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Abstract

In this paper we develop a class of two-level designs that allow orthogonal estimation of certain
main e�ects and two-factor interactions when other main e�ects and two-factor interactions are
present but not of interest. The designs can be easily generated using block-crossed arrays. The
application is clearly to settings in which one might apply either Taguchi’s crossed arrays or
single-array designs suggested by many people as a better alternative to Taguchi’s methods. Our
designs have certain properties, the most important being the 
exibility and a reduction, in many
cases, in the number of runs over both Taguchi’s designs and single orthogonal arrays. c© 1998
Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In robust product designs, main e�ects of design factors and interactions between de-
sign and environment factors are the most important to be studied (see e.g.,
Wu et al., 1990; Shoemaker et al., 1991). If certain interactions, such as interactions
among design factors, are not negligible, the experimental design should, therefore,
be chosen so that the main e�ects of design factors as well as the interactions be-
tween design and environment factors can be estimated without being confounded with
interactions among design factors.
Taguchi (see Taguchi, 1986, among many others) recommended the use of inner

and outer orthogonal arrays to �nd design factors insensitive to the variation caused by
uncontrolled environmental sources. For each experimental run in the inner array where
the primary design factors are varied over a certain range, another outer array of runs is
conducted, varying environment factors that may a�ect the product’s performance. Most
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of Taguchi’s inner and outer arrays are two-, three- or mixed-level classic fractional
factorial designs (Box et al., 1987; Kacker et al., 1991). In some of Taguchi’s designs,
the inner orthogonal arrays are highly fractional designs, while the main e�ects of de-
sign factors are confounding with two-factor interactions. If interactions among design
factors do indeed exist, analysis results often are confused and misleading (Hunter,
1985; Kackar, 1985; Box, 1988). A few runs of a follow-up con�rmation experiment
is often recommended in practice when high-fractional design is used. But the con�r-
mation experiment cannot detect signi�cant design factors that fail to be found in the
�rst place (Logothetis and Wynn, 1989; Lucas, 1994). In order to estimate the main
e�ects of design factors free of two-factor interactions, a design with resolution IV or
higher is required in the inner array. Because of the cross-array arrangement, the total
number of experimental runs is the product of the size of inner and outer arrays. Even
in the screening analysis, for a system with many design and environment factors, the
cross-array arrangement often involves a large amount of experimental work.
Many people (see e.g., Box et al., 1987; Bisgaard, 1989) suggested the use of a

single array instead of Taguchi’s crossed arrays. The use of a single orthogonal array
can sometimes reduce the experimental runs and simplify the confounding structure,
especially to free the main e�ects of design factors of two-factor interactions. The
single array is based on traditional fractional factorial designs with the run size of
a power of two. It is constructed either by choosing the design generators carefully
so that the e�ects which are desired are not confounded or by assuming that some
two-factor interactions are negligible (see e.g., Wu and Chen, 1992). Since the single-
array experiment plan is based on the detailed analysis of the confounding structure of
fractional factorial designs with low resolutions, an e�cient design can be obtained for
only certain combinations of the numbers of design and environment factors (Whitwell
and Morbey, 1961; Addelman, 1962; Box and Jones, 1990a, b).
In this paper, we develop a block-crossed array strategy, to construct designs pro-

viding orthogonal estimates of most important e�ects in the screen stage of the robust
design of experiment. The objective of interest is to estimate main e�ects of design
factors and interactions among design and environment factors. Assume that all three or
higher order interactions are zeros, the designs can be used in estimating orthogonally
main e�ects of design factors, as well as design × environment interactions free of
other main and two-factor interaction e�ects. The proposed plan is a systematic method
for constructing a series of desired designs for any size experiment system. It often
requires fewer runs than Taguchi’s crossed arrays and traditional single-array designs.
The paper is organized as follows. In Section 2 block-crossed arrays are introduced
with an illustrated example. Section 3 discusses the run sizes and the alias properties
of the proposed designs. We summarize the results in Section 4.

2. Block-crossed array approach

We consider designs with two levels, + and −. For any column vector A, denote
+A=A and −A to be the vector with all signs reversed in A. Let I be the vector of all
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+ elements. Then −I is the vector of all − elements. Suppose that there are n design
factors and m environment factors. The step by step procedure for the construction of
a block-crossed array is as follows.

Block-crossed array procedure.
(1) Construct an orthogonal design with a resolution at least III for n design factors.

Denote this design matrix as X with the run size x.
(2) If the design obtained in Step 1 has resolution IV or higher, construct an or-

thogonal resolution III design with run size z for m environment factors. Otherwise,
construct an orthogonal resolution III design for m + 1 factors. Denote the matrix as
Z and the ith column of Z as Zi.
(3) Obtain the block-crossed array for these n+ m factors.
Case 1: The design obtained in Step 1 has resolution IV or higher. In this case,

assign n design factors to the columns of X with replacement of + and − by small
block +I z×1 or −I z×1, respectively; assign the ith environment factor to a vector with
x small blocks Zi.
Case 2: The design obtained in Step 1 has resolution III. Assume that q factors

can be accommodated in this x-run design such that the design for these q factors is
of resolution IV or higher. Assume that the �rst q columns in X are corresponding
to these q factors. In this case, assign the �rst q design and m environment factors
the same way as in case 1; assign the remaining n–q design factors to vectors with x
small blocks Zm+1 or −Zm+1 with the signs corresponding to the last n–q columns
of X .

The block-crossed array is essentially a crossed combination of two resolution III
arrays. By the way it is constructed, the design provides orthogonal estimation of main
design factors as well as design × environment interactions free from other main and
two-factor interaction e�ects. The proof of the orthogonality properties in block-crossed
arrays is outlined in Appendix. It is important to note that the number of runs of both
arrays X and Z are not necessarily to be a power of two. Therefore, many orthogonal
resolution III designs can serve as candidates in Step 1 and 2 in the block-crossed
array procedure. We will use Plackett–Burman (1946) designs and fractional factorial
designs with a run size of a power of two, to demonstrate the block-crossed method
in our discussion.
The Plackett–Burman designs are saturated resolution III designs. The advantage

of the use of Plackett–Burman designs is, in some cases, the potential reduction in
the number of runs. On the other hand, nongeometric properties of Plackett–Burman
designs cause complicated confounding structures, especially when the run size is rel-
atively large, say, more than 12. In contrast to Plackett–Burman designs, fractional
factorial designs with a run size of power two are not, in general, saturated designs.
However, fractional factorial designs with a run size of power two have simpler con-
founding structures among main and interaction e�ects, which provide attractive pro-
jection properties.
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Table 1
26−3III array X

A B C D=ABC E=AB F=AC

+ + + + + +
+ + − − + −
− + + − − −
+ − + − − +
+ − − + − −
− − + + + −
− + − + − +
− − − − + +

Table 2
Block-crossed array

A B C D E F G H J K L M

+I +I +I +I +R +R G H J K L M
+I +I −I −I +R −R G H J K L M
−I +I +I −I −R −R G H J K L M
+I −I +I −I −R +R G H J K L M
+I −I −I +I −R −R G H J K L M
−I −I +I +I +R −R G H J K L M
−I +I −I +I −R +R G H J K L M
−I −I −I −I +R +R G H J K L M

Before we discuss more properties of the proposed design, a simple example is
appropriate to demonstrate the method.

Example. Consider six design and six environment factors: i.e., n=6 and m=6. Let
A, B, C, D, E and F refer to six design factors and G, H, J, K, L and M refer to
six environment factors. Suppose that we use 26−3III design for six design factors. The
design matrix of X is given in Table 1. The maximal integer q is four (q=4) in this
example: i.e., if we only consider factors A, B, C and D, the design is of resolution
IV. Because the design 26−3III is of resolution III, we need to construct a resolution III
design for seven (m+1=7) factors. We may use either an eight-run Plackett–Burman
design or the design 27−4III to obtain the matrix Z for six environment factors. Let R be
the last column of Z . Denote the �rst six columns of Z as G; : : : ; M , respectively. The
block-crossed design matrix is given in Table 2 with total number of runs 64 (8× 8).

3. Run size and alias properties

To decide the minimal run size in block-crossed arrays, we �rst give a brief review
of a minimum number of runs for orthogonal resolution III designs. The run size for
block-crossed arrays is then the product of two resolution III designs unless the array
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obtained in Step 1 of the block-crossed array procedure in Section 2 has resolution IV
or higher.
In order to have block-crossed arrays with the minimal run size, Plackett–Burman

designs should be used in constructing both arrays X and Z . Plackett–Burman designs
which are based on the Hadamard matrices are saturated orthogonal arrays. However,
they only exist when the number of factors is a module of four. When the number of
factors investigated is not a module of four, we need to use a larger available Plackett–
Burman design. For example, the minimal number of runs required in orthogonal reso-
lution III designs for the number of factors from 4 to 15 are 8; 8; 8; 8; 12; 12; 12; 12; 16;
16; 16; and 16; respectively. When the run size of a Plackett–Burman design is a power
of two, it is identical to the traditional fractional factorial design with a run size of
power two (see Example in Section 2 and the discussion in Montgomery, 1991).
To compare the run size of block-crossed arrays with single array plans, let us

consider the example with six design and six environment factors in Section 2. The
minimal run size of orthogonal resolution III design for six factor is eight. Hence, the
number of runs required in the block-crossed array is 64. If we assume that interac-
tions among design factors are not present, a single array plan suggested by Box and
Jones (1990a) for six design and six environment factors requires the same number of
runs (64) as the block-crossed array. However, this single array has resolution III. If
interactions are signi�cant, some main design factors are confounding with two-factor
interactions (D=AB, E=AC, and F=BC). A single array with higher resolution (IV)
for six design and six environment factors requires 27 runs (Box and Jones, 1990b).
The 27-run array doubles the run size and the bene�t is the power to estimate interac-
tions among design factors by choosing the design such that, in the de�ning relation,
the only factors that appear in any word of length four are environment factors. On
the other hand, interactions among design factors may confound with each other in the
block-crossed arrays. For example, AD=BC=EF in the example given in Section 2.
If we focus only on the left-hand-side half of the block-crossed array, namely, the

array for design factors, the design is of resolution IV but not of resolution V. On
the other hand, the right-hand-side half of the block-crossed design, which is for en-
vironment factors, is formed by folding over a resolution III design simply with the
same sign (not with the sign reversed). There is no gain in terms of resolution in the
right-hand-side half of the block-crossed array and the main environment e�ects are
confounding with their two-factor interactions. It is important to emphasize that the
block-cross arrays will become valuable tools only if one is interested in estimating
main design and design × environment e�ects when other interactions are signi�cant
but not of interest.

4. Concluding remarks

The motivation of our work is to use robust designs to screen a large number of
design factors. By introducing a block-cross array strategy, a series of designs are
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developed. The proposed designs provide orthogonal estimations of main e�ects of
design factors, as well as design × environment interactions, free of other main e�ects
and two-factor interactions. The method can generate designs for any size system. The
number of runs required in the block-crossed array designs are, in general, less than
those required by Taguchi’s crossed arrays and single orthogonal array designs.
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Appendix A. Orthogonality properties in block-crossed arrays

Assume that the expected response E(y) can be described by the model

E(y)= � +
n∑

i=1
�ixi +

m∑

j=1
�jzj +

∑

i; j

ijxizj +

∑

i; k
�ikxixk +

∑

j; l
�jlzjzl; (A.1)

where xis and zjs are design and environment factors, respectively. Denote the block-
crossed array as B= [B1; : : : ; Bn; Bn+1; : : : ; Bn+m], where the �rst n column vectors are
design factors and the remaining m column vectors are environment factors. If the
design obtained in Step 1 has resolution IV or higher (Case 1), it is easy to verify that
1. BTi Bj =0 for i; j6n; i 6= j or i6n and j¿n;
2. Bi (i6n) is orthogonal to all two-factor interactions;
3. interaction BiBj (i6n and j¿n) is orthogonal to Bk (k¿n);
4. interaction BiBj (i6n and j¿n) is orthogonal to other interactions.
If there exists a resolution III design in Step 1 (Case 2), we only need to verify that

Bj (j= q+1; : : : ; n) is orthogonal to all other main factors and two-factor interactions.
This is true because the last column in Z is orthogonal to all other columns in Z .
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