properties than
the Poisson index of dispersion, for testing the under-dispersed distributions (which,
exampled by the binomial distribution, are less commonly encountered in practice),
GMM tests may not be reliable unless the sample size is relatively large.

GMM tests based on higher-moment restrictions may have advantages when
low-moment restrictions are satis9ed by the distribution speci9ed in the alternative
hypothesis. Therefore, if the Katz’s test or the Poisson index of dispersion fails to
reject the null hypothesis of a Poisson distribution, it may not be superGuous to try
a GMM test based on higher-order moment restrictions to make a further investiga-
tion before 9tting a Poisson distribution to the data and comparing the observed and
expected cell frequencies.

Although the discussion in this paper focuses on the Poisson distribution and the
Katz family, the proposed GMM approach can be extended to developing discriminat-
ing tests in many other situations such as hypotheses using various generalizations of
the Poisson distribution. The approach is also applicable to other discrete and contin-
uous distributions. In general, a sensible test criterion can be found by the method of
this paper if the hypothesized distributions are well characterized by a set of moment
conditions and the over-identifying moment restrictions of the test are not satis9ed by
alternative distributions.
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Appendix A. Proofs of Propositions

Proof of Proposition 3.1. The result follows from (M ′M)−1 = (F ′V−1F)−1 and
Proposition 2.1.

Proof of Proposition 3.2. It is clear that F has rank 1 and so is (FF ′)V−1. By the
de9nition of F , (FF ′) is a q×q matrix with (i; j)th element (@i=@�)(@j=@�). Now, we
show that the 9rst column of FF ′V−1 is −(M ′M)F and all other columns are 0. Using
the result that (M ′M)−1 = � in Proposition 3.1 and the property of the Poisson distribu-
tion that �@j=@�= j+1−1j (Haight, 1967), we can show that v1; j = �@j=@�, where
v1; j is the (1; j)th element of V . Then, it can be shown that FF ′ = [ − (M ′M)F;O]V
and therefore, FF ′V−1 = [ − (M ′M)F;O].
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Proof of Proposition 3.3. Since D =M (M ′M)−1M ′ = (M ′M)−1V−1=2(FF ′)V−1=2, HI
0

is equivalent to

(FF ′)V−1E[f(xi; �)] = 0:

The result follows from Proposition 3.2.

Proof of Proposition 3.4. By Proposition 3.2 and the fact that the over-identifying re-
strictions in HO

0 are speci9ed by (I −D)V−1=2E[f(xi; �)] =V−1=2[I − (M ′M)−1FF ′V ]E
[f(xi; �)] = 0, which is equivalent to [I − (M ′M)−1FF ′V ]E[f(xi; �)] = 0.

Proof of Proposition 4.2. The result follows from (14) and (15).

Proof of Proposition 4.3. From the de9nition of Jn(q) and Theorem 1 of Geweke
(1981).
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