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In this article we investigate the asymptotic and finite-sample properties of predictors of regression models with
autocorrelated errors. We prove new theorems associated with the predictive efficiency of generalized
least squares (GLS) and incorrectly structured GLS predictors. We also establish the form associated with their
predictive mean squared errors as well as the magnitude of these errors relative to each other and to
those generated from the ordinary least squares (OLS) predictor. A large simulation study is used to evaluate
the finite-sample performance of forecasts generated from models using different corrections for the serial
correlation.
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1 INTRODUCTION

Since Cochrane and Orcutt (1949) and Durbin and Watson (1950) developed an approximate

transformation to deal with and test for autoregressive disturbances of order 1, we have

witnessed a plethora of studies dealing with the problems of serial correlation in regression

models. Chaudhury et al. (1999), among others, have documented the evolution of

approximate=exact transformations to deal with more complex serial correlation structures,

as well as the development of new, more powerful estimation methods that have occurred

in the last 50 years. When disturbances exhibit serial correlation, least squares will yield

unbiased, but inefficient estimators of parameters of the model, thus invalidating all tests

of significance. In addition, these estimated regression coefficients will have larger sampling

variances than other estimators such as generalized least squares (GLS) that deal explicitly

with the autocorrelation in the residuals. Furthermore, forecasts generated from such models

can be seriously inefficient, not only because of the inefficiency of the parameter estimators,

but also because the error between the fitted and actual value in the last observation is apt to

persist into the actual forecast interval.
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With a few exceptions, most of the studies that have been conducted on this topic assume

that the error covariance matrix O from the regression model,

Y ¼ Xbþ e, (1)

where Y is a (T � 1) vector of observations on a dependent variable, X is a (T � k) design

matrix, and e is a random vector with E(e) ¼ 0 and E(ee0) ¼ s2O ¼ {g(i� j)}Ti, j¼1, is either

known or could be estimated consistently from data. Until recently, of the very few studies

that considered the properties of estimators, or of the forecasts when the structure of O was

incorrectly identified, or when its parameters were inefficiently estimated, most dealt with or

depended on asymptotic results (Goldberger, 1962; Amemiya, 1973; Engle, 1974). Koreisha

and Fang (2001), on the other hand, compared the finite-sample efficiencies of ordinary least

squares (OLS) and GLS vis-à-vis incorrect GLS (IGLS) estimators, i.e. estimators based on

incorrectly identified O, and established theoretical efficiency bounds for IGLS relative to

GLS and OLS. They found that GLS estimation based on autoregressive representations

of autoregressive-moving average (ARMA) disturbances yielded more efficient estimates

than OLS particularly when the order of the autoregression was set near [
ffiffiffiffi
T

p
=2], and that

the differences in estimation efficiency between estimated IGLS and GLS were small.

In this article, we will augment the work of Koreisha and Fang (2001) by investigating the

impact that estimated IGLS corrections may have on the forecasting performance of regres-

sion models with serial correlation. This work differs from others dealing with regression

forecasts with autocorrelated disturbances such as Armstrong (1978) and Dielman (1985)

in that it does not assume that the form of the autocorrelation is known (AR(1) in those

cases) a priori. The main issue here is not determining which estimation procedure yields

the best forecasts when O is known. Our goal is to show, both theoretically and with simu-

lated data, that there exists a certain class of estimators based on incorrectly identified

residual autocorrelation structures that for finite samples can yield as good, and more

often, better forecasts than those generated from OLS or from GLS using the correct form

of the residual autocorrelation structure.

The article is organized as follows: in Section 2, we describe the predictors used in this

study to generate the forecasts and prove new theorems that extend existing results on pre-

diction mean squared errors (PMSEs). In Section 3, we present results from an exhaustive

Monte-Carlo study to contrast the finite-sample forecasting performance of models using

GLS (correct and incorrect) with those using OLS estimators. In Section 4, we offer some

concluding remarks.

2 FORECASTING EFFICIENCY

Estimates for forecasts generated at time T for h future observations, Y � ¼ ( yTþh,

yTþh�1, . . . , yTþ1)0, given by

Y � ¼ X �bþ e�, (2)

where X � is the design matrix of future exogenous variables with dimension (h� k) and e� is

an (h� 1) vector of future correlated disturbances, can be derived, provided some assump-

tions are made about b, future values of the exogenous variables, and the variance–covariance
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matrix of the past and future disturbances, which can be depicted by the following partition-

ing scheme:

E
e
e�

� �
(e0e�0)

� �
¼ s2 O V

V 0 O�

� �
� s2G: (3)

2.1 Predictors with b, C, and X� Known

If b, G, and future values of the exogenous variables are known, then like in Goldberger

(1962) the minimum mean squared predictor for Y �, Y �
(I ), can be written as the sum of a

nonstochastic component based on future values of exogenous variables and of a stochastic

component based on future disturbances, namely,

Y �
(I ) ¼ X �bþ V 0O�1(Y � Xb), (4)

and its PMSE is given by

PMSE(Y �
(I )) ¼ E[(Y � � Y �

(I ))(Y
� � Y �

(I ))
0] ¼ O�

� V 0O�1V , (5)

assuming that s2 ¼ 1 (see also Harville, 1997, p. 456).

Ignoring altogether the correlation between past and future disturbances yields another set

of predictors,

Y �
(II ) ¼ X �b, (6)

with PMSE(Y �
(II )) ¼ O�, which is strictly greater than PMSE(Y �

(I )) if V 6¼ 0, since O is

positive definite.

It is also possible to derive similar expressions for predictors based on finite autoregressive

representations (of order ~pp) of the disturbance process. Since only the last ~pp observations will

be involved in the construction of the forecasts, it will be easier to derive expressions for this

set of predictors, Y �
(III ), by focusing only on this subset of observations and re-expressing

Eq. (1) as,

Yt ¼ X tbþ Et (7)

and

Et ¼ LEt�1 þ U t, (8)

where Y t ¼ ( yt, yt�1, . . . , yt�~ppþ1)0, Et ¼ (et, et�1, . . . , et�~ppþ1)0 and U t ¼ (ut, 0, . . . , 0)0 are all

~pp-dimensional vectors and X t and L are ~pp� k and ~pp� ~pp matrices, respectively, defined as:

X t ¼

x1,t x2,t � � � xk,t

x1,t�1 x2,t�1 � � � xk,t�1

..

. ..
. . .

. ..
.

x1,t�~ppþ1 x2,t�~ppþ1 � � � xk,t�~ppþ1

0
BBB@

1
CCCA and L ¼

p1 p2 � � � p~pp�1 p~pp

1 0 � � � 0 0

0 1 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � 1 0

0
BBBB@

1
CCCCA:
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As can be seen, only the first equation in this system has been modified: et has been rewritten

in terms of its AR( ~pp) representation, namely, et ¼
P~pp

i¼1 piet�i þ ut. The residual ut from this

equation will not necessarily be white noise, unless et follows an AR(l) (l � ~pp) process.

Successive substitution of h past values of et in Eq. (8) yields

Et ¼
Xh�1

j¼0

Lj
U t�j þ Lh

Et�h: (9)

Thus, substituting Eq. (9) into Eq. (7) for t ¼ T þ h gives rise to the set of equations,

YTþh ¼ XTþhbþ ETþh ¼ XTþhbþ
Xh�1

j¼0

Lj
UTþh�j þ Lh

ET

¼
Xh�1

j¼0

Lj
UTþh�j þ XTþhbþ Lh(YT � XTb),

which characterize the values of Y �
(III ), namely

Y �
(III ) ¼ X �bþ t0(YT � XTb), (10)

where t0 contains the first h rows of Lh. Note that the exclusion of the first term in Eq. (10)

from Y �
(III ) is what primarily differentiates this predictor from Y �

(I ). Its influence is presumed to

be relatively small because for sufficiently large ~pp, the AR( ~pp) approximation should ade-

quately depict stationary processes generating the serial correlation (see, for example,

Berk, 1974; Bhansali, 1978).

If R0 � (t0, O0), where O
0 is the null matrix of dimension h� (T � ~pp), then, Y �

(III ) can be

rewritten as

Y �
(III ) ¼ X �bþ R0(Y � Xb), (11)

since the second term depends on all the available observations up to time T (i.e. X and Y).

From Eqs. (1)–(3) it can be shown that

PMSE(Y �
(III )) ¼ O�

þ R0OR� V 0R� R0V : (12)

We summarize these results in the form of a theorem.

THEOREM 1 If b, G and future values of the exogenous variables are known, then the

predictor based on AR( ~pp) correction of the serial correlation is given by

Y �
(III ) ¼ X �bþ R0(Y � Xb)

and

PMSE(Y �
(III )) ¼ O�

þ R0OR� V 0R� R0V :
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Note that Y �
(III ) will be less efficient than Y �

(I ), unless et follows an AR(l) process with

l � ~pp. When et follows an AR process, R0 ¼ V 0O�1 (Baillie, 1979), and consequently,

PMSE(Y �
(III )) ¼ PMSE(Y �

(I )) by Eqs. (5) and (12). Hence, we establish the following corollary.

COROLLARY 1 If b, G and future values of the exogenous variables are known, then

PMSE( y�(III )(T þ h)) � PMSE( y�(I )(T þ h)),

where y�(III )(T þ h) and y�(I )(T þ h) are predictors of yTþh at time T based on Y �
(III ) and Y �

(I ),

respectively. The equality holds if et follows an AR(l) process, where l � ~pp.

The relative magnitude of the predictive efficiencies between PMSE(Y �
(II)) and PMSE(Y �

(III ))

depends on the correlation structure of the disturbance as well as ~pp and h. The following

corollary gives the necessary and sufficient condition for PMSE( y�(III )(T þ h)) to be less

than or equal to PMSE( y�(II)(T þ h)), where y�(II)(T þ h) is the predictor of yTþh at time T

based on Y �
(II).

COROLLARY 2 If b, G and future values of the exogenous variables are known, then

PMSE( y�(III )(T þ h)) � PMSE( y�(II )(T þ h))

if and only if mini(bi=wi) � 1=2 (wi 6¼ 0), where bi is the ith element of the vector

B ¼ U0�1 ~VV , wi is the ith element of the vector W ¼ UZ, and ~VV 0 ¼ (g(h), g(hþ 1), . . . , g(hþ

~pp� 1)); Z0 is the first row of Lh; and U is a nonsingular unitary matrix such that

U0U ¼ {g(i� j)}
~pp
i, j¼1.

Proof See Appendix.

Noting that R0OR and V 0R are functions of pis and the autocorrelation function of e, g(�),

we can re-express Corollary 2 in a more convenient form for computational purposes.

COROLLARY 3 If b, G and future values of the exogenous variables are known, then

PMSE( y�(III )(T þ h)) � PMSE( y�(II )(T þ h))

if and only if D �
P~pp

i¼1

P~pp
j¼1 g(i� j)p(h)

i p(h)
j � 2

P~pp
i¼1 g(hþ i� 1)p(h)

i �0, where p(h)
l is the

lth element of the first row of Lh.

Proof See Appendix.

2.2 Predictors with Estimated Parameters

Of greater practical value are predictors generated from estimated values of b and L. Such

predictors and their properties have been investigated by Goldberger (1962), Yamamoto

(1979), and Baillie (1979) among others, and can be developed further using some of the

results associated with Y �
(m), m ¼ {I , II , III} discussed in Section 2.1.

Assuming first that G is known, it is possible to develop a general class of linear predictors

based on different estimates for b. The theorem below specifies the form of these predictors

and their corresponding PMSEs.
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THEOREM 2 If G and future values of the exogenous variables are known, the predictor

ŶY � ¼ X �b̂bþ C
0(Y � X b̂b), (13)

where C0 is an (h� T ) matrix and b̂b ¼ (X 0X�1X )�1X 0X�1Y, has a prediction mean squared

error given by

PMSE(ŶY �) ¼ O�
þ DOD0 � DV � V 0D0, (14)

where D ¼ X �Aþ C
0(I � XA) with A ¼ (X 0X�1X )�1X 0X�1.

Proof See Appendix.

As can be easily seen, setting C ¼ 0 and X ¼ I defines the OLS predictor ŶY �
OLS. Its prediction

mean squared error is given by

PMSE(ŶY �
OLS) ¼ O�

þ X �(X 0X )�1X 0X (X 0X )�1 � X �(X 0X )�1X 0V � V 0X (X 0X )�1X �0: (15)

Moreover, if X ¼ O and C
0
¼ V 0O�1, then ŶY � becomes the GLS predictor ŶY �

GLS,

which Goldberger (1962) proved was the best linear unbiased predictor (BLUP) for Y �; and

furthermore,

PMSE(ŶY �
GLS) ¼ O�

þ X �(XO�1X �)�1X �0 � V 0(O�1
� O�1X (XO�1X �)�1X 0O�1)V

� X �(XO�1X �)�1X 0O�1V � V 0O�1X (XO�1X �)�1X �0:

(see also Judge et al., 1985, p. 316) We will refer to ŶY �
AR( ~pp) as the predictor based on the

finite autoregressive representation of the serial correlation structure if C
0
¼ R0 and X ¼ S,

where S is the covariance matrix of the ~ppth order autoregressive representation of the

disturbance.

If G has to be estimated along with b, then estimates of the presample disturbances will be

functions of estimated parameters. Consequently, results such as those in Theorem 2 will not

reflect all the uncertainty in the predictions. Under these circumstances, the derivations for

PMSEs become more involved, requiring asymptotic approximations.

Assuming that the serial correlation followed an AR( p) process, Baillie (1979) considered

the case for which b and matrices in Eq. (3) were estimated simultaneously using the

maximum likelihood procedures. Applying a result in Pierce (1971) dealing with asymptotic

properties of maximum likelihood estimators, he was able to obtain the asymptotic PMSE

(APMSE) for Goldberger’s (1962) predictor based on estimated b as well as G. Yamamoto

(1979) derived similar results for several other predictors assuming that the disturbances

followed an AR(1) process.

Now consider the predictor

^̂
YŶYY � � X � ^̂bb̂bbþ ĈC

0(Y � X
^̂bb̂bb), (16)

where
^̂bb̂bb ¼ (X 0X̂X�1X )�1X 0X̂X�1Y , X̂X and ĈC are X and C with elements replaced by their esti-

mates, respectively. Note that

^̂
YŶYY � � Y � ¼ X � ^̂bb̂bbþ ĈC

0(Y � X
^̂bb̂bb) � Y �,

630 YUE FANG AND S. G. KOREISHA



which can also be expressed as a sum of three components, namely,

^̂
YŶYY � � Y � ¼ X �(

^̂bb̂bb� b) þ (ĈC0 � C
0)(Y � X

^̂bb̂bb) þ (C0e� e�): (17)

The first two are essentially estimation errors associated with b and C
0, respectively, while

the third captures the uncertainty associated with future disturbances. Under some mild

assumptions, the estimator
^̂bb̂bb can be shown to be consistent, so the autocovariance function

of e can be estimated using residuals

êet ¼ yt � wt
^̂bb̂bb, t ¼ 1, 2, . . . , T ,

where wt is the tth column of the matrix X. Thus,

THEOREM 3 If X is nonstochastic and satisfies the assumptions:

(a) the regressors (columns of X ) are linearly independent,

(b) limT!1 (T�1X 0X ) finite and nonsingular, and

(c) if plimT!1 T�1X 0X̂X�1ÔO�1X̂X�1X is finite and nonsingular and plimT!1 T�1�

X 0X̂X�1ÔO�1U0e ¼ 0, where U0 is a nonsingular unitary matrix such that U0
0U0 ¼

{g(i� j)}Ti, j¼1, then

(1)
^̂bb̂bb� b ¼ O(T�1=2) and

(2) ĝgêe(l) � g(l) ¼ O(T�1), where ĝgêe(l) ¼ T�1
PT�l

t¼1 êet êetþl.

Proof See Appendix.

Similar results to Theorem 3 also hold even if the regressor matrix X is stochastic, but the

underlying assumptions in such a case are more complicated and restrictive. See, for example,

Schmidt (1976) for discussions on general issues regarding stochastic regressors.

If b is estimated consistently, then, as the sample size increases, the first component of

Eq. (17) converges to zero. Similarly since C is a function of G, if the parameters of the distur-

bance process can be estimated consistently from data, then the second term also converges

to zero as the sample size increases. This, however, will not be the case for the third term. Its

variance, depending on C, can be shown to be identical to PMSE(Y �
(m)), m ¼ I , II , or III.

Thus, based on the fact that the PMSE(
^̂
YŶYY �) is primarily dominated by (C0e� e�), it is possible

to derive an asymptotic expression for the PMSE of
^̂
YŶYY �, which we state below as a new

theorem.

THEOREM 4 If future values of the exogenous variables are known and both b and G (and

hence also C) are estimated consistently, then as T ! 1,

APMSE(
^̂
YŶYY �) ¼ O�

þ C
0OC � V 0C � C

0V :

Proof See Appendix.

In addition, let
^̂
YŶYY
�

EGLS and
^̂
YŶYY
�

EAR( ~pp) be, respectively, the GLS predictor using the correct

serial correlation structure and the IGLS predictor with AR( ~pp) correction generated from

Eq. (16) using estimated b and G. Then we have,
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COROLLARY 4 If future values of the exogenous variables are known and both b and G (and

hence also C) are estimated consistently, then

� APMSE(
^̂
YŶYY
�

EGLS) ¼ PMSE(Y �
(I )) ¼ O�

� V 0O�1V ,

� APMSE(
^̂
YŶYY
�

OLS) ¼ PMSE(Y �
(II )) ¼ O�, and

� APMSE(
^̂
YŶYYEAR(~pp)) ¼ PMSE(Y �

(III )) ¼ O�
þ R0OR� V 0R� R0V .

Furthermore,

APMSE( ^̂yŷyy�EAR( ~pp)(T þ h)) � APMSE( ^̂yŷyy�EGLS(T þ h)),

and if D �
P~pp

i¼1

P~pp
j¼1 g(i� j)p(h)

i p(h)
j � 2

P~pp
i¼1 g(hþ i� 1)p(h)

i � 0 (p(h)
l is defined in

Corollary 3), then

APMSE( ^̂yŷyy�EAR( ~pp)(T þ h)) � APMSE( ^̂yŷyy�OLS(T þ h)),

where ^̂yŷyy�EAR( ~pp)(T þ h), ^̂yŷyy�EGLS(T þ h) and ^̂yŷyy�OLS(T þ h) are predictors of yTþh at time T based

on
^̂
YŶYY
�

EAR( ~pp),
^̂
YŶYY
�

EGLS and
^̂
YŶYY
�

OLS, respectively.

We present below two examples operationalizing the condition on D for which

APMSE( ^̂yŷyy�EAR( ~pp)(T þ h)) will be less than APMSE( ^̂yŷyy�OLS(T þ h)). Finite-sample results for

many other structures will be presented in Section 3.

Example 1 Assume that et follows an ARMA(1, 1) process, et � f1et�1 ¼ at � y1at�1 with

s2
a ¼ 1. Applying Corollary 4,

APMSE( ^̂yŷyy�EAR( ~pp)(T þ h)) � APMSE( ^̂yŷyy�OLS(T þ h)) if and only if D � 0:

Since p1 ¼ g(1))=(g(0) and from Corollary 3, if ~pp ¼ 1 and h ¼ 1, then

D~pp¼1,h¼1 ¼ g(0)p2
1 � 2g(1)p1 ¼ �

g2(1)

g(0)
� 0,

where g(0) ¼ (1 þ y2
1 � 2f1y1)=(1 � f2

1) and g(1) ¼ (f1 � y1)(1 � f1y1)=(1 � f2
1). Note

that D~pp¼1,h¼1 is always less than zero unless f1 ¼ y1 which is effectively the parameterization

of white noise error process. We also note that the magnitude of D~pp¼1,h¼1 depends on the

values of f1 and y1, as shown in Figure 1(a).

If ~pp ¼ 1 but h ¼ 2, then

D~pp¼1,h¼2 ¼ g(0)(p(2)
1 )2 � 2g(2)p(2)

1 ¼ �
g2(1)

g3(0)
(f2

1g
2(0) � y2

1),

which is also nonpositive unless jy1=f1j > g(0). When jy1=f1j > g(0), et can be viewed

approximately as an MA(1) process. In such a case, two-step-ahead forecasts based on the

AR(1) correction are not efficient (see Fig. 1(b)).
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Example 2 Suppose that et follows an MA(2) process, et ¼ at � y1at�1 � y2at�2 with

s2
a ¼ 1. Again, if h ¼ 1 and ~pp ¼ 1, using results in Corollary 3, we have

D~pp¼1,h¼1 ¼ g(0)p2
1 � 2g(1)p1 ¼ �

g2(1)

g(0)
� 0,

where g(0) ¼ (1 þ y2
1 þ y2

2) and g(1) ¼ �y1(1 � y2). For MA(2) processes, D~pp¼1,h¼1 is

strictly less than zero unless y1 ¼ 0. As we increase ~pp from 1 to 2,

D~pp¼2,h¼1 ¼ g(0)[p2
1 þ p2

2] þ 2g(1)p1p2 � 2[g(1)p1 þ g(2)p2]

¼ g�2(0)[g2(1)(2g(2) � g(0)) � g2(2)g(0)]:

Since 2g(2) � g(0) ¼ �(1 þ y2)2 � y2
1 � 0, D ~pp¼2,h¼1 is less than or equal to zero. The abso-

lute values of both D~pp¼2,h¼1 and D ~pp¼1,h¼1 depend on the values of y1 and y2 (see Fig. 2).

Long-term forecasts play a vital role in the development of plans and formulation of stra-

tegies in all organizations. Selection of the appropriate set of numbers to be used is often

based on performance measures applied to figures generated by different forecasting methods.

The following theorem, however, shows that there is not much to be gained in terms of

long-term predictive efficiency by modeling the correlation structure of the disturbances.

THEOREM 5 If future values of the exogenous variables are known and both b and G are

estimated consistently, then

lim
h!1

APMSE( ^̂yŷyy�EGLS(T þ h)) ¼ lim
h!1

APMSE( ^̂yŷyy�OLS(T þ h))¼ lim
h!1

APMSE( ^̂yŷyy�EAR( ~pp)(T þ h)),

where ^̂yŷyy�EGLS(T þ h), ^̂yŷyy�OLS(T þ h), and ^̂yŷyy�EAR( ~pp)(T þ h) are predictors of yTþh at time T based

on
^̂
YŶYY
�

EGLS,
^̂
YŶYY
�

OLS, and
^̂
YŶYY
�

EAR( ~pp), respectively.

Proof See Appendix.

FIGURE 1 D for ARMA(1, 1) error processes: (a) ~pp ¼ 1 and h ¼ 1; (b) ~pp ¼ 1 and h ¼ 2.
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3 SIMULATION RESULTS

In this section, we will contrast the forecast performance of IGLS methods applied on serially

correlated regression models relative to those obtained from OLS and GLS procedures. All

comparisons will be made on the basis of estimated parameter values. Here we will assume

that the serially correlated disturbances e in Eq. (1) follow an ARMA process:

F(B)et ¼ Y(B)at, (18)

where F(B) and Y(B) are finite polynomials of orders p and q, respectively, in the back shift

operator B, such that B jwt ¼ wt�j, and {at} is a Gaussian white noise process with variance

s2
a. We say that process (18) is both stationary and invertible if the roots of the characteristic

equations F(B) ¼ 0 and Y(B) ¼ 0 are outside the unit circle. Stationary and invertible

ARMA( p, q) models can also be expressed as either infinite autoregressions, P(B)et ¼ at
or infinite moving averages, et ¼ c(B)at. In practice, however, such representations may

be approximated by processes of relatively low order because the coefficients in P(B) and

C(B) may be effectively zero beyond some finite lag.

We will focus solely on AR( ~pp) GLS corrections for disturbances generated by mixed

ARMA( p, q) processes since they are probably the most widely used ones by practitioners,

at least based on textbook coverage and implementation in statistical packages.

First, we generated, for sample sizes of 50, 100, and 200 observations, 1000 realizations

for each of a variety of stationary and invertible Gaussian ARMA(p, q) structures with vary-

ing parameter values as the residuals of a regression model with one exogenous variable gen-

erated by an AR(1) process. (To minimize initial value effects, we generated (T þ 100)

observations, and only the latter T observations were used in simulations.) The parameter

values for the residual ARMA structures were chosen to not only conform with other pre-

viously published studies such as Engle (1974), Pukkila et al. (1990), Zinde-Walsh and

Galbraith (1991), and Koreisha and Fang (2001), but also to provide a representative set

of examples of possible autocorrelated error structures in regression models. All residual

structures were simulated using the SAS=ETS ARIMA Procedure.

FIGURE 2 D for MA(2) error processes (a) ~pp ¼ 1 and h ¼ 1; (b) ~pp ¼ 2 and h ¼ 1.
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Then we created the regression model,

yt ¼ b0 þ b1xt þ et, (19)

where the generating process for the exogenous variable xt followed an AR(1) process,

(1 � jB)xt ¼ vt, with vt 	 IN (0, 1), and E(et, vs) ¼ 0, 8t 6¼ s, and j ¼ {0:0, 0:5, 1:0}. For

each sample size, only one set of random numbers was generated for each of the AR(1)

model structures of the exogenous variable. Breusch (1980) has shown that for a fixed

regressor the distribution of (
^̂bb̂bbEGLS � b)=s does not depend on b and s2. In addition, the

result also holds if the covariance matrix is misspecified. This implies that in simulation

studies, only one point in the parameter space (b, s2) needs to be considered for estimated

IGLS (EIGLS). For illustrative purposes, we take b0 ¼ 2:0, b1 ¼ 0:5, and s2 ¼ 1 in our

simulations.

Ten additional observations were generated for each sample size in order to evaluate the

forecast performance of all methods. The relative predictive efficiencies among estimation

methods based on mean squared error,

x̂xi=j(T þ h) �
E( ^̂yŷyy�(i)(T þ h) � yTþh)2

E( ^̂yŷyy�( j)(T þ h) � yTþh)
2

, i, j ¼ {OLS, EGLS, EIGLS} and i 6¼ j, (20)

where ^̂yŷyy�(m)(T þ h) represents the forecasted value based on method m at the time T þ h, yTþh is

the actual generated value atT þ h, was calculated for four forecast horizons, h ¼ {1, 2, 5, 10}.

A ratio less than 1 indicates that forecasts obtained from method i in Eq. (20) are more efficient

than those generated from method j.

Tables I–V contrast selected predictive relative mean squared errors efficiencies among

OLS and 4 GLS procedures: the GLS based on the correct residual model structures but

with estimated ARMA coefficients (denoted as EGLS and to be considered as the perfor-

mance benchmark); the GLS based on AR(1) correction with an estimated AR coefficient

(denoted as EAR(1)); and two other EAR( ~pp) estimates with lags ~pp equal to the closest integer

part of
ffiffiffiffi
T

p
=2 and

ffiffiffiffi
T

p
, respectively. Estimates for the AR parameters used in EAR( ~pp) correc-

tion were obtained using unconditional least squares, also referred to as nonlinear least

squares (Spitzer, 1979). To provide an idea of the magnitude of the actual PMSE, we also

included in these tables the actual estimates for PMSE( ^̂yŷyy�EAR( ~pp)(T þ h)). For the sake of brev-

ity and to avoid a great deal of repetitiveness, these tables do not include all permutations of

sample sizes and autoregressive corrective orders associated with each simulated parameteri-

zation of the serial correlation structure.

Examining the results of Tables I–V, we see that regardless of sample size for practically all

model structures and parameterizations, the predictive efficiency of estimated GLS, including

those based on incorrectly identified error structures (AR( ~pp)), is higher than OLS for short

and medium term horizons (h � 5). The degree of improvement in relative predictive effi-

ciencies, however, depends on the structure of the serial correlation. For pure MA(q) error

processes (Tab. I and IV), as expected, noticeable improvement in the forecasts occurs

primarily in the first q horizons. For other error structures, the improvement in the relative pre-

dictive efficiency can range from nearly zero to more than an order of magnitude. In addition,

these results do not appear to be dependent on the stationarity (or lack thereof ) of the

exogenous variable.

The differences in predictive efficiencies between EGLS and EAR( ~pp), with few exceptions,

is not very large. In fact when the error structure is modeled as an AR( ~pp) process with
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TABLE I Relative Predictive Efficiencies Associated with AR(1) and MA(1) Error Processes ð ~pp ¼ ½
ffiffiffiffi
T

p
=2
Þ.

j ¼ 0:0 j ¼ 0:5 j ¼ 1:0

f1 T h
PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR(~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

AR(1)
0.9 100 1 1.187 1.059 0.233 1.074 1.030 0.239 1.087 1.083 0.201

2 2.080 1.059 0.389 1.941 1.036 0.396 1.873 1.030 0.348
5 3.975 1.087 0.719 3.651 1.062 0.749 4.292 1.042 0.743

10 5.211 1.040 0.853 5.648 1.007 0.992 5.663 1.005 0.996

�0.9 100 1 1.126 1.009 0.232 1.041 0.990 0.186 0.999 0.990 0.180
2 2.030 1.048 0.424 1.822 0.995 0.337 1.901 1.008 0.345
5 3.377 0.997 0.614 3.955 1.044 0.717 3.721 1.039 0.691

10 4.504 0.998 0.837 4.171 0.995 0.776 4.996 0.990 0.951

�0.5 100 1 1.131 0.996 0.860 1.103 1.082 0.739 1.086 0.990 0.865
2 1.338 0.994 0.989 1.241 1.000 0.869 1.159 1.012 0.915
5 1.378 1.012 0.997 1.289 1.017 0.970 1.249 0.998 0.951

10 1.393 1.001 0.986 1.325 1.000 1.009 1.253 1.031 0.972

0.5 50 1 1.081 1.005 0.707 1.137 1.079 0.891 1.264 1.094 0.748
2 1.354 1.066 0.828 1.433 1.045 0.992 1.478 1.059 0.851
5 1.475 1.031 0.989 1.469 1.001 0.955 1.754 1.043 0.921

10 1.480 0.995 0.999 1.501 0.949 1.056 1.911 1.006 0.966
100 1 1.021 0.997 0.741 1.011 1.080 0.764 1.051 0.993 0.718

2 1.245 1.001 0.876 1.344 1.094 0.922 1.343 0.996 0.911
5 1.306 1.010 0.905 1.411 0.975 0.970 1.374 1.017 0.922

10 1.361 1.019 0.983 1.466 1.024 1.043 1.403 1.012 0.949
200 1 1.020 0.999 0.759 0.992 0.993 0.747 0.999 0.995 0.702

2 1.233 1.004 0.913 1.263 1.017 0.881 1.186 1.006 0.958
5 1.307 1.003 0.939 1.299 1.047 0.992 1.349 1.028 0.939

10 1.344 1.004 0.940 1.323 0.998 0.983 1.370 1.010 1.010
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MA(1)
y1

0.9 100 1 1.061 1.016 0.581 1.138 1.008 0.654 1.103 1.051 0.591
2 1.792 0.997 0.965 1.664 0.992 0.891 1.734 0.998 0.950
5 1.805 0.999 0.956 1.743 0.999 0.952 1.790 1.011 0.958

10 1.815 1.003 0.966 1.952 1.009 1.063 1.843 1.046 0.988

�0.9 100 1 1.037 1.029 0.535 1.126 1.070 0.665 1.071 1.005 0.568
2 1.701 1.043 0.836 1.910 1.069 0.994 1.755 0.996 0.922
5 1.878 1.057 0.970 1.913 1.070 0.998 1.865 1.033 0.971

10 1.988 1.088 0.999 1.863 1.028 1.015 1.901 1.043 0.993

0.5 100 1 1.028 1.035 0.862 1.120 1.043 0.807 1.015 1.042 0.851
2 1.254 1.003 0.935 1.319 1.015 0.973 1.255 1.047 0.975
5 1.302 1.035 0.935 1.320 1.005 0.995 1.327 1.020 0.975

10 1.312 1.037 0.976 1.410 1.013 1.016 1.382 1.024 1.024

�0.5 50 1 1.060 1.046 0.870 1.072 1.059 0.798 1.127 1.035 0.690
2 1.257 1.009 0.962 1.243 1.016 0.940 1.514 1.006 0.951
5 1.346 1.030 1.005 1.261 1.008 0.920 1.599 1.040 0.976

10 1.348 1.036 1.011 1.260 1.004 0.944 1.643 0.991 1.002
100 1 1.063 0.995 0.812 1.064 0.973 0.795 1.076 1.036 0.791

2 1.241 1.061 0.925 1.243 1.009 0.914 1.224 1.003 0.887
5 1.335 1.021 0.988 1.281 1.022 0.938 1.234 1.006 0.949

10 1.343 0.992 0.972 1.268 1.003 0.934 1.309 1.026 0.949
200 1 1.026 1.032 0.769 1.014 0.997 0.756 1.075 1.078 0.916

2 1.202 1.042 0.895 1.245 1.000 0.909 1.206 0.998 0.951
5 1.260 1.056 0.941 1.255 1.039 0.994 1.232 1.017 0.984

10 1.279 1.029 0.957 1.260 0.994 0.911 1.261 1.006 1.006

Note: PMSE, prediction mean squared error.
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TABLE II Relative Predictive Efficiencies Associated with ARMA(1, 1) Error Processes.

j ¼ 0:0 j ¼ 0:5 j ¼ 1:0

(f1, y1) T ~pp h
PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

(0.8, �0.7) 100 5 1 1.127 1.071 0.159 1.068 1.024 0.165 1.059 1.007 0.144
2 3.731 1.073 0.478 3.599 1.053 0.539 3.861 1.090 0.491
5 7.472 0.995 0.982 7.882 1.094 0.912 7.424 1.057 0.923

10 8.535 1.010 1.018 8.744 1.094 0.996 8.814 1.098 0.979

(0.8, 0.7) 100 5 1 1.002 0.991 0.884 0.992 0.994 0.938 1.050 1.052 0.976
2 1.028 1.003 0.990 1.022 1.001 0.952 1.051 0.997 0.998
5 1.080 0.996 0.954 1.109 0.998 0.979 1.051 1.005 1.011

10 1.082 0.997 1.016 1.128 1.002 1.001 1.108 0.996 1.001

(�0.8, �0.7) 100 5 1 0.997 0.996 0.949 1.034 1.022 0.947 1.020 1.005 0.942
2 1.056 1.002 0.974 1.070 1.046 0.977 1.059 1.030 0.957
5 1.072 0.995 0.975 1.081 1.038 0.985 1.089 1.027 0.995

10 1.112 1.011 0.983 1.084 1.038 0.993 1.098 1.005 0.998

(�0.8, 0.7) 50 1 1 1.458 1.187 0.193 1.662 1.535 0.244 1.604 1.273 0.205
2 3.708 1.086 0.532 3.766 1.068 0.562 3.561 1.041 0.575
5 7.976 1.136 1.031 6.898 1.068 0.912 6.845 1.075 0.955

10 8.592 1.206 1.123 8.135 1.095 1.099 8.265 1.222 1.114
4 1 1.235 1.006 0.163 1.154 1.066 0.170 1.286 1.021 0.164

2 3.679 1.078 0.528 3.615 1.026 0.540 3.629 0.959 0.586
5 7.151 1.018 0.924 6.761 1.047 0.894 6.487 1.019 0.905

10 7.317 1.027 0.956 7.469 1.005 1.009 6.658 0.984 0.898
7 1 1.265 1.030 0.167 1.264 1.167 0.186 1.495 1.187 0.191

2 3.928 1.151 0.563 3.693 1.048 0.551 3.965 1.048 0.641
5 6.964 0.991 0.900 7.264 1.124 0.960 6.891 1.082 0.961

10 8.577 1.203 1.121 7.626 1.027 1.030 8.499 1.256 1.146
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100 1 1 1.623 1.448 0.211 1.496 1.375 0.197 1.255 1.201 0.185
2 4.059 1.261 0.543 3.642 1.105 0.510 3.236 1.139 0.468
5 6.748 1.031 0.911 6.964 1.088 0.886 6.506 1.131 0.901

10 6.989 0.990 1.049 7.481 1.084 0.981 7.882 1.182 1.145
5 1 1.165 1.039 0.151 1.083 0.995 0.143 1.088 1.041 0.160

2 3.280 1.019 0.439 3.349 1.016 0.469 3.295 1.058 0.477
5 6.743 1.031 0.910 6.452 1.008 0.821 6.608 1.047 0.915

10 7.146 1.012 1.032 7.221 1.046 0.947 6.717 1.007 0.976
10 1 1.194 1.065 0.155 1.065 0.979 0.149 1.231 1.178 0.181

2 4.023 1.249 0.538 3.207 0.973 0.499 3.435 1.103 0.497
5 7.423 1.135 1.002 6.735 1.052 0.857 6.695 1.061 0.927

10 8.474 1.200 1.247 7.997 1.158 1.049 7.211 1.082 1.048

200 1 1 1.593 1.536 0.222 1.370 1.377 0.190 1.451 1.386 0.181
2 4.104 1.268 0.577 3.394 1.187 0.474 3.580 1.175 0.478
5 6.974 1.101 0.935 6.878 1.217 1.011 6.386 1.126 0.858

10 8.207 1.173 1.059 7.217 1.032 1.016 7.713 1.201 1.002
7 1 1.057 1.019 0.147 1.003 1.008 0.139 1.099 1.050 0.137

2 3.205 0.990 0.451 3.006 1.052 0.420 3.194 1.048 0.426
5 6.299 0.994 0.845 5.827 1.031 0.857 6.593 1.059 0.886

10 7.126 1.019 0.920 7.052 1.008 0.992 6.688 1.041 0.869
14 1 1.074 1.036 0.149 1.105 1.110 0.153 1.17 1.117 0.146

2 3.342 1.033 0.470 3.211 1.123 0.448 3.703 1.215 0.494
5 7.047 1.112 0.945 6.213 1.099 0.913 6.396 1.128 0.859

10 8.009 1.145 1.034 8.315 1.189 1.170 8.278 1.289 1.075

Note: PMSE, prediction mean squared error.
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TABLE III Relative Predictive Efficiencies Associated with AR(2) Error Processes.

j ¼ 0:0 j ¼ 0:5 j ¼ 1:0

(f1, f2) T ~pp h
PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

(1.42, �0.73) 100 5 1 1.077 0.993 0.165 1.058 1.005 0.156 1.106 0.996 0.170
2 3.419 1.048 0.461 3.221 1.022 0.428 3.270 1.023 0.441
5 5.852 1.002 0.848 5.657 1.002 0.722 5.812 1.000 0.843

10 7.350 1.001 1.001 6.757 0.994 0.880 6.897 1.076 0.965

(1.8, �0.9) 100 5 1 1.205 0.986 0.022 1.206 0.998 0.023 1.188 1.058 0.024
2 5.768 0.999 0.105 6.002 1.000 0.107 5.021 1.004 0.100
5 41.08 0.966 0.675 38.37 1.048 0.692 36.33 1.073 0.687

10 72.11 0.895 1.146 66.41 0.944 1.100 59.21 0.938 1.092

(1.6, �0.64) 50 1 1 1.817 1.817 0.052 1.735 1.605 0.055 1.881 1.630 0.053
2 5.721 1.472 0.167 5.503 1.321 0.172 5.709 1.333 0.130
5 21.06 1.063 0.552 20.21 1.050 0.469 21.75 1.023 0.434

10 43.76 0.997 1.030 42.91 1.070 1.094 47.66 1.020 0.933
4 1 1.087 1.087 0.031 1.087 1.006 0.034 1.147 0.994 0.033

2 4.163 1.071 0.121 4.414 1.059 0.138 3.993 0.933 0.091
5 19.70 0.995 0.516 20.03 1.040 0.465 21.78 1.025 0.435

10 42.05 0.998 0.989 41.85 1.043 1.067 46.98 1.005 0.920
7 1 1.327 1.327 0.038 1.333 1.233 0.042 1.309 1.134 0.037

2 4.976 1.280 0.145 4.987 1.197 0.156 4.973 1.161 0.113
5 22.31 1.126 0.585 20.13 1.046 0.467 21.99 1.034 0.439

10 43.88 0.999 1.032 43.07 1.074 1.098 47.08 1.007 0.922

6
4

0
Y

U
E

FA
N

G
A

N
D

S
.

G
.

K
O

R
E

IS
H

A



100 1 1 1.793 1.739 0.055 1.822 1.737 0.059 1.723 1.737 0.048
2 5.747 1.529 0.207 5.661 1.423 0.220 5.610 1.504 0.151
5 21.08 1.134 0.593 20.37 1.050 0.594 20.76 1.090 0.520

10 43.58 1.085 1.083 42.22 1.018 1.121 45.34 1.192 1.137
5 1 1.075 1.043 0.033 1.057 1.008 0.034 1.090 1.099 0.030

2 4.063 1.081 0.146 3.979 1.000 0.155 3.922 1.052 0.105
5 18.41 0.991 0.518 19.33 0.996 0.564 20.62 1.083 0.516

10 39.51 0.983 0.982 41.12 0.991 1.092 40.93 1.076 1.026
10 1 1.177 1.142 0.036 1.153 1.099 0.037 1.119 1.128 0.031

2 4.319 1.149 0.155 4.091 1.028 0.159 4.565 1.224 0.123
5 21.94 1.180 0.617 19.86 1.023 0.579 21.77 1.143 0.545

10 43.36 1.079 1.078 42.27 1.019 1.123 43.22 1.136 1.084

200 1 1 1.664 1.602 0.047 1.602 1.485 0.048 1.502 1.560 0.047
2 5.262 1.354 0.146 5.184 1.336 0.152 5.117 1.423 0.156
5 20.77 1.175 0.517 20.23 1.197 0.592 20.25 1.185 0.559

10 39.55 1.046 1.010 40.25 1.238 1.011 44.18 1.148 1.168
7 1 1.031 0.992 0.029 1.064 0.986 0.032 1.006 1.045 0.031

2 3.873 0.997 0.108 3.903 1.006 0.114 3.714 1.033 0.113
5 17.69 1.001 0.441 17.85 1.056 0.522 17.19 1.006 0.475

10 37.47 0.991 0.957 35.11 1.080 0.882 38.43 0.999 1.016
14 1 1.110 1.068 0.032 1.120 1.038 0.034 1.082 1.124 0.034

2 3.946 1.015 0.110 4.177 1.077 0.122 3.814 1.061 0.116
5 17.58 0.994 0.438 18.64 1.103 0.545 17.59 1.029 0.486

10 37.45 0.991 0.957 38.65 1.189 0.971 38.50 1.001 1.018

Note: PMSE, prediction mean squared error.
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TABLE IV Relative Predictive Efficiencies Associated with MA(2) Error Processes.

j ¼ 0:0 j ¼ 0:5 j ¼ 1:0

(y1, y2) T ~pp h
PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

(1.8, �0.9) 100 5 1 1.445 1.096 0.276 1.436 1.099 0.257 1.387 1.038 0.258
2 4.751 1.041 0.913 4.694 1.088 0.895 4.881 1.020 0.934
5 5.281 0.996 0.940 5.015 1.037 0.924 5.092 1.027 0.968

10 5.285 0.990 0.998 5.087 1.031 1.004 5.141 0.997 0.953

(1.6, �0.64) 100 5 1 2.824 1.041 0.341 2.631 1.063 0.312 2.733 1.026 0.333
2 7.992 1.012 0.903 7.505 1.026 0.897 7.484 1.008 0.932
5 8.301 1.010 0.973 8.222 1.019 0.987 7.677 1.003 0.912

10 8.320 0.997 0.981 8.246 0.972 0.995 7.808 0.994 0.980

(1.42, �0.73) 50 1 1 2.078 1.597 0.542 2.100 1.602 0.557 2.253 1.686 0.558
2 4.147 1.104 1.052 3.487 1.042 0.954 3.264 1.079 0.896
5 4.351 1.122 1.122 3.672 1.094 1.028 3.843 1.051 0.981

10 4.390 1.070 1.133 3.757 1.090 1.069 4.006 1.134 1.059
4 1 1.354 1.041 0.353 1.314 1.002 0.349 1.331 0.996 0.330

2 3.847 1.025 0.976 3.421 1.023 0.936 3.239 1.071 0.889
5 3.889 1.003 1.003 3.530 1.052 0.989 3.860 1.055 0.985

10 4.119 1.004 1.063 3.520 1.021 1.001 3.708 1.050 0.980
7 1 1.364 1.048 0.356 1.369 1.044 0.363 1.493 1.118 0.370

2 3.861 1.028 0.979 3.831 1.145 1.048 3.591 1.188 0.986
5 4.050 1.044 1.044 4.287 1.277 1.201 4.385 1.199 1.119

10 4.196 1.023 1.083 4.347 1.261 1.236 4.402 1.246 1.164
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100 1 1 1.854 1.707 0.498 1.939 1.672 0.567 2.092 1.919 0.613
2 3.449 1.168 0.949 3.586 1.170 0.997 3.084 1.020 0.908
5 3.608 1.047 0.981 3.619 1.025 1.015 3.787 1.135 1.042

10 3.817 1.082 1.030 3.664 1.039 1.031 3.830 1.112 1.053
5 1 1.181 1.087 0.317 1.185 1.022 0.346 1.143 1.049 0.335

2 3.079 1.043 0.847 3.302 1.078 0.918 3.082 1.019 0.907
5 3.446 1.000 0.937 3.494 0.990 0.980 3.622 1.086 0.996

10 3.554 1.007 0.959 3.516 0.997 0.989 3.639 1.057 1.001
10 1 1.184 1.090 0.318 1.272 1.097 0.372 1.169 1.072 0.342

2 3.480 1.179 0.958 3.657 1.194 1.017 3.260 1.078 0.960
5 3.738 1.085 1.016 3.746 1.061 1.051 3.675 1.102 1.011

10 4.088 1.158 1.103 3.842 1.090 1.081 3.728 1.082 1.025

200 1 1 1.815 1.771 0.508 1.850 1.616 0.515 2.163 2.050 0.678
2 3.223 1.127 0.945 3.558 1.181 0.957 3.196 1.057 0.920
5 3.568 1.029 1.001 3.661 1.125 0.998 3.682 1.192 0.999

10 3.711 1.053 1.058 3.629 1.046 0.992 3.877 1.120 1.048
7 1 1.035 1.010 0.290 1.179 1.030 0.328 1.144 1.084 0.359

2 3.034 1.060 0.890 3.231 1.073 0.869 3.058 1.011 0.880
5 3.469 1.000 0.973 3.377 1.038 0.920 3.308 1.071 0.898

10 3.547 1.006 1.012 3.479 1.003 0.951 3.600 1.040 0.973
14 1 1.084 1.058 0.304 1.180 1.031 0.329 1.166 1.105 0.365

2 3.076 1.075 0.902 3.473 1.153 0.934 3.342 1.105 0.962
5 3.495 1.008 0.980 3.769 1.158 1.027 3.791 1.227 1.029

10 3.721 1.056 1.061 3.831 1.104 1.047 3.829 1.106 1.035

Note: PMSE, prediction mean squared error.
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TABLE V Relative Predictive Efficiencies Associated with ARMA(1, 2) and ARMA(2, 1) Error Processes ( ~pp ¼ [
ffiffiffiffi
T

p
=2]).

j ¼ 0:0 j ¼ 0:5 j ¼ 1:0

T h
PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

PMSE
EAR( ~pp) x̂xEAR(~pp)=EGLS x̂xEAR(~pp)=OLS

ARMA(1, 2) (f1, y1, y2)
(0.6, �0.5, �0.9) 100 1 1.354 1.040 0.229 1.395 1.013 0.224 1.403 1.043 0.240

2 4.118 1.028 0.724 4.177 1.016 0.632 3.911 0.998 0.663
5 4.864 1.062 0.810 4.855 1.010 0.743 4.561 1.027 0.733

10 5.857 1.011 1.002 5.695 1.093 0.969 5.912 1.097 0.974

(�0.8, 1.4, �0.6) 50 1 1.496 1.068 0.066 1.562 1.039 0.067 1.552 0.969 0.065
2 7.346 1.062 0.342 7.537 1.049 0.341 6.862 1.014 0.368
5 20.61 1.038 0.992 19.68 1.076 0.900 19.63 1.067 0.846

10 20.82 0.999 1.009 22.54 1.000 1.082 24.80 1.064 1.054
100 1 1.301 0.992 0.055 1.305 1.075 0.057 1.273 0.999 0.064

2 7.192 1.029 0.317 6.004 1.050 0.278 6.801 1.009 0.354
5 18.09 1.070 0.768 17.16 1.061 0.707 18.07 0.998 0.841

10 20.95 1.017 0.892 21.10 0.994 0.909 20.81 1.052 0.945
200 1 1.184 1.098 0.052 1.069 0.989 0.050 1.159 0.991 0.054

2 5.894 1.047 0.268 6.000 1.002 0.276 6.465 1.070 0.312
5 18.43 0.998 0.825 16.57 1.015 0.701 17.61 0.981 0.754

10 20.37 1.001 0.988 20.34 1.005 0.898 20.91 1.087 0.923
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ARMA(2, 1) (f1, y2, y1)
(1.4, �0.6, �0.8) 100 1 1.213 1.042 0.063 1.166 1.074 0.058 1.117 1.063 0.059

2 6.906 0.968 0.320 6.634 0.988 0.268 7.127 1.051 0.316
5 25.26 1.004 0.908 21.37 0.990 0.768 24.17 1.004 0.936

10 27.07 0.999 1.002 27.18 0.983 0.986 25.68 1.008 0.999

(�0.5, �0.9, 0.6) 50 1 1.329 0.996 0.132 1.242 0.993 0.139 1.277 0.997 0.117
2 2.563 0.995 0.262 2.380 1.092 0.240 2.561 1.051 0.242
5 4.248 1.060 0.440 4.187 0.994 0.473 4.444 1.021 0.420

10 7.222 1.058 0.756 6.825 0.991 0.765 7.048 0.996 0.720
100 1 1.089 1.002 0.116 1.104 0.999 0.112 1.068 1.022 0.116

2 2.321 1.055 0.244 2.220 1.002 0.206 2.306 0.997 0.250
5 4.018 1.053 0.427 3.947 0.999 0.366 3.890 1.003 0.442

10 6.552 1.075 0.719 6.864 1.002 0.733 6.557 1.002 0.700
200 1 0.996 0.993 0.103 1.004 0.997 0.096 1.096 1.061 0.118

2 2.275 0.993 0.241 2.015 1.000 0.201 2.285 1.018 0.264
5 3.857 1.076 0.419 3.814 1.000 0.365 3.768 0.998 0.444

10 6.181 1.073 0.703 6.493 0.993 0.714 6.189 1.002 0.713

Note: PMSE, prediction mean squared error.
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~pp ¼ [
ffiffiffiffi
T

p
=2], the forecast performance of this correction is quite comparable to that of EGLS

regardless of the actual simulated serial correlation structure, sample size, and stationarity

condition of the exogenous variable. When ~pp ¼ [
ffiffiffiffi
T

p
=2], it is very infrequent that we observe

values for x̂xEAR( ~pp)=EGLS(T þ h) to be greater than 1.06. (The greatest observed inefficiency of

almost 10% occurred when the error structure followed an MA(2) process with a nearly non-

invertible parameterization (1:8, � 0:9).) For the vast majority of the error structures we see

that 1:01 � x̂xEAR( ~pp)=EGLS(T þ h) � 1:05 when ~pp ¼ [
ffiffiffiffi
T

p
=2]. In many cases, the differences in

efficiencies cannot be distinguished from sampling variation.

Moreover, it should also be pointed out that when ~pp ¼ [
ffiffiffiffi
T

p
=2], x̂xEAR(~pp)=OLS(T þ h) is less

than 1 (often considerably less than 1) for all but basically one case. For the nearly nonstationary

AR(2) parameterization (1:8,�0:9) with 100 observations (Tab. III), x̂xEAR( ~pp)=OLS(T þ 10) equals

1.146, 1.1, and 1.092 for j ¼ 0, 0:5, and 1.0, respectively. With an increase in sample size, how-

ever, this seemingly small OLS superiority vis-à-vis EAR(~pp) vanishes. For sample sizes of 200

and 400 observations (not shown in the table), for example, for p ¼ 0, the corresponding values

drop to 1.034 and 1.004; forj ¼ 0:5 (1:0), the respective figures are 1.049 and 1.009 (1.042 and

0.972). When the sample size is small, there are a few EAR( ~pp)=OLS efficiency ratios with values

slightly above one for other error structures, but these too revert to values less than one as the

sample size increases, as is illustrated by the ARMA(1, 1) parameterization (�0:8, 0:7) in

Table II for h ¼ 10. When T increases from 100 to 200 observations, the corresponding values

for x̂xEAR(~pp)=OLS(T þ 10) change from 1.032 to 0.920.

Results from this parameterization in particular also serve to further solidify the claim that

for finite samples the order of the autoregressive correction should be set at ~pp ¼ [
ffiffiffiffi
T

p
=2]

(Note the variation in x̂xEAR( ~pp)=OLS(T þ 10) when ~pp changes from 1 to
ffiffiffiffi
T

p
.). For much shorter

forecast horizons, however, it appears that even an EAR(1) correction, i.e. the most-often

taught method for alleviating autocorrelation in regression models, can yield more accurate

forecasts than ignoring the problem altogether.

Nevertheless, consistent with Theorem 4 we observe that as h increases, the differences

in predictive efficiencies decrease among all methods. This can be more easily seen by exami-

ning the results in Table V, which contains the relative predictive efficiencies of ARMA(1, 2)

and ARMA(2, 1) parameterizations. For the ARMA(1, 2) parameterization (�0:8, 1:4, �0:6)

with j ¼ 0, T ¼ 200, for instance, x̂xEAR( ~pp)=EGLS and x̂xEAR( ~pp)=OLS change from 1.098 and

0.052, respectively, when h ¼ 1, to 1.001 and 0.988 when h ¼ 10.

4 CONCLUSION

In this article we have examined the relative forecast efficiency of GLS and IGLS predictors

for regression models with serial correlation vis-à-vis each other and OLS predictors. We have

derived new theorems associated with these predictors and established the form of the predic-

tive mean squared errors as well as their magnitude relative to each other. From a large simula-

tion study we have also found that for finite samples, EGLS corrections including those based

on incorrectly identified disturbance structures yield more efficient short and medium-term

forecasts than OLS. Furthermore, when the order of autoregressive corrections is set at

[
ffiffiffiffi
T

p
=2] the differences in forecast efficiency between EAR( ~pp) and EGLS is very small.

This suggests that there is not much to be gained in trying to identify the correct order of

OLS residuals when generating short- to medium-term forecasts. Model builders upon detect-

ing serial correlation in the residuals generated from an OLS regression should simply rees-

timate the regression equation using GLS with an AR(
ffiffiffiffi
T

p
=2) correction. Automatic

procedures for performing this estimation without even providing initial estimates for the
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autoregressive coefficients can be found in most widely used statistical packages such as SAS

(Autoreg) and Splus (ARIMA). On the other hand, for longer horizons, it appears that OLS

yields forecasts that are just as efficient as EGLS.
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APPENDIX

Proofs of Theorems and Corollaries

Proof of Corollary 2 Expanding the first row of (11) and noting that Z0 is just the first row of

Lh, we see that

y�(III )(T þ h) ¼ (x1,Tþh, x2,Tþh, . . . , xk,Tþh)bþ Z0ET ,

and

PMSE( y�(III )(T þ h)) ¼ E(Z0ET � eTþh)(Z0ET � eTþh)
0 ¼ (UZ)0(UZ) � 2Z0 ~VV þ s2:

Hence,

PMSE( y�(III )(T þ h)) � PMSE(y�(II )(T þ h)) ¼ (UZ)0(UZ) � 2Z0 ~VV : (A1)
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Let W ¼ UZ, B ¼ U0�1 ~VV . Then,

PMSE( y�(III )(T þ h)) � PMSE( y�(II )(T þ h)) ¼ W 0W � 2W 0B,

which can also be written as

PMSE( y�(III )(T þ h)) � PMSE(y�(II )(T þ h)) ¼ W 0W � 2W 0GW ,

where G is a diagonal matrix with its (i, i) elements given by (bi=wi), provided that wi 6¼ 0.

For PMSE( y�(III )(T þ h)) � PMSE( y�(II )(T þ h)) to be less than or equal to zero, it is neces-

sary and sufficient to have (2W 0GW )=(W 0W ) � 1, or equivalently, according to the

Rayleigh–Ritz theorem (Marcus and Ming, 1964), for the smallest eigenvalue of 2G to be

greater than or equal to 1. Since the smallest eigenvalue of 2G is mini (2bi=wi), the

Corollary follows.

Proof of Corollary 3 From (A1) and noting that ~VV 0 ¼ (g(h), g(hþ 1), . . . , g(hþ ~pp� 1)),

Z0 ¼ (p(h)
1 , p(h)

2 , . . . , p(h)
~pp ), and U0U ¼ {g(i� j)}

~pp
i, j¼1, it can be verified that

(UZ)0(UZ) ¼
X~pp

i¼1

X~pp

j¼1

g(i� j)p(h)
i p(h)

j and Z0 ~VV ¼
X~pp

i¼1

g(hþ i� 1)p(h)
i :

Proof of Theorem 2 Since

b̂b� b ¼ (X 0X�1X )�1X 0X�1e ¼ Ae
and

Y � X b̂b ¼ (I � XA)e,

it follows that

PMSE(ŶY �) ¼ E(ŶY � � Y �)(ŶY � � Y �)0

¼ E(X �b̂bþ C
0(I � XA)e� (X �bþ e�))(X �b̂bþ C

0(I � XA)e� (X �bþ e�))0

¼ E([X �Aþ C
0(I � XA)]e� e�)([X �Aþ C

0(I � XA)]e� e�)0

¼ O�
þ DOD0 � DV � V 0D0:

Proof of Theorem 3 Part (1) follows from Theorem 1 in Koreisha and Fang (2001). To

prove Eq. (2) in Theorem 3, note that

T�1
XT�l

t¼1

êet êetþl ¼ T�1
XT�l

t¼1

etetþl � T�1
XT�l

t¼1

etwtþh(
^̂bb̂bb� b) � T�1

XT�l

t¼1

etþhwt(
^̂bb̂bb� b)

þ T�1
XT�l

t¼1

(
^̂bb̂bb� b)w0

twtþh(
^̂bb̂bb� b): (A2)
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Arguing as Fuller (1996) did in proving Theorem 9.3.1, we can show that

XT�l

t¼1

etwtþh ¼ O(T 1=2), T1=2(
^̂bb̂bb� b) ¼ O(1) and

XT�l

t¼1

w0
twtþh ¼ O(T ):

Hence, the last three terms on the right-hand-side of (A2) are O(T�1). Since T�1�PT�l
t¼1 etetþl ¼ g(l) þ O(T�1), the result in Eq. (2) follows.

Proof of Theorem 4 From Eq. (17) and assuming that b and G have been estimated con-

sistently, it follows that

APMSE(
^̂
YŶYY �) � plim

T!1
PMSE(

^̂
YŶYY �) ! E(C0e� e�)(C0e� e�) ¼ O�

þ C
0OC � V 0C � C

0V :

Proof of Theorem 5 From Theorem 4 we know that as T!1,

APMSE(
^̂
YŶYY �) ¼ O�

þ C
0OC � V 0C � C

0V :

Noting that APMSE(
^̂
YŶYY
�

OLS) ¼ O�, it is only necessary to show that the (1, 1)th element

of H � C
0OC � V 0C � C0V goes to zero as h ! 1 for C0 ¼ V 0O�1 and R0. When

C
0
¼ V 0O�1, H ¼ �V 0O�1V , and hence, the (1, 1)th element of H converges to zero since

the first row of V 0 ¼ E(e�e0) ! 0 as h increases. In the case that C0 ¼ R0, the first row of

R0 depends only on {p(h)
i }, which goes to zero as h ! 1 (Hamilton, 1994), and so does H.
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