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Summary. The regression literature contains hundreds of studies on serially correlated disturbances.
Most of these studies assume that the structure of the error covariance matrix Q is known or can be
estimated consistently from data. Surprisingly, few studies investigate the properties of estimated
generalized least squares (GLS) procedures when the structure of €2 is incorrectly identified and the
parameters are inefficiently estimated. We compare the finite sample efficiencies of ordinary least
squares (OLS), GLS and incorrect GLS (IGLS) estimators. We also prove new theorems establish-
ing theoretical efficiency bounds for IGLS relative to GLS and OLS. Results from an exhaustive
simulation study are used to evaluate the finite sample performance and to demonstrate the
robustness of IGLS estimates vis-a-vis OLS and GLS estimates constructed for models with known
and estimated (but correctly identified) Q. Some of our conclusions for finite samples differ from
established asymptotic results.
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1. Introduction

The topic of serial correlation in regression has been studied extensively since Cochrane and
Orcutt (1949) and Durbin and Watson (1950) developed an approximate transformation to
deal with and to test for autoregressive (AR) disturbances of order 1. It is probably fair to
say that during the past half-century developments in this field have tracked advances in
computational power closely. In the early 1950s and 1960s most of the research focused on
transformations (approximate or exact) that were developed for ordinary least squares (OLS)
estimation of low order AR and moving average error structures. With the advent of bigger
and faster computers since the 1970s research has been directed more towards estimation
methods such as generalized least squares (GLS) (or approximations thereof) and maximum
likelihood procedures which often require the inversion of large matrices. In the last two
decades we have also witnessed a plethora of simulation studies dealing with more complex
serial correlation structures, but for surprisingly small sample sizes, generally ranging only
from 10 to 40 observations, e.g. Zinde-Walsh and Galbraith (1991). (See Hildreth (1986) and
Choudhury et al. (1999) for more detailed chronologies of major developments in this area.)

Most of these studies assumed that the error covariance matrix £ from the regression
model,

Y=X3+c¢ (1)
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where Y is an n x 1 vector of observations on a dependent variable, X is an n x k design
matrix and e is a random vector with E(¢) = 0 and E(e'e) = 0”2, was either known or could
be estimated consistently from data. Very few studies, however, considered the properties of
estimators when the structure of  was incorrectly identified or when its parameters were
inefficiently estimated. Moreover, of the few studies that considered these issues (notably
Amemiya (1973) and Engle (1974)) most dealt with or depended on asymptotic results which
as we shall demonstrate can often be at odds with results obtained from the sample sizes that
are generally available to model builders.

The challenges of identifying the structure of the covariance matrix 2 when GLS is used to
estimate the regression model with autocorrelated disturbances have been studied by Walker
(1967), Kadiyala (1970), King (1983) and Koreisha and Pukkila (1987) among others. Walker
(1967) and King (1983) discussed the practical difficulties of testing for AR(1) against moving
average (MA(1)) disturbances. Kadiyala (1970) has shown that the null hypothesis that e
follows N(0, €2,) cannot be tested against the alternative hypothesis that e follows N(0, €2;)
under certain conditions on ; (i = 0, 1) and the design matrix X. The test aside from a scalar
factor may have the same distribution for both the null and the alternative hypotheses.
Moreover, as pointed out by Thursby (1987), if the regression suffers from omitted variables,
then it may not be possible to identify the form of the autocorrelation in the regression
model.

For sample sizes that are generally available to model builders (50-200 observations) the
‘correct’ identification of the ARMA(p, ¢g) process that is associated with the serially cor-
related disturbances can be quite elusive. On the basis of a small simulation study, for
example, for the same regression models that will be described in Section 4, we found that the
correct identification using automatic order selection criteria of the simulated order of the
Gaussian ARMA(1, 1) structures governing the estimated residuals was at best tenuous. The
identification performance of Schwarz’s Bayesian information criterion improved substan-
tially as the sample size increased, but it was scarcely adequate, varying from nearly 50%
when n = 50 to 80% when n reached 200. The Akaike information criterion, as also noted in
other studies, severely overestimated the order of the process and, at least for the model
structures that we studied, its performance did not improve when the sample size increased.
Further details of these simulation results are available from the authors.

In this paper we shall compare the finite sample efficiencies of OLS and GLS vis-a-vis
incorrect GLS (IGLS) estimators, i.e. GLS estimators based on a wrongly identified Q2. We
shall assume that the serially correlated disturbances € in model (1) follow an ARMA process
(Box and Jenkins, 1976):

®(B)e, = O(B)a,, )

where ®(B) and ®(B) are finite polynomials of orders p and ¢ respectively in the backshlft
operator B, such that B/w, = w,_ »and {a,} is a Gaussian white noise process with variance ol
We say that process (2) is both stationary and invertible if the roots of the characterlstlc
equations ®(B) =0 and ®(B) =0 are outside the unit circle. Stationary and invertible
ARMA(p, ¢q) models can also be expressed as either infinite autoregressions, I1(B)e, = a,, or
infinite moving averages, ¢, = ¥)(B)a,. In practice, however, such representations may be
approximated by processes of relatively low order because the coefficients in I1(B) and W(B)
may be effectively 0 beyond some finite lag.

The paper will be organized as follows. In Section 2 we establish conditions for IGLS to
yield unbiased and consistent regression estimators. In Section 3 we prove new theorems
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establishing finite efficiency bounds for IGLS relative to GLS and OLS. In Section 4 we
present results from an exhaustive simulation study for sample sizes ranging from 50 to 200
observations and covering a wide spectrum of ARMA(p, ¢) serial correlation structures.
There we contrast the quality and properties of regression estimators based on IGLS
procedures which assume that the serial correlations follow different order AR processes,
with OLS estimates and with estimates obtained from GLS methods with known and
estimated Q. Finally in Section 5 we offer some concluding remarks.

2. Some properties of the estimators

Suppose that the linear regression model is specified by equations (1) and (2). Consider the
estimator of g

S=xze'x)y'xe'y. (3)

Setting & = 7 in equation (3) defines the OLS estimator 3o;g; if & = , then equation (3)
yields the well-known Aitken estimator 3 s. If the structure of €2 is known, but its elements
must be estimated, i.e. & = €2, then we shall refer to estimator (3) as estimated GLS and
denote it as Bggrs. We shall refer to estimator (3) as IGLS, figis, if & = = # Q, and as the
estimated IGLS, fgigis, if & = 3, i.e. when ¥ is obtained from data.

The matrix E will be a Toeplitz matrix, assuming that ¢ is stationary. Moreover, if AR
correction methods (AR()) are used, then 2" will be band diagonal with  bands above and
below the main diagonal (Wise, 1955).

GLS estimates are unbiased and consistent (Theil, 1971; Schmidt, 1976; Judge et al., 1985)
if three conditions hold:

(a) X is non-stochastic;
(b) the regressors (columns of X') are linearly independent;
(¢) lim, .. (7 'X'X) is finite and non-singular.

Furthermore, if € follows a Gaussian distribution with mean 0 and variance €2, then the GLS
estimator is also the best linear unbiased estimator (BLUE) (Aitken, 1935). When E is fixed,
it is well known that

COV(B) — Jz(X/E_lX)_lX/E_lQE_IX(X/E_IX)_I. (4)

If € is symmetrically distributed around zero, and if € is an even function of ¢, then Sggs
is unbiased, provided that E(8gqs) exists (Kakwani, 1967). Sufficient conditions for the
EGLS estimator to be consistent are that plim,_, ..(n~' X’Q ™' X) is finite and non-singular, and
that plim, , (n~' X'Q"'€) = 0. The asymptotic distribution of Bz, can also be derived, and
under some regularity assumptions

12 Bers — B) > n'*(Bars — ) > NO, >V, (5)

where V = lim,,_, (n' X’Q ' X) (Theil, 1971). It should be also noted that consistent estimates
of parameters in  will not be, in general, a sufficient condition for Bgg s and fgs to have
the same asymptotic distribution (Schmidt, 1976).

Now since there is a non-singular unitary matrix A such that A’A = 27" (Hadley, 1961;
Strang, 1988), then premultiplying equation (1) by A yields

AY = AXB + Ae. (6)
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Thus, if lim,_, . {n '(AX)'(AX)} = lim,_, . (n"' X’E27'X) is finite and non-singular, then con-
ditions (a)—(c) are satisfied. Therefore, the conditions required for consistency of IGLS and

EIGLS can be similarly derived. Below we express them as a new theorem, which is our
adaptation of GLS results in Schmidt (1976).

Theorem 1. If X is non-stochastic and the regressors (columns of X) are linearly in-
dependent, then

(@) BigLs is unbiased, and, if lim,_, . (n~'X’E7'X) is finite and non-singular, then B is
consistent, and,

(b) ifplim, (' X’&7'Q' 7' X) s finite and non-singular and plim,,_, . (n "' X' E7'Q 7' A¢€)
=0, then [ggLg 1S consistent.

Similar results to theorem 1 also hold even if the regressor matrix X is stochastic, but the
underlying assumptions in such a case are more complicated and restrictive. See, for example,
Schmidt (1976) for discussions on general issues regarding stochastic regressors.

It is possible to derive the asymptotic distribution for (i s and Bgigrs. When exogenous
variables are stationary, under certain regularity conditions, the normality of IGLS and
EIGLS estimators can be derived by using Hansen’s (1982) generalized method of moments
(GMM). The critical assumption needed in using the GMM is that the regression disturbance
¢, 1s uncorrelated with the exogenous variables. Since the IGLS and EIGLS estimators are
equivalent to OLS estimators for the transformed regression model (6), it follows that IGLS
and EIGLS are special cases of the GMM (see, for example, Hamilton (1994) and Matyas
(1999) for detailed discussions of the GMM procedure).

Amemiya (1973) studied the properties of IGLS and EIGLS estimators based on theo-
retical and estimated autocovariances of serial correlated disturbances generated by ARMA
processes. Assuming that E had the structure of a large order AR process he showed that,
as n — oo and the order of the AR structure approached oo at an appropriate rate, the
asymptotic distributions of both IGLS and EIGLS were the same as the asymptotic Gaussian
disturbance of the best unbiased estimator.

The OLS estimator (E = 1) is less efficient than the GLS estimator (E = 2) since

cov(Bors) — cov(Bars) = (X' X)X’ QXX X)) - Sx'Q X))

is non-negative. In fact, it can be shown that the OLS and the GLS estimators are identical if
and only if X = QTI', where Q contains characteristic vectors of €2, and I' is a non-singular
matrix (Zyskind, 1967). In general, however, the loss of efficiency in using OLS instead of
GLS can be substantial. For example, consider the model y, = G, + 0, x, + ¢, with an AR(1)
disturbance: €¢; = ¢¢,_; + a;. For large n, Rao and Griliches (1969) have shown that

COV(BGLS) ~ (1- ¢2)(1 — ¢m)
cov(Bors) (14 ¢* = 2¢m)(1 + ¢m)
This result holds for all possible configurations of exogenous variables. IGLS estimates are
also less efficient than GLS estimates since the GLS estimator is the BLUE. The relative

efficiency of IGLS to OLS, however, depends on 2, E and X, and will be the subject of the
next section.

3. Finite sample efficiency relationships

In this section we compare the finite sample efficiencies of OLS, GLS and IGLS estimators.
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We also establish efficiency bounds for IGLS relative to GLS and OLS. We assume that X is
non-stochastic.

It is well known (see, for example, Theil (1971)) that, if serial correlation is present in the
disturbances of regression models, then

lcov(Bars)| < lcov(Bors)|-

An upper bound for the loss of the estimation efficiency of OLS relative to GLS can be
established by assuming that © has n ordered eigenvalues: \; < A\, < ... < \,. Hannan
(1970) has shown that, for any c,

< COV(C,ﬁ:OLS) < O+ A
cov(c’'Bgrs) 4NN,

Watson (1967), Bloomfield and Watson (1975) and Knott (1975) have extended this result
and have shown that

N o 5

_ eovBors)| _ B O+ A, )

~ A ~ b
lcov(Bars)| s=1 AN

)

where k is the number of columns in the design matrix X. (There are other ways to order
matrices. Kramer and Baltagi (1996), for example, used traces to order matrices in analysing
the limiting efficiency of OLS in the general linear regression model.) The key result used by
Bloomfield and Watson (1975) and Knott (1975) to obtain inequality (7) and which we shall
use later can be stated as the following lemma.

Lemma 1. Let G be a diagonal matrix with distinct positive elements (; < (, < ... < (,,
and let Z be an n x k matrix such that Z'Z = I; then

min(k, n—=k) (Cv + Cnf.H»l)z
s=1 44\'<}1—A5'+l
The upper bound is attainable for a suitable choice of X.

Armed with these preliminary results we shall now prove two new theorems establishing
the bounds for the relative efficiency of IGLS vis-a-vis GLS and OLS for finite samples.

1Z'GZ||Z'G™'Z| < ®)

Theorem 2. Let v, < v, < ... < v, be eigenvalues of AQA’ with A satisfying A’'A = 27;

then

N L 5

< |C0V(ﬂIGLS)| < min(k, n—=k) (Vs + an.H»l)

X X _—
[cov(Bars)l s=1 AV, g1

)
Given @ and E, the upper bound is attainable for a suitable choice of X.

Proof. From equation (4),

lcov(Bigs)l _ IX'ET' X)X ETQET XX ET X))
lcov(Bas)l (X' X)"| ‘

Letting Z = AX and ' = AQA’, then
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lcov(Biars)|l  1Z'AQA'Z|IZ'(AQA)'Z|  |Z'TZ||1Z'T'Z]
|lcov(Bars)| 1z'z) z'z|

Since I is symmetric, there is an n x n matrix H such that I' = HGH', where G is a diagonal
matrix with the eigenvalues of I'. Hence,

lcovBiaus)| _ IW'GWIIW'G™' W]
[cov(Bgrs)l 4 VV|2

>

where W = H'Z. Tt can be seen directly that this ratio is unchanged if we replace W by any
n x k matrix V' with columns spanning the space of the columns of W. Choosing such a V'
with V'V =1 and applying lemma 1 establishes the upper bound. The lower bound of
|cov(BlGL5)|/|cov(f3GLs)| in inequality (9) is trival since fgs is the BLUE.

Theorem 3. Let A} < A\, < ... <\, be eigenvalues of Q and v, < v, < ... < v, be the
corresponding eigenvalues of AQA’ with A satisfying A’A = E'; then

(a)

A i A A ik 2
lcov(Bigrs)| ™R 4NN, < lcov(BigLs)| < lcov(Bgrs)l ™m0 (v, + v, _41)

|COV(BGLS)| s=1 ()‘s+)‘n—s+1)2 h |COV(ﬂA0Ls)| h |COV(BOLS)| s=1 AV 11

(10)
(b)

min(k,n—k) 4 A - |COV(BIGLS)| _ min(k,n—k) (v, + Vn7s+l)2

S A X
s=1 (/\s + )‘n—s+1)2 |COV(ﬂOLS)| s=1 4l/syn—s+1

(11)

Both lower and upper bounds in inequality (10) are attainable for a suitable choice of X.

Proof.

lcov(Bigs)l o IX'ET' X)X ET'QET XX ET' X)) IX'ET'QET'X| XX
lcov(Bors)| AlX' X)X QXX X)) T XEXPOXQX|)
Setting that Z = AX and ' = AQA " we have
cov(Biais)l _ 1ZTZIIZT™'Z]  |X'X]?
lcov(Bors)! |Z'Z X' QX||X'Q1X]|

The bounds specified in inequalities (10) and (11) follow by applying the results of lemma 1
and theorem 2.

To gain some idea of the magnitude of these relative bounds consider the case for which
there is only one exogenous variable and the intercept coefficient of the regression is set to 0.
In this simple case, k = 1, theorems 2 and 3, part (b), lead to the following corollaries.

Corollary 1. Let v, and v, be the smallest and the largest eigenvalues of AQA’, with A
satisfying A’A = 7"; then

COV(BIGLS) <
< ——— < My, 12
cov(Bars) v (12

where My = (v, + 1,)*/(dv1v,,).
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This corollary is also known as the Kantorovich inequality (see Marcus and Ming (1964)).

Corollary 2. Let A; and A, be the smallest and the largest eigenvalues of €2, and let v, and v,
be the smallest and the largest eigenvalues of AQA’, with A satisfying A’A = E7'; then

COV(BIGLS) <
< ——— < My, 13
cov(Bors) v (1)

where My is given in corollary 1 and M =4\ )\, /(A + M)

In Table 1 we present the limits (M and M, ) for the relative efficiency of IGLS-AR(p),
p={1,4, 7}, vis-a-vis OLS and GLS when the disturbance term of the regression model
follows an MA(1) process with |#,] ranging from 0.1 to 0.9. Also included in Table 1 are the
corresponding eigenvalues \; and },, and v, and v,. Since the tabulated values are not very
sensitive to the sample size due to the fact that the eigenvalues required in evaluating both
My and M, do not change much with the sample size especially when |6, | is not near 1, for
brevity we have only reported results associated with n = 50.

As can be seen, M and M; do not depend on the sign of the moving average coefficient
0,. When |6,] is small, both v, and v, are close to 1 and so is My;, implying that the loss of
efficiency in using IGLS relative to GLS is small. For example, for |6,| = 0.4, My is equal to
1.0638, 1.0004 and 1.0000 for p = 1, 4, 7 respectively. As |6,| increases (say, |6,] > 0.5), the
difference between v, and v, increases, thus, forcing My, to increase away from 1, indicating
that the loss of efficiency in using IGLS relative to GLS can be substantial for some design
matrices X. This loss of efficiency, however, decreases substantially as the order of the AR(p)
process used to represent the MA(1) simulated disturbance structure increases, as can be
observed, for example, when |0;| = 0.8 and p = 1, 4, 7. These are respectively 5.42, 1.49 and
1.10.

In contrast, M, is less than 1 for all values of #, and orders p studied, indicating that OLS
can be considerably less efficient than IGLS. Note, for instance, when |6,| = 0.5, that ), is
almost 10 times larger than JA;, thus yielding an M;j-value of about 0.36. Although
theoretically the upper bound for the relative efficiency of IGLS vis-d-vis OLS can be greater
than 1, on the basis of the simulation study to be discussed in Section 4, the efficiency in
estimating the slope of a regression model with one exogenous variable using EIGLS-AR(p)

Table 1. Bounds for the relative efficiency of IGLS—AR(p) vis-a-vis OLS and GLS when the serially
correlated disturbance follows an MA(1) process

P Results for the following values of |0,|:
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
1 My 1.0025  1.0063 1.0325 1.0638 1.2795 1.4489 1.7580  5.4164 10.7587

2 0.9237 0.9237 0.8361 0.8361 0.6036 0.6036  0.6036  0.2315 0.2315
v, 1.0101  1.0828 1.1965 1.3786 1.6628 2.1191 29123 4.5399 9.4921
4 My 1.0000  1.0000 1.0000 1.0004 1.0037 1.0228 1.1110 1.4901 3.7109
vy 1.0000 0.9994 0.9953 0.9804 0.9415 0.8609  0.7233  0.5279 0.2988
v, 1.0000  1.0006 1.0047 1.0200 1.0624 1.1632 1.3917  1.9476 3.8138

7 My 1.0000  1.0000 1.0000 1.0000 1.0001 1.0010 1.0114  1.1006 1.8710
2 1.0000  1.0000 0.9999 0.9988 0.9928 0.9695  0.8995  0.7366 0.4566
v, 1.0000 1.0000 1.0001 1.0012 1.0072 1.0316 1.1133 1.3750 2.4179

1,4,7 Mg 09609 0.8526 0.6981 0.5262 0.3624 0.2244  0.1204  0.0518 0.0148
Al 0.8350 0.7226  0.6454 0.5923  0.5560 0.5317  0.5160  0.5067 0.5019
A 1.2463  1.6231 2.2193 3.2087 4.9624 8.3808 16.0987 38.1088 134.9336
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procedures is always superior to OLS. Again, we emphasize that the relative efficiency of
IGLS over OLS depends on the covariance structure of € (£2), its AR approximation matrix
(E) and the exogenous variables X.

There are other ways to measure the ‘relative severity of the consequences of misspecification
in statistical models’. Zinde-Walsh (1990) for instance, in a study of stationary stochastic
processes, used a measure based on distances (expected mean-squared error (MSE)) between
two data-generating processes to determine the consequences of misrepresenting an MA(1)
process by an estimated AR(1) model.

4. Finite sample properties of estimated incorrect generalized least squares

In this section we shall compare the finite sample efficiencies of EIGLS relative to GLS,
EGLS and OLS. We shall focus on only AR(p) GLS corrections for disturbances generated
by mixed ARMA(p, ¢) processes. This type of correction is probably the most widely used by
practitioners, at least on the basis of text-book coverage, and one which has been imple-
mented in many commonly employed statistical packages such as SAS and S-PLUS. Its origin
can be traced all the way back to Cochrane and Orcutt (1949) when they developed a simple
transformation for the OLS estimation of linear models with an AR(1) disturbance term.

4.1. The simulation set-up
To evaluate the quality of the regression estimates obtained from EIGLS-AR(p) procedures
we conducted an exhaustive simulation study to compare their finite sample performance
with the corresponding OLS estimates and with estimates obtained from GLS procedures
with known and estimated 2. We generated for sample sizes of 50, 100 and 200 observations
1000 realizations for each of a variety of stationary and invertible Gaussian ARMA(p, ¢q)
structures with varying parameter values as the residuals for the regression model with one
exogenous variable generated by an AR(1) process. The parameter values for the residual
ARMA structures were chosen not only to conform with other previously published studies
such as Glasbey (1982), Kallinen et al. (1990), Zinde-Walsh and Galbraith (1991) and
Koreisha and Fang (1999) but also to provide a representative set of examples of possible
autocorrelated error structures in regression models. Although we simulated tens of
thousands of trials, for brevity we shall report only a subset of our simulations. A more
comprehensive tabulation of the study including structures with other stationary and
invertible Gaussian ARMA(p, ¢) disturbance terms are available from the authors.

Using the International Mathematical and Statistical Libraries’ (1999) random-number
subroutine RNARM we constructed the regression model

y,=2.0+0.5x, +¢,

where the generating process for the exogenous variable x, followed an AR(1) process,
(1 = 7wB)x, = v,, with v, ~ IN(0, 1), and E(e,, v;) =0, Vt # s, and = = {0.0, 0.5, 1.0}. For a
given sample size only one set of random numbers was generated for each of the AR(1) model
structures of the exogenous variable. Breusch (1980) has shown that, for a fixed regressor, the
distribution of (Bggrs — 3)/c does not depend on 3 and 0. Moreover, the result holds even
if the covariance matrix 2 is misspecified (Breusch (1980), page 331). This implies that, in
simulation studies, only one point in the parameter space for (3, o°) needs to be considered
for EIGLS. When the regressor is stochastic, the assumption of a fixed regressor can be
construed as conditioning on a given realization of the regressor, provided that the regressor
is independent of «,.
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Tables 26 contrast the efficiency of the GLS estimates relative to that of OLS in terms of
the MSE,

é@,» = Z (Bz’,GLS - ﬁi)z/ E (Bi,OLS - /61')29

where i =0, 1, for five GLS estimates: the estimate based on the correct residual model
structures and known ARMA coefficients (denoted GLS), the estimate based on the correct
residual model structures but with estimated ARMA coefficients (denoted EGLS); the
estimate based on an AR(1) correction with an estimated AR coefficient (denoted EIGLS-
AR(1)) and two other EIGLS-AR(p) estimates with lags p equal to the closest integer part of
n'/? /2 and n'?. Estimates for the AR parameters used in the EIGLS—AR(j) correction were
obtained by using unconditional least squares, also referred to as non-linear least squares
(Spitzer, 1979). A ratio less than 1 indicates that the GLS estimates are more efficient than
OLS. We have included the efficiencies associated with GLS only as a bench-mark for
comparison since in practice we never really know the true structure of the covariance matrix,

Table 2. Relative efficiencies for AR(1) error processes

Sample  GLS type Relative efficiencies for the following parameter values:
e ¢ =03 ¢ =05
m=0.0 m=10.5 m=1.0 m=0.0 T=0.J5 m=1.0
S S S S S S S S S S S
50 GLS 0.992 0.868 0.992 0.827 0.990 0.917 0.982 0.647 0.981 0.555 0.975 0.752
EGLS 0.992 0.873 0.994 0.870 0.994 0.961 0.983 0.648 0.985 0.580 0.983 0.829

EIGLS-AR(1) 0.992 0.873 0.994 0.870 0.994 0.961 0.983 0.648 0.985 0.580 0.983 0.829
EIGLS-AR(4) 1.006 0.924 1.006 0.935 1.008 1.009 0.999 0.678 0.999 0.630 1.000 0.885
EIGLS-AR(7) 1.015 1.016 1.025 1.013 1.017 1.069 1.003 0.762 1.013 0.715 1.009 0.966
100 GLS 0.998 0.810 0.996 0.831 0.996 0.966 0.993 0.563 0.989 0.574 0.987 0.876
EGLS 0.999 0.821 0.998 0.850 0.996 0.976 0.994 0.570 0.992 0.591 0.988 0.898
EIGLS-AR(1) 1.010 0.893 1.010 0.918 1.007 1.004 1.001 0.612 1.001 0.646 0.996 0.931
EIGLS-AR(5) 1.010 0.893 1.010 0.918 1.007 1.004 1.001 0.612 1.001 0.646 0.996 0.931
EIGLS-AR(10) 1.018 0.960 1.021 0.969 1.014 1.036 1.010 0.628 1.011 0.691 1.005 0.968
200  GLS 1.001 0.839 1.001 0.834 0.999 0.990 1.000 0.600 0.999 0.577 0.989 0.954
EGLS 1.001 0.847 1.000 0.847 0.998 0.995 1.000 0.602 0.998 0.584 0.988 0.962
EIGLS-AR(1) 0.998 0.874 0.998 0.885 0.994 0.999 0.997 0.612 0.995 0.602 0.983 0.972
EIGLS-AR(7) 0.998 0.874 0.998 0.885 0.994 0.999 0.997 0.612 0.995 0.602 0.983 0.972
EIGLS-AR(14) 1.001 0.927 1.001 0.930 0.990 1.020 1.001 0.645 1.000 0.634 0.981 0.992

b =09 b1 =—09
50 GLS 0.808 0.169 0.807 0.104 0.770 0.157 0.935 0.106 0.919 0.126 0.869 0.394
EGLS 0.896 0.168 0.895 0.109 0.882 0.250 0.933 0.107 0.917 0.126 0.867 0.394

EIGLS-AR(1) 0915 0.174 0.904 0.120 0.900 0.275 0.940 0.121 0.927 0.143 0.871 0.404
EIGLS-AR(4) 0915 0.174 0904 0.120 0.900 0.275 0.940 0.121 0.927 0.143 0.871 0.404
EIGLS-AR(7)  0.965 0.201 0.941 0.158 0.948 0.360 0.963 0.155 0.946 0.171 0.896 0.426
100 GLS 0.872 0.094 0.870 0.083 0.863 0.245 0.865 0.112 0.885 0.203 0.906 0.584
EGLS 0.897 0.096 0.905 0.085 0.891 0.287 0.864 0.112 0.884 0.203 0.906 0.584
EIGLS-AR(1) 0.901 0.097 0.904 0.089 0.898 0.313 0.871 0.123 0.893 0.217 0.913 0.589
EIGLS-AR(5) 0.901 0.097 0.904 0.089 0.898 0.313 0.871 0.123 0.893 0.217 0.913 0.589
EIGLS-AR(10) 0.916 0.108 0.920 0.101 0.915 0.341 0.888 0.139 0.907 0.236 0.918 0.619
200  GLS 0.938 0.112 0.936 0.087 0.773 0.322 0.892 0.110 0.891 0.185 0.950 0.798
EGLS 0.944 0.112 0.943 0.087 0.781 0.351 0.891 0.110 0.891 0.185 0.950 0.797
EIGLS-AR(1) 0942 0.114 0.940 0.089 0.790 0.370 0.892 0.115 0.893 0.191 0.954 0.798
EIGLS-AR(7) 0942 0.114 0.940 0.089 0.790 0.370 0.892 0.115 0.893 0.191 0.954 0.798
EIGLS-AR(14) 0.944 0.118 0.949 0.094 0.805 0.404 0.898 0.132 0.899 0.212 0.951 0.816
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Table 3. Relative efficiencies for MA(1) error processes

Sample  GLS type Relative efficiencies for the following parameter values:
e 0, =0.37 0, =0.5%
m™=0.0 m=10.5 m=1.0 m=0.0 T=10.5 m=1.0
S S S S S Sy S Sa S S
50 GLS 1.000 0.826 1.000 0.817 0.999 0.958 0.979 0.595 0.978 0.547 0.973 0.806
EGLS 1.016 0.908 1.016 0.887 1.015 0.989 0.993 0.681 0.991 0.589 0.987 0.827

EIGLS-AR(1) 0.998 0.890 0.998 0.860 0.998 0.961 0.983 0.732 0.982 0.634 0.979 0.833
EIGLS-AR(4) 1.003 0.929 1.003 0.889 1.002 0.979 0.980 0.693 0.980 0.593 0.975 0.818
EIGLS-AR(7) 1.027 0.997 1.024 0.933 1.021 1.007 1.000 0.737 0.996 0.621 0.990 0.830
100 GLS 0.995 0.844 0.992 0.859 0.996 0.965 0.971 0.593 0.962 0.596 0.976 0.854
EGLS 1.000 0.878 0.998 0.890 0.996 0.978 0976 0.628 0.967 0.626 0.975 0.862
EIGLS-AR(1) 0.996 0.873 0.995 0.886 0.998 0.969 0.980 0.698 0.975 0.692 0.984 0.888
EIGLS-AR(5) 1.008 0.923 1.004 0.912 1.007 0972 0.982 0.648 0.973 0.628 0.983 0.855
EIGLS-AR(10) 1.013 0.967 1.013 0.946 1.011 1.007 0.987 0.681 0.980 0.659 0.986 0.884
200 GLS 0.992 0.828 0.992 0.855 0.993 0.981 0.974 0.585 0.970 0.590 0.974 0.926
EGLS 0.990 0.852 0.989 0.876 0.993 0.985 0.972 0.603 0.968 0.603 0.973 0.929
EIGLS-AR(1) 0.992 0.854 0991 0.872 0.993 0.983 0.979 0.683 0.975 0.673 0.978 0.939
EIGLS-AR(7) 0.991 0.875 0.991 0.889 0.994 0.981 0.975 0.613 0.972 0.605 0.976 0.924
EIGLS-AR(14) 0.996 0.921 0.997 0.939 0.990 1.001 0.979 0.648 0.977 0.643 0.973 0.941

0, = 0.9 0, = —0.98
50 GLS 0.365 0.155 0.366 0.106 0.339 0.187 0.989 0.142 0.988 0.186 0.968 0.502
EGLS 0401 0.233 0408 0.147 0363 0.199 0.989 0.206 0.988 0.267 0.969 0.575

EIGLS-AR(1) 0.687 0.570 0.681 0.396 0.641 0.393 0.995 0.547 0.995 0.609 0.991 0.891
EIGLS-AR(4) 0.518 0.349 0.520 0.214 0.477 0.256 1.007 0.329 1.005 0.421 0.999 0.810
EIGLS-AR(7) 0.430 0.295 0.442 0.188 0.386 0.217 1.016 0.264 1.019 0.368 1.008 0.782
100 GLS 0.326 0.099 0.310 0.084 0.369 0.191 0.998 0.098 0.993 0.177 0.984 0.662
EGLS 0.370 0.147 0.352 0.120 0.387 0.213 0.998 0.138 0.993 0.220 0.985 0.700
EIGLS-AR(1) 0.669 0.514 0.624 0.426 0.697 0.522 1.000 0.514 0.997 0.654 0.997 0.960
EIGLS-AR(5) 0.435 0.205 0.403 0.160 0.458 0.277 1.009 0.201 1.007 0.344 0.998 0.839
EIGLS-AR(10) 0.399 0.181 0.378 0.144 0.406 0.231 1.016 0.182 1.017 0.320 1.007 0.834
200  GLS 0.448 0.098 0.393 0.076 0.441 0.237 0.998 0.111 0.996 0.185 0.979 0.888
EGLS 0.462 0.121 0.407 0.093 0.447 0.247 0997 0.137 0.994 0.217 0.981 0.906
EIGLS-AR(1) 0.713 0.509 0.661 0.416 0.665 0.531 1.003 0.523 1.001 0.650 0.995 0.988
EIGLS-AR(7) 0.487 0.153 0.428 0.119 0.471 0.297 0.998 0.183 0.995 0.280 0.982 0.937
EIGLS-AR(14) 0.470 0.135 0.413 0.104 0.452 0.260 0.997 0.174 0.994 0.268 0.970 0.944

t [-weights of the AR representation, m, m, . . ., ms: —3.0 x 107", =9.0 x 1072, =27 x 1072, =8.1 x 1073, —2.4
x1073, =73 x107*, =22 x 107, —6.6 x 107>, —=2.0 x 1075, =5.9x 107, —1.8 x 10™®, —=5.3 x 1077, —1.6 x 107,
—49%x10°% —1.4x 1075

i IT-weights of the AR representation, |, Moy - o Mist —50x 107", =2.5x 107", =1.3x 107", —=6.3 x 1072, 3. 1
x1072, —1.6 x 1072, —7.8 x 1073, —=3.9 x 1073, 20%10° ,—9.8x107%, —49 x 107* 724x 1074, —1. 2% 1074,
—6.1x 107, =3.1 x 107°.

§IT-weights of the AR representation, m;, m, . . ., m5: —0.900, —0.810, —0.729, —0.656, —0.590, —0.531, —0.478,
—0.430, —0.387, —0.349, —0.314, —0.282, —0.254, —0.229, —0.206.

§§ IM-weights of the AR representation, 7, 7, . . ., m5: 0.900, —0.810, 0.729, —0.656, 0.590, —0.5314, 0.478, —0.430,
0.387, —0.349, 0.314, —0.282, 0.254, —0.229, 0.206.

let alone its parameters. To gain additional insights into the efficiency of the EIGLS estimates

over OLS we have included in each table a finite AR representation of the ARMA(p, ¢) error
process.

4.2. The empirical results
In examining the results from Tables 2—6 six general conclusions emerge. First and foremost
we see that regardless of the sample size for all model structures and parameterizations the
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Table 4. Relative efficiencies for AR(2) and MA(2) error processes

Sample  GLS type Relative efficiencies for the following parameter values:
size
(¢, ¢2)=(142, —0.73) (1, ¢2)=(1.60, —0.64)
™=0.0 T=0.5 m=1.0 m=0.0 T=0.5 m=1.0
630 631 gdo 63 | éﬁu 651 6‘30 63 1 630 €~7 | érfu 64 1
(a) AR(2)
50 GLS 0.950 0.066 0.949 0.055 0917 0.215 0.739 0.012 0.737 0.007 0.687 0.013
EGLS 0.962 0.065 0.959 0.056 0.930 0.234 2.080 0.014 10.55 0.013 0.823 0.061

EIGLS-AR(1) 1.123 0.096 1.109 0.112 1.103 0.482 32.60 0.014 5.068 0.013 1185 0.073
EIGLS-AR(4) 0.967 0.070 0.966 0.064 0.941 0.265 2.009 0.014 3.211 0.013 2.039 0.073
EIGLS-AR(7) 0.975 0.080 0.975 0.082 0.954 0.333 1.785 0.018 2.496 0.018 2.375 0.111
100 GLS 0.969 0.046 0.962 0.060 0.934 0.393  0.829 0.006 0.829 0.006 0.811 0.023
EGLS 0.973 0.046 0.965 0.061 0.938 0.410 0.857 0.007 0.863 0.008 0.850 0.031
EIGLS-AR(1) 1.058 0.083 1.046 0.162 1.040 1.045 3.351 0.008 13.63 0.011 56.89 0.076
EIGLS-AR(5) 0.976 0.053 0.970 0.074 0.942 0.448 0.971 0.009 0.937 0.010 1.002 0.055
EIGLS-AR(10) 0.986 0.055 0.982 0.080 0.952 0.474 0.953 0.010 0.966 0.011 0.912 0.055
200  GLS 0.977 0.051 0.966 0.059 0.921 0.674 0.914 0.007 0.910 0.006 0.672 0.041
EGLS 0.978 0.051 0.967 0.059 0.920 0.679 0.920 0.007 0.919 0.006 0.684 0.043
EIGLS-AR(1) 1.057 0.086 1.047 0.146 1.202 1.578 1.053 0.009 1.049 0.010 0.785 0.107
EIGLS-AR(7) 0.976 0.053 0.964 0.063 0.911 0.691 0.960 0.008 0.993 0.008 0.728 0.060
EIGLS-AR(14) 0.981 0.055 0.969 0.065 0.915 0.703  0.941 0.009 0.987 0.008 0.727 0.059

(0, 0,)=(1.42, —=0.73)% (0,, 0,)=(1.80, =0.90)}
(b) MA(2)
50 GLS 0.739 0.059 0.738 0.049 0.716 0.200 0.142 0.006 0.143 0.036  0.139 0.012
EGLS 0.749 0.091 0.753 0.078 0.721 0.211 0.174 0.056 0.193 0.041  0.162 0.022

EIGLS-AR(1) 0.788 0.300 0.785 0.172 0.758 0.263  0.373 0.318  0.367 0.168 0.322 0.109
EIGLS-AR(4) 0.752 0.108 0.752 0.076 0.730 0.215 0.198 0.084 0.202 0.040 0.176 0.024
EIGLS-AR(7) 0.758 0.122 0.757 0.086 0.730 0.220 0.174 0.074 0.199 0.045 0.164 0.021
100 GLS 0.688 0.047 0.691 0.060 0.755 0.312 0.128 0.004 0.132 0.004 0.164 0.022
EGLS 0.691 0.061 0.698 0.069 0.756 0.313  0.148 0.025 0.148 0.019 0.174 0.031
EIGLS-AR(1) 0.749 0.233 0.743 0.180 0.810 0.411 0.347 0.245 0.310 0.165 0.394 0.211
EIGLS-AR(5) 0.700 0.075 0.704 0.085 0.772 0.339  0.151 0.027 0.149 0.018 0.177 0.036
EIGLS-AR(10) 0.717 0.077 0.718 0.082 0.768 0.330 0.157 0.032 0.156 0.022 0.180 0.034
200  GLS 0.788 0.050 0.773 0.059 0.801 0.522  0.216 0.004 0.195 0.003 0.236 0.067
EGLS 0.789 0.052 0.775 0.062 0.803 0.524 0.228 0.012  0.207 0.001 0.238 0.068
EIGLS-AR(1) 0.824 0.237 0.802 0.173 0.841 0.593  0.405 0.250 0.355 0.164 0.373 0.212
EIGLS-AR(7) 0.794 0.062 0.780 0.070 0.812 0.540 0.226 0.014 0.206 0.011 0.246 0.079
EIGLS-AR(14) 0.798 0.063 0.784 0.072 0.814 0.549 0.231 0.017 0.209 0.013 0.249 0.077

+[M-weights of the AR representation, m, m, . . ., m5: —1.420, —1.286, —0.790, —0.183, 0.317, 0.584, 0.597, 0.422,
0.163, —0.076, —0.227, —0.267, —0.214, —0.108, 0.002.
1 [M-weights of the AR representation, =, m, . . ., m5: —1.800, —2.340, —2.592, —2.560, —2.274, —1.790, —1.176,

—0.505, 0.149, 0.723, 1.167, 1.450, 1.560, 1.503, 1.301.

efficiency in estimating the slope of the regression model (3;) is higher for the GLS
procedures including those based on incorrectly identified error structures (IGLS) than for
OLS when the exogenous variable is stationary. The relative efficiency gain of GLS and IGLS
over OLS in estimating (3, seems to depend not only on the ARMA(p, g) error structure but
also on the magnitude of the parameters themselves. For pure AR processes (Tables 2 and 4,
part (a)), the improvement in relative efficiency ranges from nearly 0 to about 300%. For
example, when 7 = 0 and »n = 100 for the AR(1) model with ¢ = 0.5, {3 changes from 0.563
to 0.628 whereas the variation for the AR(2) parameterization with ¢, = 1.60 and ¢, = —0.64
ranges from 0.006 to 0.010. From Table 2, it can also be seen that as the magnitude of the
AR(1) parameter increases so does the relative efficiency of the GLS and IGLS estimates over
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Table 5. Relative efficiencies for ARMA(1, 1), ARMA(1, 2) and ARMA(2, 1) error processes

Sample  GLS type Relative efficiencies for the following parameter values:
size
(¢1, 0,)=(0.8,0.5)7 (61, 0,)=(—0.8,0.7)%
™=0.0 =05 T=1.0 ™=0.0 T=0.5 m=1.0
630 631 630 é2‘31 é‘ffn 6'51 6'30 gA‘Ul 6»‘-’0 é‘dl é‘-’o 631

(a) ARMA(I, 1)

50 GLS 1.013 0.758 1.013 0.595 1.008 0.656 0.861 0.031 0.859 0.023 0.820 0.052
EGLS 1.011 0.794 1.010 0.693 1.008 0.844 0.894 0.042 0.896 0.041 0.870 0.139
EIGLS-AR(1) 0.994 0.775 0.995 0.685 0.993 0.866 0.910 0.069 0.910 0.062 0.896 0.195
EIGLS-AR(4) 1.007 0.834 1.005 0.714 1.007 0.855 0921 0.056 0.935 0.051 0921 0.190
EIGLS-AR(7) 1.015 0.935 1.012 0.826 1.013 0975 0.946 0.059 0.951 0.063 0.948 0.237

100  GLS 1.007 0.664 1.005 0.588 1.000 0.798 0.923 0.019 0.921 0.023 0.903 0.103
EGLS 1.010 0.689 1.012 0.632 1.002 0.863 0.934 0.027 0.936 0.033 0.913 0.140
EIGLS-AR(1) 0.998 0.707 0.997 0.670 0.995 0.903 0.931 0.056 0.930 0.073 0.904 0.295
EIGLS-AR(5) 1.009 0.726 1.010 0.662 1.000 0.875 0.940 0.041 0.940 0.053 0.925 0.224
EIGLS-AR(10) 1.011 0.775 1.012 0.703 1.005 0.915 0.952 0.039 0.954 0.051 0.937 0.210

200 GLS 1.013 0.706 1.011 0.593 0.982 0.898 0.965 0.025 0.962 0.025 0.767 0.228
EGLS 1.013 0719 1.010 0.612 0972 0915 0967 0.028 0.964 0.030 0.768 0.242
EIGLS-AR(1) 1.001 0.753 1.000 0.672 0.990 0.956 0.971 0.060 0.967 0.066 0.812 0.467
EIGLS-AR(7) 1.006 0.743 1.004 0.632 0971 0.926 0.968 0.045 0.965 0.048 0.791 0.356
EIGLS-AR(14) 1.013 0.772 1012 0.658 0.977 0.958 0.969 0.040 0.966 0.043 0.800 0.343

(¢1, 01, 0,)=(—0.8, 1.4, —0.6)§ (1, 2, 0))=(14, =0.6, —0.8)§§
(b) ARMA(L, 2) and ARMA(2, 1)
50 GLS 0.105 0.002 0.091 0.002 0.060 0.006 0.909 0.003 0.908 0.002 0.874 0.009
EGLS 0.132 0.018 0.129 0.018 0.071 0.015 0.931 0.003 0.931 0.002 0.899 0.009

EIGLS-AR(1) 0.172 0.038 0.147 0.018 0.094 0.015 1.439 0.025 1.751 0.036 1.412 0.165
EIGLS-AR(4) 0.135 0.018 0.132 0.014 0.070 0.009 1.121 0.013 1.142 0.018 1.074 0.083
EIGLS-AR(7) 0.150 0.024 0.157 0.018 0.095 0.015 1.108 0.017 1.282 0.026 1.085 0.132
100 GLS 0.061 0.002 0.073 0.003 0.088 0.014 0.950 0.002 0.946 0.002 0.909 0.017
EGLS 0.072 0.010 0.084 0.010 0.092 0.018 0.956 0.002 0.955 0.002 0.922 0.017
EIGLS-AR(1) 0.101 0.029 0.109 0.020 0.143 0.043 1.035 0.027 1.026 0.057 0.979 0.388
EIGLS-AR(5) 0.073 0.011 0.084 0.009 0.093 0.017 0.962 0.009 0.959 0.013 0.919 0.053
EIGLS-AR(10) 0.076 0.014 0.088 0.012 0.101 0.020 0.969 0.009 0.965 0.013 0.929 0.058
200  GLS 0.081 0.002 0.077 0.003 0.145 0.035 0.975 0.002 0.967 0.003 0.707 0.057
EGLS 0.084 0.005 0.082 0.006 0.145 0.035 0.974 0.002 0.967 0.003 0.708 0.057
EIGLS-AR(1) 0.109 0.031 0.101 0.021 0.176 0.060 1.031 0.028 1.024 0.049 0.973 0.800
EIGLS-AR(7) 0.086 0.007 0.084 0.007 0.146 0.036 0.978 0.059 0.970 0.007 0.719 0.078
EIGLS-AR(14) 0.087 0.008 0.084 0.008 0.158 0.042 0.980 0.061 0.973 0.008 0.722 0.083

+ M-weights of the AR representation, m, T, . . ., m5: 3.0 x 107", 1.5x 107", 7.5 x 107%,3.8 x 1072, 1.9 x 1072, 9.4
X107, 4.7 x 1072, 2.3 x 1072, 1.2 x 107, 5.9 x 107,29 x 107, 1.5 x 107, 7.3 x 1073, 3.7 x 107>, 1.8 x 107°.

i IT-weights of the AR representation, 7, 7, . . ., m;5: —1.500, —1.050, —0.735, —0.515, —0.360, —0.252, —0.176,
—0.124, —0.086, —0.061, —0.042, —0.030, —0.021, —0.015, —0.010.

§T-weights of the AR representation, m,, m, . . ., mj5s: —2.200, —2.480, —2.152, —1.525, —0.844, —0.266, 0.134,
0.347, 0.405, 0.359, 0.260, 0.148, 0.052, —0.017, —0.054.

§§ IM-weights of the AR representation, 7, 7, . . ., ms5: 2.200, 0.350, —0.280, 0.224, —0.179, 0.144, —0.115, 0.092,

—0.073, 0.059, —0.047, 0.038, —0.030, 0.024, —0.019.

OLS. Similar observations on the estimates of 3, can be made for other error structures and
parameterizations.

When the exogenous variable is non-stationary the only times when we observed the
relative efficiency of GLS to be lower than OLS in estimating the slope of the regression were
when EIGLS was used to correct AR(1) and MA(1) disturbances with ¢ = 0.3 (Table 2) and
0 = 0.3 (Table 3) respectively. However, even in these cases the maximum value observed for
s, was only 1.069 (Table 2, EIGLS-AR(7) and n = 50).
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Table 6. MSEs of GLS estimators when the serially correlated disturbance follows AR(2) processes

T Estimator MSE(S,) MSE(B,)
n=>50 n=100 n=200 n=400 n=50 n=100 n=200 n=400

(a) (91, ¢)=(1.42, —0.73)

0 OLS 0.217 0.113  0.054 0.027 0.063 0.056 0.027 0.015
GLS 0.206 0.110  0.053 0.026 0.005 0.003 0.001 0.001
EGLS 0.209 0.110  0.053 0.026 0.005 0.003 0.001 0.001
EIGLS-AR(1) 0.243 0.119  0.057 0.027 0.007 0.005 0.002 0.001
EIGLS-AR([1'/%/2]) 0.210 0.110  0.052 0.026 0.005 0.003 0.001 0.001
EIGLS-AR([1n'/]) 0.211 0.111  0.053 0.026 0.006 0.003 0.001 0.001

0.5 OLS 0.217 0.114  0.055 0.030 0.159 0.081 0.042 0.025
GLS 0.206 0.110  0.053 0.029 0.009 0.005 0.002 0.001
EGLS 0.208 0.110  0.053 0.029 0.009 0.005 0.002 0.001
EIGLS-AR(1) 0.241 0.119  0.057 0.030 0.018 0.013 0.006 0.003
EIGLS-AR([1'?/2]) 0.210 0.110  0.053 0.029 0.010 0.006 0.003 0.001
EIGLS-AR([n'/]) 0.212 0.112  0.053 0.028 0.013 0.006 0.003 0.001

1 OLS 0.226 0.120  0.077 0.074 0.055 0.013 0.002 0.001
GLS 0.207 0.112  0.071 0.058 0.012 0.005 0.001 0.001
EGLS 0.210 0.113  0.070 0.059 0.012 0.005 0.001 0.001
EIGLS-AR(1) 0.249 0.125  0.092 0.091 0.027 0.014 0.003 0.002
EIGLS-AR([1n'?/2]) 0.213 0.113  0.070 0.059 0.015 0.006 0.001 0.001
EIGLS-AR([n'/]) 0.216 0.114  0.070 0.057 0.018 0.006 0.001 0.001

(b) (1, ¢)=(1.60, —0.64)

0  OLS 9.672 5936  2.968 1.693 0.360 0.392 0.176 0.065
GLS 7.144 4918 2712 1.590 0.003 0.002 0.001 0.001
EGLS 20.12 5085  2.729 1.588 0.005 0.003 0.001 0.001
EIGLS-AR(1) 315.3 19.89 3.127 1.610 0.005 0.003 0.002 0.001
EIGLS-AR([n'?/2])  19.43 5760  2.848 1.582 0.005 0.003 0.001 0.001
EIGLS-AR([n'/]) 17.26 5.655  2.792 1.638 0.006 0.004 0.002 0.001

0.5 OLS 9.700 5931  2.980 1.700 1.145 0.729 0.381 0.143
GLS 7.114 4919 2713 1.590 0.008 0.004 0.002 0.001
EGLS 7.144 5120 2.739 1.589 0.015 0.005 0.002 0.001
EIGLS-AR(1) 102.3 40.42 3.126 1.618 0.014 0.008 0.004 0.001
EIGLS-AR([n'?/2])  49.16 5.558 2958 1.585 0.015 0.007 0.003 0.001
EIGLS-AR([n'/]) 31.15 5729 2.941 1.638 0.020 0.008 0.003 0.001

1 OLS 10.41 6.069  4.161 3.705 1.019 0.308 0.087 0.042
GLS 7.147 4919 2796 1.718 0.498 0.007 0.004 0.001
EGLS 8.571 5161 2.847 1.731 0.516 0.009 0.004 0.002
EIGLS-AR(1) 1234 345.3 3.267 2.013 0.516 0.023 0.009 0.003
EIGLS-AR([n'?/2]) 2123 6.082  3.030 1.749 0.524 0.017 0.005 0.002
EIGLS-AR([1"/%]) 24.72 5536 3.023 1.729 0.534 0.017 0.005 0.002

Second, the relative efficiency of GLS and IGLS over OLS in estimating the intercept term
B, is more dependent on the error structure that is used to obtain E in equation (3). With one
exception, i.e. the AR(2) model with parameterization (1.60, —0.64) (Table 4, part (a)), the
relative efficiency of GLS and EGLS in estimating (3, is either comparable with or, more
commonly, much higher than OLS, up to more than 10 times, as demonstrated by the
ARMA(1, 2) process with the parameterization (¢;, 6,, #,) = (—0.8, 1.4, —0.6) in Table 5. For
the ‘incorrectly’ identified error structures, i.e. EIGLS based on AR(p) models, the relative
superiority of OLS over GLS is only observed in a few cases when the sample size is relatively
small (i.e. n = 50) and when the AR order of the error structure used in the GLS estimation is
lower than the simulated AR structure (see the AR(2) model with parameterization (1.60,
—0.64) in Table 4, part (a)) or lower than an ‘appropriate’ finite AR representation of the
simulated structure (see the ARMA(2, 1) parameterization (1.40, —0.60, —0.80) in Table 5).
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To understand why the relative efficiency of EIGLS in estimating 3, can be lower than that
of OLS at times, consider the situation when the disturbances of the regression model with an
AR(1) exogenous variable follow an AR(2) process, i.e.

Y= B+ Bix; + ¢,

14
€ = ¢16,1 + Pr€,n + (14

where the a,s are IID(0, 1).
If we use an AR(1) instead of the AR(2) GLS correction, then, we are essentially per-
forming an OLS estimation of the regression model

= B0+ BixT + €7, (15)

where y¥=y, — p1y_1, X¥=x,—p1x,_, and € =¢,— pe,_;, and p, is the first-order auto-
correlation of ¢, in model (14), i.e. p; = ¢, /(1 — ¢,). The constant of the new regression, 50, is
Bo(1 — p;). Thus, an estimate of 3, can be recovered from G by using the equatlon By, =
ﬁg"/(l — py). The estimation error of Gy, i.e. var(0,), is approximately Vdr(ﬁo)/(l — p;)*. Con-
sequently, when p, is close to 1, it is possible for var(/3,) to ‘blow up’, leading at times to much
higher values than var(3§). For example, consider the case where (¢, ¢,) = (1.6, —0.64).
Since p; ~ 0.98,

var(f3,) ~ var(5¢)/0.02* = 2500 var(3%).

If the estimation error var(37) is of the same magnitude as that of the OLS estimator of 3,
based on model (14), then the estimation error of the OLS estimator of 3, based on model
(15) will inevitably be higher as shown in a few cases in Table 4, part (a). (If p; & 1, it can be
shown that x7 is an AR(2) process unless the first-order autocorrelation of x, is p;, and €} is
close to an AR(1) process with AR coefficient —¢,.)

The third general conclusion from the simulation study is that the differences in the relative
efficiency of EIGLS vis-a-vis GLS and EGLS in estimating 3, with a few expected exceptions
is not very large. In fact, when the error structure is assumed to follow an AR(p) model with
p=[n" /2] the relative efficiency of EIGLS is comparable with that of EGLS regardless of
the sample size particularly when the exogenous variable is stationary. Some of the most
noticeable exceptions to this general conclusion occur when the order of the EIGLS
correction is much smaller than a ‘reasonable’ corresponding finite AR representation of the
simulated autocorrelation structure. For example, consider the MA(1) process with # = 0.9 in
Table 3. When n = 50, the {5 s for EGLS are 0.233, 0.147 and 0.199 for 7 equal to 0, 0.5 and
1 respectively, whereas the corresponding ¢z s for EIGLS based on the AR(1) process are
0.570, 0.396 and 0.393. Note, however, that as the order of the error AR structure increases,
say to [n'/? /2], the differences in efficiencies between EIGLS and EGLS (GLS) decrease
considerably. For the MA(2) parameterizations (Table 4, part (b)) even when 7 =1 the
differences in GLS efficiencies between correctly and incorrectly identified error structures
are very small.

When the order of the AR error structure is set to [n /< /2], the only times that we observed
the relative efficiency of OLS to be superior to that of EIGLS in estimating the constant f3,
was when n = 50 for the AR(2) and ARMA(2, 1) model structures mentioned earlier.

These observations differ from those in many previous studies, particularly from those
implied by Engle (1974), and others subsequently such as Judge ez al. (1985) and Choudhury
et al. (1999). Engle (1974) demonstrated that, asymptotically, under certain conditions OLS
‘should generally [provide] superior estimate[s]’ (page 145) compared with GLS when an

1/2
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incorrect truncation of the order of the autocorrelation of the disturbances is used. He
illustrated this by using AR(2) disturbances that were approximated by AR(1) processes. His
results depended on the asymptotic distribution of eigenvalues of Toeplitz form matrices
(Szegd, 1917). They do not appear to hold for finite samples even when n =200 as
highlighted by the results found in Table 4, part (a), and in particular by the same AR(2)
parameterization (1.6, —0.64) used by Engle (1974) to exemplify his proofs. Admonitions
such as ‘OLS may often be better than assuming another incorrect truncation of the actual
process’ (Judge et al. (1985), page 281) and ‘sometimes it is better to ignore the problem
altogether and use OLS rather than to incorrectly assume the process is AR(1)’ (Choudhury
et al. (1999), page 347) should be viewed with caution since they are based on asymptotic not
finite sample theoretical results; truncations should depend on the sample size (Berk, 1974).

Fourth, our study corroborates the findings of Zinde-Walsh and Galbraith (1991), among
others, that the relative efficiency of GLS over OLS decreases as the magnitude of the AR
parameter 7 associated with the exogenous variable of the regression model increases. Unlike
Zinde-Walsh and Galbraith’s results, however, in many cases (often for n = 50) we observed
a small improvement in efficiency when 7 increased from 0 to 0.5. A decline in efficiency was
usually observed when 7 changed from 0.5 to 1. This pattern can be easily seen by checking
some of the results associated with say the ARMA(1, 1) error structures of Table 5.

Fifth, for stationary exogenous variables the relative efficiency of GLS and IGLS over
OLS does not appear to be affected significantly by the sample size. For non-stationary
exogenous variables the efficiency generally deteriorates as the sample size increases, as
illustrated in Table 5, part (b), which contains the relative efficiencies for ARMA(2, 1) error
processes. As can be seen for the parameterization (1.40, —0.60, —0.80), the 5 s for EGLS for
n =150, 100, 200 are 0.009, 0.017 and 0.057 respectively. For non-stationary exogenous
variables, gains in efficiency of GLS and IGLS over OLS are less than those for the
corresponding stationary cases. These results are in general agreement with Kramer’s (1986)
asymptotic results showing that, when € is an AR(p) process and x, follows an integrated
process, OLS and GLS are asymptotically equivalent. Krdmer’s results depend crucially on
the fact that sample autocorrelations of the independent variable tend to 1 in probability
as n — 0o, a property that makes OLS asymptotically as efficient as GLS (EGLS), and,
consequently, as efficient as any asymptotically efficient IGLS (EIGLS).

Although OLS, GLS and IGLS yield consistent estimators (Aitken (1935) and theorem 1
of Section 2), the rate of convergence of these estimators can be quite different. In Table 6 we
report MSEs of OLS, GLS and IGLS estimators for sample sizes 50, 100, 200 and 400 when
the serially correlated disturbance follows two AR(2) processes. As can be seen when the
roots of the disturbance term are far from the unit circle, i.e. (¢, ¢,) = (1.42, —0.73), the
MSE:s for both g, and 3, obtained from OLS, GLS and IGLS appear to decline at relatively
similar rates. However, when the roots of the error structure are close to the unit circle, i.e.
(¢1, ¢5) = (1.60, —0.64), the MSEs for g, decline faster for GLS and IGLS than for OLS.
Moreover, there seems to be very little difference in the declining rates between the GLS and
IGLS procedures. The MSEs associated with 3, based on OLS, GLS and IGLS decline at
similar rates.

5. Concluding remarks

We have examined the finite sample performance of GLS and IGLS methods vis-a-vis OLS for
the estimation of regression models with autocorrelated disturbances. We have established
theoretical efficiency bounds for GLS procedures based on ‘incorrectly’ identified error
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structures relative to OLS and GLS methods based on ‘correctly’ identified and known or
estimated error structures. From a large simulation study we found that GLS estimation
based on AR representations of ARMA(p, ¢) disturbances yields more efficient estimates
than OLS does particularly when the order of the autoregression is set near [n'/> /2] and the
exogenous variables are stationary. Moreover, we observed that in most cases the differences
in estimation efficiency between EIGLS and EGLS are small. This suggests that there may
not be much to be gained in trying to identify the ‘correct’ order of OLS residuals when
performing GLS estimation especially in the light of the tenuous identification performance
of commonly used procedures based on finite, especially small, samples. We are currently
investigating the effect that EIGLS corrections may have on forecasting performance.
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