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This paper studies properties of the portmanteau statistic proposed by Box and Pierce [1] and its
modification of Ljung and Box [2]. We show that these portmanteau statistics are feasible analogs to
optimal tests for the class of statistics which are linear combinations of consistent estimates of serial
correlations. We find, however, that for sample sizes commonly encountered in practice, the efficiency
loss in power of portmanteau statistics relative to optimal tests can be substantial, although their size
properties are broadly comparable. Our results indicate that tests based on some other non-optimal
weighting schemes, including tests with optimal weights constructed from moderately misspecified
alternatives, deliver tests with better power than the Box–Pierce or Ljung–Box statistics.
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1. Introduction

Diagnostic checking is fundamental to time series analysis. The common practice of checking
whether the fitted model is adequate is to compute the portmanteau statistic of Box and Pierce
[1] or its modification of Ljung and Box [2], neither of which requires that a specific alternative
be given but rather contemplates general alternatives within several classes of models. By
leaving the alternatives so broad and unrestrictive, however, a good deal of power may often
be lost.

In this paper, we compare properties of portmanteau statistics of Box and Pierce [1] and
Ljung and Box [2] (henceforth Q and Q′ statistics) vis-à-vis the optimal tests. The optimal tests
are derived with optimality criterion as the maximum local power and the maximum Bahadur
approximate slope [3, 4] within a general class of statistics that are linear combinations of
consistent estimators of serial correlations. Although neither Q nor Q′ belongs to this class
literally, it is shown that Q and Q′ statistics are feasible analogs to optimal tests, which are
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attained by substituting sample serial correlations for population serial correlations in optimal
weight functions.

Let {Xt }n1 be a finite sample realization of the stationary real-valued process

Xt − µ =
∞∑

j=−∞
ψjZt−j , (1)

where {Zt } are uncorrelated identically distributed random variables with mean zero and finite
variance σ 2. The aforementioned {Xt } series may be residuals in regression analysis or they
may arise in a pure time series context. The null hypothesis of interest is that {Xt } form a
sequence of uncorrelated random variables.

Define the vector of sample serial correlations, r̂(q) = [r̂1, r̂2, . . . , r̂q]′, where r̂k is a con-
sistent estimator for the kth-order population serial correlation r̂k of {Xt }. The Q statistic can
be computed as Q(q) = n

∑q

i=1 r̂2
i , where n is the sample size and q is typically chosen to

be small relative to n. Under the null hypothesis of zero serial correlation, the asymptotic
distribution of Q is χ2. However, for relatively small samples, the actual significance levels
of Q are known to be considerably different from those predicted by asymptotic theory. A
simple modification proposed by Ljung and Box [2], Q′(q) = n(n + 2)

∑q

i=1(n − i)−1r̂2
i , is

more satisfactory in this respect [5, 6].
In section 2, optimal tests are derived and are contrasted to the portmanteau statistics for

the general problem of testing for zero serial correlation. In section 3, a simulation study is
used to compare finite sample size and power properties of portmanteau statistics vis-à-vis
optimal tests. Section 4 gives the conclusion.

2. Optimal tests

2.1 A synthesis

Consider a synthesis of statistics based on linear combinations of estimated serial correlations:

Tq,Dq
(r̂) ≡ D′

q r̂(q), (2)

where Dq = [d1, d2, . . . , dq]′ is a weight vector. To simplify the notation, denote Tq,Dq
(r̂)

as T when no confusion arises. Tests which use different (standardized) weights on serial
correlations of various lags have the same asymptotic distribution under the null hypothesis
but deliver different asymptotic power against various alternatives.

The test (2) can be implemented using the asymptotic distribution of the vector r̂(q). For
fixed q, it is possible to derive the asymptotic distribution of r̂(q) under appropriate regularity
conditions on the process {Xt }. One way to put assumptions on Xt is to have constraints on
the sequence {ψj } in equation (1). If we assume that

∞∑
j=−∞

|ψj | < ∞ and
∞∑

j=−∞
|j |ψ2

j < ∞, (3)

then we have [see, for example, Theorem 7.2.2., ref. 7]

r̂(q) ∼ N(r(q), n−1W), (4)

where r(q) = [r1, r2, . . . , rq]′ and W is the covariance matrix whose (i, j)-element is given
by Bartlett’s formula. For a time series (1) satisfying equation (3), we have

T ∼ N(D′
qr(q), n−1D′

qWDq). (5)
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Observing that if {Xt } is a sequence of uncorrelated identically distributed random variables,
the sample serial correlations will be nearly uncorrelated in large samples and hence, the
standardized T can be used as a test statistic for gauging serial correlation.

The asymptotic distributions of the standardized T under both null and alternative
hypotheses can be derived. Under the null hypothesis,

√
n(D′

qDq)−1T ∼ N(0, 1), (6)

whereas for a given alternative hypothesis,
√

n(D′
qDq)−1T ∼ N

(√
n(D′

qDq)−1(D′
qr(q)), (D′

qDq)
−1D′

qWDq

)
. (7)

Note that the condition (3) is satisfied by a broad class of time series including stationary
autoregressive and moving average (ARMA) processes, models widely used in time series
analysis. This condition can be relaxed at the expense of the assumption of the finite fourth
moment. Furthermore, the assumption of identical distributions of Zt ’s can be replaced by
appropriate finite moment conditions and weaker martingale conditions which permit the use
of a central limit theorem for non-identically distributed random variables [see, for example,
ref. 8].

We also note that the expressions for the asymptotic covariance of r̂(q) involve infinite sums.
A more convenient form of W for computational purposes can be derived using the results that
these sums can be interpreted (up to a constant factor) as the autocovariances corresponding
to the square of their spectral densities. In particular, the asymptotic distribution of r̂(q) of an
ARMA process can be expressed in terms of the autocovariance function of another ARMA
process, whose parameters are obtained from the parameters of the initial process by squaring
its autoregressive operator, moving average operator and the residual variance [9]. These
alternative expressions of W are useful in the simulation studies in section 3.

2.2 Optimal tests

The test T is consistent for any Dq , provided D′
qr(q) �= 0. We use both local and non-local

methods to compare asymptotic performance of the test (2) with different weight functions.
The local method considers the limiting relative efficiency of tests against a sequence of
alternatives. In the local approach, the sequence of alternatives gets arbitrarily close to the null
hypothesis in order to avoid forcing the power of tests to be nearly one. In contrast, the non-
local method examines the rate at which the logarithm of the asymptotic marginal significance
level of the test decreases as sample size increases, under a given alternative. Two approaches
give different insights and optimal tests.

We first focus on the local power analysis. Consider a local alternative hypothesis: n−1/2r(q).
The test with the local optimal power against this alternative is the test that maximizes

CL ≡ (D′
qr(q))2(D′

qWDq)
−1. (8)

Since we can multiply Dq by any scalar without changing the value of CL, we shall adopt the
normalization that D′

qr(q) = γ , where γ is a constant. Hence, by fixing q, maximizing CL is
equivalent to the following minimization problem:

min
D

: D′
qWDq

subject to: D′
qr(q) = γ.
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The solution of the above problem is γ (r(q)′W−1r(q))−1W−1r(q). Substituting this solution
for Dq , the test with optimal local power is based on

TL ≡
√

n[r(q)′W−2r(q)]−1r(q)′W−1r̂(q). (9)

As an alternative approach, the non-local method examines the approximate slope of a
test as in ref. [3]. Geweke [4] has shown that if the test statistic’s limiting distribution under
the null hypothesis is a χ2 distribution, then the approximate slope of the test equals the
probability limit of the statistic divided by sample size n. From equation (6) it follows that(√

n(D′
qDq)−1T

)2 ∼ χ2
1 under the null hypothesis. Hence, the approximate slope of the test

is limn→∞ n−1
(√

n(D′
qDq)−1T

)2
, which has the limit

CA ≡ (D′
qr(q))2(D′

qDq)
−1. (10)

Note that CA is an approximation of CL in equation (8) replacing W by the identity matrix.
Therefore, the approximate slope strategy yields a test focusing on maximizing the squared
mean and ignoring the variance factor of the asymptotic distribution of the test statistic. The
optimal weight based on the approximate slope criteria is ξr(q), where ξ is a non-zero constant.
The test with the maximum approximate slope is based on

TA ≡
√

n[r(q)′r(q)]−1r(q)′r̂(q). (11)

It should be noted that there is, in general, no uniformly, asymptotically most powerful
test for H0. The weight function of the test with optimal local power depends explicitly on
the serial correlations under the alternative; so too does that of the maximum approximate
slope test.

2.3 Some theoretical properties of optimal and portmanteau tests

The derived optimal tests in section 2.2 are useful to serve as benchmarks in evaluating proper-
ties of Q and Q′ statistics (see section 3 for more details on finite-sample power comparisons)
and provide an intuitively appealing interpretation of Q and Q′ statistics.

The Q and its finite-sample modification, Q′, can be viewed as feasible norms of the optimal
tests based on the data. In particular, by replacing the optimal weights in TA in equation (11)
using sample serial correlations, the squared TA becomes the Q statistic. The Q statistic
can also be constructed by approximating W with the identity matrix and then replacing the
optimal weights in TL in equation (9) using sample serial correlations.

Before comparing the power of Q and Q′ vis-à-vis optimal tests, we examine TL and TA in
some detail for two simple autocorrelation structures: AR(1) and MA(1) processes.

First, consider the AR(1) process: Xt = φXt−1 + Zt with |φ| < 1. Using results that r0 = 1
and rk = φ|k| for k = ±1, ±2, . . . , it can be verified algebraically that the diagonal element
of W has form

wii = φ2i

i∑
l=1

(φ−l − φl)2 + (φ−i − φi)2
∞∑

l=i+1

φ2l = (1 − φ2i )(1 + φ2)(1 − φ2)−1 − 2iφ2i .
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For i �= j , the (i, j)th element of W is

wij = φi+j

j∑
l=1

(φ−l − φl)2 + φi(φ−j − φj )

i∑
l=j+1

(1 − φ2l) + (φ−i − φi)(φ−j − φj )

∞∑
l=i+1

φ2l

= {(φ2 + 1) + (1 − φ2)(i − j)}(φi−j − φi+j )(1 − φ2)−1 − 2jφi+j .

Figure 1 presents the optimal weight functions of both TL and TA for several selected φ

values for sample size 50. For easy comparison, the weights are standardized by having a unit
(L2-) norm and the weighting coefficient of r̂1 non-negative.

Figure 1 shows that serial correlations with relatively small lags play more important roles
than those with relatively large lags in TA, whose weight on lag k, proportional to φ|k|, decays
rapidly as k increases. In contrast, the weights for TL are not necessarily, in general, a monotone
decreasing function of lag, as indicated by the cases of |φ| = 0.9 [figure 1(e) and (f)]. Note that
optimal weights of TL depend not only intimately on the magnitude of φ but also on its sign.
For example, the optimal weights alternate around zero when φ is negative; the fluctuation
becomes much more visible for alternatives with φ close to −1.

As in the AR(1) case, we can obtain a closed form for W for MA(1) alternative: Xt =
Zt − θZt−1. Specifically, it can be shown that for the MA(1) process, W = W1 + W2, where
W1 = (w

(1)
ij ) is a symmetric q × q matrix given below:

w
(1)
ij =




−5r2
1 + 4r4

1 , i = j = 1

−2r3
1 , i = 1, j = 2 or i = 2, j = 1

0, otherwise,

Figure 1. Weight functions of optimal tests for AR(1) processes.
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and W2 = (w
(2)
ij ), a Toeplitz matrix, by

w
(2)
ij =




1 + 2r2
1 , i = j

2r1, |i − j | = 1

r2
1 , |i − j | = 2

0, otherwise,

where r1 = −θ/(1 + θ2). The weights of TL and TA for the MA(1) alternatives with various
values of θ are shown in figure 2.

As shown in figure 2, for the MA(1) alternative hypothesis, optimal local weights do not cut
off after lag 1. Any other weight functions would make the resulting test statistics asymptoti-
cally inefficient under the local optimality criteria. The Bahadur approach delivers a different
weighting scheme for which TA puts non-zero weights only on the first-order sample serial
correlation regardless of the value of q.

Although one may expect that the (asymptotic) behaviours of Q or Q′ should be very
similar to those of optimal tests due to the close connection between their weight functions,
the two groups of tests have, however, remarkably different (asymptotic) power properties.
For example, the value of q has different implications on the power of tests. We note that
the optimality for tests TL and TA is established assuming that the lag parameter q is pre-
determined. If we allow q to vary, maximizing CL (or CA) may not be feasible with a finite
range of q for some alternatives. Since the optimal approximate slope will not decrease with q,
it becomes apparent that large values of q are preferred for TL and TA. We anticipate that under
a given alternative, inclusion of the serial correlations with higher lags in TL and TA should not,
in general, decrease the power of these tests (more finite-sample evidence is given in section 3).

In contrast, similar to other test statistics distributed asymptotically as χ2 (see ref. [10]
for discussion on specification tests based on generalized method of moments), the power

Figure 2. Weight functions of optimal tests for MA(1) processes.
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function of Q′ (or Q) depends on the lag parameter q in a more complicated way. For example,
it can be shown that although additional serial correlations are used in Q′ with higher values
of q, this does not necessarily imply that large values of q are generally more desirable
even asymptotically. Since W is non-singular, one can by means of a non-singular linear
transformation [11] express Q′ in the form

Q′ ∼ n

q∑
i=1

λiχ
2
1 (δ2

i ), (12)

where the λi’s are the characteristic roots of W , the δi’s are certain linear combinations
of components of r(q) and the χ2

1 (δ2
i )’s are independent χ2-variables with one degree of

freedom and non-centrality parameter δ2
i . From equation (12), we infer that increasing q has

two opposing effects: a tendency for power to increase as δ2
i tends to increase as q does; and

a tendency for power to decrease since the variance of
∑q

i=1 λiχ
2
1 (δ2

i )(=
∑q

i=1 λ2
i (2 + 4δ2

i ))

may increase with q. The extent to which these effects compensate for each other in practice
is difficult to predict.

Simulation is an obvious and useful way to proceed here.

3. Power comparison

Monte Carlo simulation experiments were carried out to examine finite sample performance
of the Q′ statistic in comparison to TL and TA (results on Q are omitted for brevity.) Due to
the unreliability of asymptotic theory under the null when qn−1 is large, we have chosen q to be
no more than 20% of the sample size, n, set to 100, 200 and 400. All simulations are based on
10,000 replications and performed using the R statistical programming environment (version
2.0.1). The critical values of all test statistics are empirically determined by simulation under
the IID Gaussian null.

Although the results obtained in the previous section apply to a broad class of time series,
for illustrative purposes, we will focus solely on ARMA models and report results only for
alternative hypotheses based on several selected model specifications, which are simple but
can reveal main aspects of the results in our analysis.

3.1 Portmanteau statistics vis-à-vis optimal tests based on correctly specified alternatives

The results in this subsection are based on the optimal tests resulting from use of the correctly
specified alternative. In the first set of Monte Carlo experiments, we consider alternative
hypotheses in which serial correlations at relatively high lags are not significant. Table 1
presents empirical powers of Q′ vis-à-vis TL and TA for six alternatives: AR(1), MA(1),
AR(2), MA(2), ARMA(1,1) and ARMA(1,2) with selected parameterizations. We also give
the ratios of the power of Q′ relative to those of optimal tests (quoted in percentages). The
results show that regardless of sample size, the test Q′ is dominated by both TL and TA in
terms of power for all alternatives considered. The relative efficiency loss of Q′ in power can
be considerable: as the case of 200 observations demonstrates, the power of the 5% Q′ test
against the AR(1) model is ∼70% relative to TA for q = 5, and falls to as low as 40% when q

is taken to be 40.
We note that although the relative efficiency loss of Q′ vis-à-vis TL and TA depends upon

the alternative hypothesis, the results seem to be consistent, at least qualitatively, across all
alternatives considered previously and many other low-order ARMA models (data not shown).
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Table 1. Empirical power of Q′ relative to that of TA for non-seasonal models. (Results are
quoted in percentages.)

Estimated size of nominal 5% test Estimated power of nominal 5% test

n q Q′ TL TA Q′ TL TA Q′/TL Q′/TA

AR(1) alternative: Xt = φXt−1 + Zt with φ = 0.2
100 2 4.80 4.36 4.36 37.02 42.40 45.81 87.31 80.81

5 5.11 4.36 4.36 26.86 42.40 45.31 63.35 59.28
10 6.08 4.36 4.36 22.27 42.40 45.29 52.52 49.17
20 7.29 4.36 4.36 20.71 42.40 45.29 48.84 45.73

200 2 5.05 5.27 5.27 69.76 76.74 77.88 90.90 89.57
5 5.23 5.27 5.27 54.41 76.74 77.40 70.90 70.30

10 5.73 5.27 5.27 43.31 76.74 77.40 56.44 55.96
20 6.42 5.27 5.27 35.04 76.74 77.40 45.66 45.27
40 7.92 5.27 5.27 30.57 76.74 77.40 39.84 39.50

400 2 5.01 4.76 4.76 95.51 97.31 97.41 98.15 98.05
5 4.78 4.76 4.76 88.97 97.31 97.39 91.43 91.35

10 4.66 4.76 4.76 79.20 97.31 97.39 81.39 81.32
20 5.16 4.76 4.76 66.39 97.31 97.39 68.23 68.17
40 6.32 4.76 4.76 54.93 97.31 97.39 56.45 56.40
80 7.62 4.76 4.76 46.38 97.31 97.39 47.66 47.62

MA(1) alternative: Xt = Zt − θZt−1 with θ = 0.2
100 2 5.26 4.89 4.89 39.66 46.86 49.98 84.64 79.35

5 5.12 4.89 4.89 28.23 45.82 49.98 61.61 56.48
10 5.94 4.89 4.89 22.62 45.83 49.98 49.36 45.26
20 7.37 4.89 4.89 20.50 45.83 49.98 44.73 41.02

200 2 4.73 4.45 4.45 71.73 79.24 80.00 90.52 89.66
5 5.04 4.45 4.45 55.22 78.24 80.00 70.58 69.03

10 5.56 4.45 4.45 42.88 78.25 80.00 54.80 53.60
20 6.34 4.45 4.45 33.89 78.25 80.00 43.31 42.36
40 7.77 4.45 4.45 29.20 78.25 80.00 37.32 36.50

400 2 4.74 4.81 4.81 95.54 97.38 97.75 98.11 97.74
5 4.93 4.81 4.81 88.07 97.28 97.75 90.53 90.10

10 5.23 4.81 4.81 77.67 97.29 97.75 79.83 79.46
20 5.71 4.81 4.81 63.38 97.29 97.75 65.15 64.84
40 6.80 4.81 4.81 50.98 97.29 97.75 52.40 52.15
80 8.04 4.81 4.81 43.50 97.29 97.75 44.71 44.50

ARMA(1,1) alternative: Xt = φXt−1 + Zt − θZt−1 with θ = 0.65 and θ = 0.5
100 2 4.90 4.76 4.76 32.61 39.83 40.75 81.87 80.02

5 5.21 4.76 4.76 26.77 40.30 42.01 66.43 63.72
10 6.17 4.76 4.76 22.56 40.40 41.00 55.84 55.02
20 7.42 4.76 4.76 20.88 40.42 40.85 51.66 51.11

200 2 4.83 4.88 4.88 60.03 67.92 69.24 88.38 86.70
5 5.41 4.88 4.88 51.48 69.16 70.73 74.44 72.78

10 5.38 4.88 4.88 42.17 69.23 70.04 60.91 60.21
20 6.60 4.88 4.88 36.05 69.29 69.94 52.03 51.54
40 8.13 4.88 4.88 31.67 69.29 69.94 45.71 45.28

400 2 5.04 5.18 5.18 90.16 93.78 94.02 96.14 95.89
5 5.19 5.18 5.18 84.84 94.03 94.53 90.23 89.75

10 5.26 5.18 5.18 77.16 94.08 94.41 82.02 81.73
20 5.77 5.18 5.18 67.23 94.07 94.38 71.47 71.23
40 6.87 5.18 5.18 56.88 94.07 94.38 60.47 60.27
80 8.41 5.18 5.18 49.36 94.07 94.38 52.47 52.30

AR(2) alternative: Xt = φXt−1 + φ2Xt−2 + Zt with θ = 0.15 and φ2 = −0.1
100 2 4.86 4.32 4.32 24.49 30.64 30.63 79.93 79.95

5 5.55 4.32 4.32 18.19 26.91 32.79 67.60 55.47
10 5.56 4.32 4.32 15.65 26.91 32.77 58.16 47.76
20 6.65 4.32 4.32 15.27 26.91 32.77 56.74 46.60

(continued)
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Table 1. Continued

Estimated size of nominal 5% test Estimated power of nominal 5% test

n q Q′ TL TA Q′ TL TA Q′/TL Q′/TA

200 2 5.16 4.70 4.70 51.62 62.52 62.53 82.57 82.55
5 5.22 4.70 4.70 36.20 59.55 63.13 60.79 57.34

10 5.47 4.70 4.70 27.58 59.55 63.13 46.31 43.69
20 6.25 4.70 4.70 22.18 59.55 63.13 37.25 35.13
40 7.79 4.70 4.70 20.75 59.55 63.13 34.84 32.87

400 2 4.94 5.18 5.18 85.81 92.07 92.15 93.20 93.12
5 4.85 5.18 5.18 70.86 91.06 91.78 77.82 77.21

10 5.51 5.18 5.18 55.50 91.06 91.76 60.95 60.48
20 5.51 5.18 5.18 42.68 91.06 91.77 46.87 46.51
40 6.09 5.18 5.18 33.37 91.06 91.77 36.65 36.36
80 7.87 5.18 5.18 29.50 91.06 91.77 32.40 32.15

MA(2) alternative: Xt = Zt − θ1Zt−1 − θ2Zt−2 with θ1 = −0.1 and θ2 = 0.15
100 2 4.99 4.38 4.38 27.87 34.11 36.43 81.71 76.50

5 5.11 4.38 4.38 19.31 25.40 36.43 76.02 53.01
10 6.15 4.38 4.38 16.56 24.34 36.43 68.04 45.46
20 7.63 4.38 4.38 15.92 24.35 36.43 65.38 43.70

200 2 4.80 4.60 4.60 57.16 66.48 68.37 85.98 83.60
5 4.88 4.60 4.60 40.29 61.75 68.37 65.25 58.93

10 5.48 4.60 4.60 30.48 60.96 68.37 50.00 44.58
20 6.28 4.60 4.60 24.47 60.94 68.37 40.15 35.79
40 7.40 4.60 4.60 23.38 60.94 68.37 38.37 34.20

400 2 5.00 4.95 4.95 88.87 93.87 94.05 94.67 94.49
5 5.06 4.95 4.95 75.85 93.04 94.05 81.52 80.65

10 5.23 4.95 4.95 61.61 92.80 94.05 66.39 65.51
20 5.71 4.95 4.95 47.84 92.80 94.05 51.55 50.87
40 6.46 4.95 4.95 37.79 92.80 94.05 40.72 40.18
80 7.84 4.95 4.95 33.11 92.80 94.05 35.68 35.20

ARMA(1,2) alternative: Xt = φXt−1 + Zt − θ1Zt−1 − θ2Zt−2 with θ = 0.4, θ1 = 0.3, θ2 = 0.2
100 2 4.61 4.78 4.78 32.62 41.43 42.83 78.74 76.16

5 5.05 4.78 4.78 26.01 42.37 49.51 61.39 52.53
10 5.72 4.78 4.78 21.68 43.20 49.69 50.19 43.63
20 6.72 4.78 4.78 19.87 43.37 49.71 45.82 39.97

200 2 5.09 4.97 4.97 63.31 73.61 74.65 86.01 84.81
5 5.17 4.97 4.97 52.42 75.88 79.38 69.08 66.04

10 5.60 4.97 4.97 40.49 76.32 79.40 53.05 50.99
20 6.14 4.97 4.97 32.39 76.37 79.40 42.41 40.79
40 7.61 4.97 4.97 28.80 76.36 79.40 37.72 36.27

400 2 4.97 4.87 4.87 93.66 96.71 96.82 96.85 96.74
5 5.06 4.87 4.87 88.05 97.13 97.71 90.65 90.11

10 5.43 4.87 4.87 77.21 97.33 97.72 79.33 79.01
20 5.75 4.87 4.87 63.32 97.32 97.72 65.06 64.80
40 6.56 4.87 4.87 50.14 97.32 97.72 51.52 51.31
80 8.20 4.87 4.87 42.98 97.32 97.72 44.16 43.98

The power of two optimal tests are comparable for all sample sizes regardless of the values of
q. In most cases, when q is taken to be relatively large compared with n, the power of optimal
tests do not decrease. However, insignificance of serial correlations at high lags causes low
power which, in turn, leads to substantial loss in relative efficiency of Q′. The results are
generally consistent with the asymptotic properties presented in section 2.3.

Table 1 also reports empirical sizes of the tests considered in order to assess whether the
disparity in power properties is compensated by favourable size properties for the Q′ test. The
results show that the estimated sizes of the optimal tests are very close to the nominal 5% level.
The estimated sizes of the Q′ tests were also close to the nominal level of 5%, particularly
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so for smaller values of q. At larger values of q, the size of the Q′ tests tended to exceed the
nominal level, but not to a serious extent. Most likely, the insignificance of serial correlations
at high lags is again responsible for the negative impact on empirical sizes for the Q′ tests for
larger values of q.

To gauge the efficiency of Q′ over the optimal tests when serial correlations for some
relatively large lags are significant, in the second set of Monte Carlo experiments, we con-
sider two multiplicative seasonal models: ARMA(0, 1) × ARMA(0, 1)4 and ARMA(0, 1) ×
ARMA(0, 1)12 processes. The results are reported in table 2. As in the case of non-seasonal
alternatives, TL and TA outperform the Q′ statistic. However, the power of Q′ and, hence,
its relative efficiency to the optimal tests do not, in general, decline monotonically with q.
For example, with a sample size of 200, the power of the 5% Q′ test starts at 6.30% when
q = 2 and the ARMA(0, 1) × ARMA(0, 1)4 alternative is considered (table 2). The power
rises to 55.52% at q = 5. As q is increased further, the power declines. Again, this rise and
fall in power with q is as anticipated because a test Q′ with q at least 4 is desirable to detect
the significant serial correlations in the alternative, but increased sampling variation of any
additional serial correlations leads to the decline in power. Table 2 reports similar results for
an ARMA(0, 1) × ARMA(0, 1)12 alternative. The power of Q′ falls first with q and then rises
after q ≥ 12. Overall, the relative efficiency of Q′ to optimal tests has the similar rise-and-fall

Table 2. Empirical power of Q′ relative to that of TA for seasonal models. (Results are quoted
in percentages.)

Estimated power of nominal 5% test

n q Q′ TL TA Q′/TL Q′/TA

ARMA(0, 1) × (0, 1)4 alternative: Xt = (1 − θB)(1 − 
B4)Zt with θ = −0.05 and 
 = 0.1
100 2 4.85 7.87 7.87 61.63 61.63

5 26.27 48.37 48.26 54.31 54.43
10 22.41 49.58 49.25 45.20 45.50
20 21.37 49.51 49.54 43.16 43.14

200 2 6.30 10.09 10.31 62.44 61.11
5 55.52 80.34 80.13 69.11 69.29

10 43.20 80.82 80.11 53.45 53.93
20 35.37 81.82 80.91 43.23 43.72
40 31.17 80.73 79.67 38.61 39.12

400 2 10.80 16.57 16.73 65.18 64.55
5 88.81 97.97 97.87 90.65 90.74

10 79.20 98.27 98.00 80.59 80.82
20 66.38 98.34 97.95 67.50 67.77
40 53.55 98.31 98.01 54.47 54.64
80 40.55 98.56 98.21 41.14 41.29

ARMA(0, 1) × (0, 1)12 alternative: Xt = (1 − θB)(1 − 
B12)Zt with θ = −0.05 and 
 = 0.1
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or fall-and-rise pattern as the power of Q′ does, depending primarily on the size of the highest
lag of the significant serial correlations relative to the value of q used. Empirical sizes of tests
are not reported in table 2 as the null hypothesis is the same as for table 1, so results would be
the same as those presented in table 1 up to simulation error.

Overall, the results, for both size and power, suggest that the Q′ tests perform best at small to
moderate values of q for alternative models of the type considered here. Obviously, for models
with serial correlation at relatively high lags, the value of q needs to be selected accordingly
to accommodate the significance of sample autocorrelations at high lags.

Results for tests at nominal levels 1% and 10% are qualitatively similar to those reported
for 5% tests, and so are not reported here.

3.2 Portmanteau statistics vis-à-vis optimal tests based on misspecified alternatives

In reality, the true underlying structure of {Xt } is rarely known. From a practical standpoint, a
more relevant comparison is how well Q′ performs relative to tests based on statistics resulting
from use of misspecified alternatives.

To investigate this issue, consider the situation in which the true alternative is the
ARMA(1, 1) process with (φ, θ) = (0.65, 0.5), but one uses the optimal test based on an
AR(1) model, Xt = φ∗Xt−1 + Z∗

t , denoted as T ∗
A to distinguish it from TA. This kind of mis-

specification is common in practice. Since the first-order autocorrelation of the misspecified
AR(1) model is given by (φ − θ)(1 − φθ)/(1 + θ2 − 2φθ) = 0.16875, which is positive, it
is reasonable to consider T ∗

A based on a positive pre-determined φ∗. Negative values of φ∗ are
unlikely to be preferred in practice. We consider this value of φ∗ as well as the values 0.25,
0.5 and 0.75 to exemplify possible realistic values in its full positive range.

Table 3 reports the power of Q′ relative to that of T ∗
A for sample sizes of 100, 200 and 400.

As for tables 1 and 2, we present results for 5% tests only. Again, all simulations are based on
10,000 replications.

As far as power is concerned, the test TA clearly dominates Q′ by substantial margins,
especially when q is relatively large. Observe that although the power of TA depends on the

Table 3. Empirical power of Q′ relative to that of T ∗
A based on misspecified alternatives for

nominal 5% tests. (Results are quoted in percentages.)

φ∗ = 0.16875 φ∗ = 0.25 φ∗ = 0.5 φ∗ = 0.75

n q Q′ T ∗
A Q′/T ∗

A T ∗
A Q′/T ∗

A T ∗
A Q′/T ∗

A T ∗
A Q′/T ∗

A

100 2 33.27 37.10 89.68 38.79 85.77 41.04 81.07 40.90 81.34
5 26.33 37.55 70.12 39.77 66.21 43.38 60.70 40.86 64.44

10 22.64 37.54 60.31 39.77 56.93 43.24 52.36 37.94 59.67
20 21.25 37.54 56.61 39.77 53.43 43.25 49.13 37.10 57.28

200 2 60.13 64.81 92.78 66.90 89.88 68.96 87.20 68.96 87.20
5 52.35 65.58 79.83 68.04 76.94 71.93 72.78 69.31 75.53

10 43.41 65.59 66.18 68.07 63.77 71.94 60.34 66.84 64.95
20 36.84 65.59 56.17 68.07 54.12 71.90 51.24 66.12 55.72
40 32.05 65.59 48.86 68.07 47.08 71.90 44.58 66.06 48.52

400 2 89.95 91.87 97.91 92.91 96.81 93.95 95.74 93.58 96.12
5 84.54 92.25 91.64 93.58 90.34 94.90 89.08 93.00 90.90

10 76.34 92.25 82.75 93.58 81.58 94.98 80.37 91.87 83.10
20 66.72 92.25 72.33 93.58 71.30 94.99 70.24 91.68 72.77
40 56.65 92.25 61.41 93.58 60.54 94.99 59.64 91.67 61.80
80 49.44 92.25 53.59 93.58 52.83 94.99 52.05 91.67 53.93

The true model is the ARMA(1,1) process: Xt = 0.65Xt−1 − 0.5Zt−1 + Zt . T ∗
A is based on the AR(1) process:

Xt = φ∗Xt−1 + Zt .
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pre-determined AR coefficient in the misspecified AR(1) process, the difference in power
of T ∗

A s with different φ∗’s is small. In fact, the optimal approximate slopes of T ∗
A compare

favorably with that of TA. For example, when q = 10, the optimal approximate slopes of T ∗
A

for the values of φ∗, 0.25, 0.5 and 0.75, are 0.038, 0.047 and 0.048, respectively, each of which
is just slightly lower than CA, 0.049.

The previously mentioned results hold generally for T ∗
A based on other moderately mis-

specified alternatives, unless the misspecified alternative has a considerably different corre-
lation structure to that of the true underlying process. In such a case, T ∗

A may be insensitive
against the alternative in comparison with the Q′ statistic.

4. Concluding remarks

A fundamental distinction between Box-Pierce and Ljung-Box portmanteau statistics and
optimal tests lies in whether the weighting scheme of the serial correlations in forming the
test statistic is exactly known or has to be estimated from data. Our results indicate that the
efficiency loss in estimating the weight function can be substantial. In particular, caution must
be exercised when q is large relative to the sample size, since the influence of significant
serial correlations at low lags may be diluted by serial correlations at high lags which are not
significant but subject to sampling variation. The results emphasize dramatically the fact that
portmanteau statistics may not achieve a high level of success against many commonly used
alternatives and a more sensible testing strategy can often deliver much higher power than
portmanteau statistics do. Nevertheless, the portmanteau tests have size properties similar to
those of the optimal tests, though the lack of power remains a concern.

Although optimal tests, resulting from use of correctly or even some incorrectly specified
alternatives, may have advantages over the portmanteau tests against some alternatives, there
are of course other situations (for example, when the form of the alternative is completely
vague or when a whole class of models are of interest) in which portmanteau statistics may
possess more desirable properties. Nevertheless, the results in this paper suggest that the
optimal tests may provide a useful basis for evaluating the power performance of portmanteau
statistics. In cases that the loss of efficiency in power of portmanteau statistics is substantial
for the most relevant alternative, empirical researchers should consider the use of tests for the
specified alternative(s) rather than portmanteau statistics often applied.
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