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Semi-Parametric Specification Tests for Discrete
Probability Models
Yue Fang

Abstract

Loss functions play an important role in analyzing insurance portfolios.
A fundamental issue in the study of loss functions involves the selection of
probability models for claim frequencies. In this article, we propose a semi-
parametric approach based on the generalized method of moments (GMM)
to solve the specification problems concerning claim frequency distributions.
The GMM-based testing procedure provides a general framework that en-
compasses many specification problems of interest in actuarial applications.
As an alternative approach to the Pearson�2 and other goodness-of-fit tests, it
is easy to implement and should be of practical use in applications involving
selecting and validating probability models with complex characteristics.

Introduction
Virtually all insurance problems are about the building of a mathematical model that
can be used to quantify the loss function and to predict future insurance costs. The
usual starting place of such practice is the search of a model for the claim frequency
distribution. In many cases, when confronting a large collection of distributions from
which to choose, one has to narrow the selection to a single model. The chosen model
should provide a balance between simplicity and conformity to the available data.

In this article, we provide a semi-parametric approach based on the generalized
method of moments (GMM) to solve the specification problems concerning claim fre-
quencydistributions. Initially,wedevelop the arguments in ageneral setting. Then, for
illustrative purposes, we focus on a few important special cases. As a general frame-
work, the GMM-based testing procedure provides much of the flexibility needed to
encompass a variety of specification problems.An appealing feature of this semi-para-
metric approach is that it does not require complete knowledge of the distribution but
only demands the specification of a set of moment conditions that the model should
satisfy. Since it depends only upon moment restrictions of the model of interest, it is
easy to implement even when the problem involves complex distributional forms.
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The structure of the article is as follows. “Current Perspectives” outlines current per-
spectives of frequency distributions and commonly used specification testing
methods. The next section presents the GMM-based testing procedure and briefly
summarizes some of the properties of the proposed tests. “Two Illustrative Examples”
demonstrates themethod. “AnEmpirical Example” illustrates the empirical relevance
of the proposed testingprocedure through an application to theUnitedKingdomcom-
prehensive motor policy data of Johnson and Hey (1971). The conclusion follows.

Current Perspectives

Frequency Distributions
There are various possible choices of claim frequency distributions. A natural starting
place is the Poisson distribution with a constant parameter �, which measures the ex-
pected number of accidents. Early work using the Poisson distribution in the context
of insurance includes Bohlmann (1909), Lundberg (1909), and Cramèr (1930). At times
when the homogeneous Poisson does not adequately describe the characteristics of
data, one can obtain generalized distributions in two common ways. First, one may
consider mixed Poisson distributions by treating � as the outcome of a random vari-
able. With more flexibility in shape than the homogeneous Poisson, mixed Poisson
distributions have been extensively used when the heterogeneity of risks arises. For
example, the negative binomial, which is of central importance within the family of
mixed Poisson distributions because of its convenient mathematical properties, has
been viewed as one of the most important alternatives to the homogeneous Poisson in
the classical collective risk theory (Dickson et al., 1998). The Poisson-inverse Gaussian
distribution is another widely used mixed Poisson distribution. Observing that the
Poisson-inverse Gaussian distribution has similar statistical properties to the nega-
tive binomial, the Poisson-inverse Gaussian may be used to model similar physical
phenomena as the negative binomial. Generalizations of the Poisson-inverse Gauss-
ian have been considered by Kestemont and Paris (1985) and Rubinstein et al. (1987),
among others. But the use of generalized Poisson-inverse Gaussian distributions be-
comes less inconvenient because of the increased complexity of the inference due to
the complicated mixing distribution and the compound nature of the problem.

Another possibility to strive for maximum flexibility in the model is to use recursive
formulas to obtain families of distributions. For instance, one of the most prominent
families, the Katz family (1965), whose successive probabilities satisfy first-order re-
currence relations, has been studied in Klugman et al. (1998). The Katz family of distri-
butions, which consists of the Poisson, binomial, and negative binomial distributions,
forms a simple class with the property of being equi-, under-, or over-dispersed. One
can also find extensions to the Katz family in the literature. They are usually derived
by introducing more parameters and/or allowing more general recursive formulas
with the Katz family as a submodel (see, for example, the Kemp families [1968], the
Ord family [1972], the extended Katz family of Gurland and Tripathi [1975], and the
modified Katz family considered by Sundt and Jewell [1981] and Willmot [1988]).
Defining distributions by a recursive formula enables recursive computation of ag-
gregate claims distributions. The hierarchical nature of the probability mass function
(pmf) also allows one to calculate moments and the moment-generating function in
most cases.
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Selecting and Validating a Model
With more than one model choice, hypothesis testing is the primary tool to narrow
the selection to a single model.1 While various specific tests have been developed
for particular models in the past, the most commonly used generic test in actuarial
applications is the Pearson �2 goodness-of-fit test. The Pearson �2 test is applicable
for testing data when no parameters need to be estimated. When parameters must be
estimated from data, the theory of the Pearson �2 goodness-of-fit test becomes more
elaborate. It is common practice to replace the parameters by the estimates from the
data based on the maximum likelihood estimation (MLE) or other consistent meth-
ods under the hypothesized distribution. In this case, one difficulty with the Pearson
statistic is that its asymptotic distribution depends on the estimators employed and
may lead to difficulties connected with computation of a nonstandard limit distribu-
tion (Stuart et al., 1999). Moreover, the Pearson statistic is sensitive to grouping that
is conducted to improve the �2 approximation. Nevertheless, we apply the Pearson
�2 test along with our GMM-based testing procedure to the data of Johnson and Hey
(1971) in “An Empirical Example” and compare the testing results.

Another class of specification tests is based primarily on likelihood functions. This
class of tests may be considered as discrimination tests; examples include the likeli-
hood ratio (LR) and the Wald, and the Lagrange tests. Asymptotically, all three test
statistics are equivalent, although they have quite different computational require-
ments (Buse, 1982). These tests may complement generic testing procedures such as
the Pearson �2 test in some applications. However, they are designed with different
purposes in mind. The Lagrange approach essentially starts at the null hypothesis
and examines whether movement toward the alternative would be an improvement,
while the Wald test starts at the alternative and moves toward the null. The likelihood
ratio method considers the two hypotheses on an equal basis. Consequently, this class
of tests does not address the issue of whether a particular distribution or a family of
distributions is a good fit to the data; rather, it considers the question of which one
between the null and alternative provides a significantly better fit. GMM tests based
on LR principles have been studied by Newey (1985) and Ahn (1995), among others.
We do not examine this class of tests in this article, but we do this class of tests for
reference.

The GMM-Based Testing Procedure

The Test Statistic
To introduce the basic idea behind GMM-based tests, it is useful to first consider the
GMM estimation. Let F be a family of distributions with support on a subset of non-
negative integers. Suppose that F involves a finite p-dimensional vector of unknown
parameters �. Based on a random sample, {xi : i = 1;2; : : : ;n}, we test the hypothesis
that the sample was generated by a particular member of F .

1 As an alternative to a formal hypothesis test, a set of selection procedures based on infor-
mation measures such as the Schwartz Bayesian Criterion (SBC) and the Akaike Information
Criterion (AIC) has been also used in selecting and validating a model. See, for example,
Klugman et al. (1998) for the use of the SBC, and Frees et al. (2001) for the AIC.
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Statistical inferenceproceduresbasedonGMMexamine certain features of the random
sample by considering the moment restrictions:

E[f (xi;�)] = 0; (1)

where f (xi;�) is a continuous q-dimensional vector function of � and xi with q ≥ p.

When the number of moment restrictions in Equation (1) equals the number of
parameters (i.e., q = p), one can find the method of moments (MM) estimator of � by
solving the analogous sample moment conditions in Equation (1). Note that if q = p,
then Equation (1) represents a set of p equations with p unknowns. In this case, it
has a unique solution for � under certain conditions. However, when the number of
moment restrictions in Equation (1) exceeds the number of parameters (i.e., q > p),
Equation (1) represents a set of q equations in p unknowns. In this overidentifying
case, the system typically does not have a solution and hence, the MM estimation is
infeasible. One solution is to find the value of � that is “closest” to satisfying Equation
(1) as the estimator of � based on a distance measurement. In GMM, 1 can be the
distance measure (the objective function) to be the scalar

Qn(�) = fn(�)′V−1
n fn(�); (2)

where fn(�)≡n−1 ∑n
i=1 f (xi;�) and Vn is a consistent estimator of V≡ limn→∞

Var[n1=2fn(�)]. And define the GMM estimator of � to be

�̂ = argmin�∈�Qn(�):

The objective function of Equation (2) plays a key role not only in obtaining the GMM
estimate of � but also in developing a statistical procedure of testing the validity of
the moment restrictions of Equation (1). Note that when q > p, the GMM estimator
does not set all sample moments in Equation (1) to zero. This opens up the possibility
for testing E[f (xi;�)] = 0.2 In fact, as shown in Sowell (1996) and Hall (1999), the GMM
estimation decomposes the population moment restrictions in the null hypothesis

H0 : E[f (xi;�)] = 0 (3)

into

HI
0 : DV−1=2E[f (xi;�)] = 0

and

HO
0 : (Iq×q −D)V−1=2E[f (xi;�)] = 0;

where D ≡ M(M′M)−1M′ and M ≡ V−1=2E[Fn(�)] with Fn(�) ≡ @ fn(�)=@�. Under this
decomposition, it is clear that H0 = HI

0 ∩ HO
0 . In particular, HI

0 has p moment restric-
tions. They are the identifying restrictions for �, representing the part of the moment
restrictions that actually goes into parameter estimation.However, the (q− p)moment

2 If the primary goal is the statistical testing of hypothetical models with data, one needs to
have q > p. If q = p, as we have seen, fn(�̂) = 0. In this case, the magnitude in Equation (2)
would simply equal zero in all samples, so it is not possible to examine the validity of the
moment restrictions in Equation (1) directly.
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restrictions in HO
0 are overidentifying restrictions, which are not imposed, so one can

test whether they hold in the sample.

If the hypothesis of the model that led to Equation (1) in the first place is incorrect,
some of the overidentifying moment restrictions will be systematically violated, pro-
viding a basis for developing a specification test. Hence, one can interpret the objective
function of Equation (2) as a measure of how close the sample is to satisfying the over-
identifying moment restrictions. This motivated Hansen’s (1982) GMM-based test for
the null hypothesis of Equation (3),

Jn(q) ≡ nQn(�̂) = n fn(�̂)′V−1
n fn(�̂): (4)

Hansen (1982) has shown that under certain regularity conditions, Jn(q) has an asymp-
totic �2 distribution with (q − p) degrees of freedom under the null hypothesis. We
note that Jn(q) is trivial to calculate because it is simply the sample size times the value
of the objective function of Equation (2) evaluated at the GMM estimate of �.

Some Properties of the Tests
Asymptotic properties of the test Jn(q) have been extensively studied in the litera-
ture. One can show that Jn(q) is consistent (i.e., has power one asymptotically against
alternative hypotheses) and that the asymptotic power of the tests depends only on
p, q, and overidentifying moment restrictions (see, for example, Hall, 1999). Fang
(2000) has used two alternative approaches to study the asymptotic properties of Jn(q):
the local power analysis and the approximate slope method. The result shows that
although additional moment conditions are used in Jn(q) with a higher value q, this
does not necessarily imply that large values of q are generally more desirable, even
asymptotically. The result dramatically emphasizes the fact that the local power of the
test may differ substantially for different values of q and across alternatives.

Results of Monte Carlo studies pertaining to the size and power of Jn(q) in finite sam-
ples can be found, for example, in Christiano and den Haan (1995), Smith (1999), and
Fang (2000). The Monte Carlo evidences suggest that overall, the distribution of the
test is well approximated by the asymptotic theory and that the test has satisfactory
performance for moderate-size samples.

Finally, the following remark can bemade concerning the power comparison between
Jn(q) and the Pearson �2 test. In general, one anticipates that if the overidentifying mo-
ment restrictions capture virtually all information on the difference between the null
and the alternative distributions, Jn(q) will be more powerful than the Pearson �2 test
because the degrees of freedomof Jn(q) are usuallymuch less than those of the Pearson
�2 test. However, if the overidentifying moment restrictions fail to capture such
information, the Pearson �2 may be more powerful. By selecting the moment restric-
tions of Equation (1) appropriately, Jn(q) should be, in general, comparable to or more
powerful than the Pearson �2 test.

Two Illustrative Examples
This section presents two examples to demonstrate the proposed GMM-based testing
procedure: the hypothesis of testing the Poisson homogeneity (H(1)

O ) and that of testing
the mixing distribution in a mixed Poisson model (H(2)

O ).
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Example 1: Testing the Poisson Homogeneity

Under the hypothesis H(1)
O of a homogeneous Poisson distribution, each xi follows a

Poisson distribution governed by the same parameter �. This specification problem
has been the subject of a number of studies. Fisher (1950) and Moran (1973), among
others, suggested the use of the Poisson index of dispersion based on the first two
moments of the sample:

T =
1√

2(n− 1)

[∑
(xi − x̄)2

x̄
− (n− 1)

]
: (5)

As a consistent test, T has certain optimal power properties under a suitable class of
local alternatives. For example, Potthoff and Whittinghill (1966) have shown that T
is asymptotically locally the most powerful among all locally unbiased tests for the
mixed Poisson distribution with a gamma as the mixing distribution. It turns out, not
surprisingly, that T can be derived as a special case of tests based onGMMunderH(1)

O .

In this simple case, � = � and p = 1. Choose the q-dimensional vector of moment
restrictions in Equation (1) as

f (xi;�) = (xi − �′
1;x

2
i − �′

2; : : : ;x
q
i − �′

q)
′;

where �′
r is the jth moment about the origin of the Poisson distribution given by

�′
r+1 ≡ E(Xr+1) = �

r∑
j=0

(
r
j

)
�′
j;

with �′
0 = 1 and �′

1 = �.

In this simple case, the identifying restrictions in HI
0 are (E(xi) − �′

1) = 0 and hence,
the GMM estimate of � is x̄. Furthermore, the overidentifying restrictions in HO

0 are
(E(xji) − �′

j) = 0 for j = 2;3; : : : ;q. The interpretation of this decomposition result is
that in the Jn(q) statistic, one uses the first moment restriction, which is automatically
satisfied by the sample, in estimating the population mean, resulting in the MME,
which is also the MLE estimator of the parameter �. The higher moment restrictions
are satisfied by the Poisson distribution but not by other distributions such as the bi-
nomial distribution (B(N;P)) or negative binomial distribution (NB(k;p)). For example,
the second moment restriction for binomial and negative binomial distributions is

0 = E(x2
i − �′

2) = E(x2
i ) − (E(xi) + [E(xi)]2) =

{ −NP2; binomial
kp2; negative binomial.

It is apparent that Jn(q) with q ≥ 2 has power against the violation of the overidentify-
ing restriction for any departures from the Poisson distribution for either the binomial
or negative binomial distribution.

One can obtain the explicit expressions of Jn(q). For example, if q = 2, then fn(�) =
(x̄ − �;m′

2 − (� + �2))′, where m′
2 = n−1 ∑

x2
i . The variance matrix is
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V =
[

� 2�2 + �
2�2 + � 4�3 + 6�2 + �

]
:

Hence, the GMM test statistic is

Jn(2) =
n

2

(
s2 − x̄

x̄

)2

∼ �2
1;

where s2 = n−1 ∑
(xi − x̄)2. Note that Jn(2), which also depends only on the first two

moments of the sample, is asymptotically equivalent to T in Equation (5). One can
also derive tests based on higher values of q analytically along similar lines. See, for
example, Fang (2003) for results in the case of q = 3.

Example 2: Testing the Mixing Distribution in a Mixed Poisson Model
By allowing the Poissonparameter � itself to be a randomvariablewith the cumulative
distribution function (cdf) U(·), one acquires the mixed Poisson distribution

Pk ≡ P(xi = k) =
∫ ∞

0
e−��k-−1(k + 1)dU(�); (6)

where U(0) = 0. Given that the data follows a mixed Poisson distribution, one may
test H(2)

O knowing that the mixing distribution has a specified cdf U(·).
Note that the mixing distribution is unobservable, because the data are drawn from
the mixed distribution. The identifiability result from Douglas (1980) allows us to
identify the mixing distribution based on the mixed distribution. This may not be
true, however, for other mixed distributions. For example, binomial mixtures are not
identifiable (Ord, 1972).

When the moments of the mixing variable exist, a necessary and sufficient condition
that a distribution be amixed Poisson is that its factorial moment3 generating function
be equal to the moment-generating function of the mixing distribution (Haight, 1967),
namely

�(k) = /′
k (7)

for nonnegative integer k, where �(k) and /′
k denote respectively the kth factorial

moment of the mixed Poisson variable and the kth moment about zero of the mixing
variable. As will be seen, the moment relationships between the mixed Poisson and
the mixing distribution in Equation (7) play a central role in developing specification
tests for H(2)

O .

Let �′
k be the kth moment about zero of the mixed Poisson variable. Set � = (�′

1;

�′
2; : : : ;�

′
p). Consider f (xi;�) = ˝−1g(xi;�), where g(xi;�) = (xi −�′

1;x
2
i −�′

2; : : : ;x
q
i −�′

q)
′

and ˝ is the transformation matrix such that (�′
1;�

′
2; : : : ;�

′
q)

′ = ˝(�(1);�(2); : : : ;�(q))′.
Thematrix˝ is lower triangularwith 1 as diagonal elements, and the lower triangular
elements can be obtained from

3 See Stuart and Ord (1994), Section 3.7, for the definition of factorial moments.
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�′
k =

k∑
j=0

(�j0k=j!)�(k); (8)

where 1j0k=j! is the Stirling number of the second kind (Johnson et al., 1992).4 There-
fore, one can rewrite Equation (1) as moment restrictions on /′

ks:

E[f (xi;�)] = E[(xi − /′
1;x

(2)
i − /′

2; : : : ;x
(q)
i − /′

q)
′] = 0;

where x(k)
i = xi(xi − 1) : : : (xi − k + 1). Furthermore,

V−1 = ˝′W−1˝;

where the (i;j)th element ofW is (�′
i+j − �′

i�
′
j).

Note that by having � = (�′
1;�

′
2; : : : ;�

′
p), the p identifying restrictions involve only

moments up to the pth order. In fact, the first-order conditions for minimizing Qn(�)
in Equation (2) imply that �̂ is the solution to

Fn(�)′V−1
n fn(�) = 0;

suggesting that �̂ is determined by the first p moments in Equation (1). Hence, the p
identifying moment restrictions are

(E[xi] − �(1);E[x(2)
i ] − �(2); : : : ;E[x

(p)
i ] − �(p))′ = 0;

or equivalently

(E[xi] − /′
1;E[x

(2)
i ] − /′

2; : : : ;E[x
(p)
i ] − /′

p)
′ = 0:

By contrast, the (q−p) overidentifying restrictions involve higher-ordermoments�(j)s
(or /′

js) up to order q. If all p identifying restrictions are satisfied, then the overidenti-
fying restrictions are (q− p) linear combinations of

(E[x(p+1)
i ] − �(p+1);E[x

(p+2)
i ] − �(p+2); : : : ;E[x

(q)
i ] − �(q))′ = 0;

or equivalently

(E[x(p+1)
i ] − /′

p+1;E[x
(p+2)
i ] − /′

p+2; : : : ;E[x
(q)
i ] − /′

q)
′ = 0:

In the special case that q = p + 1, the overidentifying moment restriction is E[x(p+1)
i ] −

�(p+1) = 0 or E[x(p+1)
i ] − /

′
p+1 = 0. We revisit this hypothesis by examining the data of

Johnson and Hey (1971) in the following section.

4 For the inverse calculation of Equation (8), ˝−1, which is also lower triangular, has Stirling
numbers of the first kind as its elements.
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Table 1
United Kingdom Comprehensive Motor Policies in 1968

Number of Claims Observed Frequencies Fitted Poisson Fitted Negative Binomial

0 370412 369246 370460

1 46545 48644 46411

2 3935 3204 4045

3 317 141 301

4 28 5 21

5 3 – 1

Adapted from Table 2.10.1 of Beard et al. (1984).

An Empirical Example
As an illustration, we consider the data from Johnson and Hey (1971), which contain
421,240 observations. They represent United Kingdom comprehensive motor policies
in 1968 that are classified according to the number of claims ranging from 0 to 5, with
the average number of claims per policy being 0.13174 and the variance 0.13852. See
Table 1 for the data set.

Beard et al. (1984) have shown that the Poisson distribution is a poor fit because of
its short tail. They therefore use the overdispersed negative binomial distribution and
anticipate that the negative binomial provides a much better fit in the tail region (see
Table 1), an observation confirmed by the Pearson �2 test using the parameters based
onMLE.According to Beard et al., the value of the Pearson �2 test statistic is 6.9, which
gives a significance level of 14 percent for four degrees of freedom. They conclude that
although there is a slight indication that the negative binomial may be underrepre-
senting the tail, formost applications themodelmaybe safely used.However,Willmot
(1987) hasworked on the samedata set andused a different grouping scheme.Willmot
has reported a �2 statistic of 7.94 on two degrees of freedom, which has a significance
level of only 1.9 percent for the data. In light of Willmot’s result, one could argue that
the negative binomial distribution may well not be “safely used.”

Here we apply the test statistic Jn(q) to assess the fit of the negative binomial model.
Note that F consists of the mixed Poisson with two-parameter gamma

p(x) =
x˛−1e−x=ˇ

ˇ˛0(˛)
(˛ > 0;ˇ > 0; x > 0) (9)

as the mixing distribution. Since p = 2, we calculate Jn(q) for q = 3, 4, and 5 as 3.7130,
11.3074, and 10.2359, respectively.5 Accordingly, the test statistic with q = 3 is signifi-
cant at 10 percent, but not at the 1 or 5 percent level. The test statistic based on q = 4

5 Various moments for the mixed distribution (the negative-binomial) and the mixing dis-
tribution (two-parameter gamma) can be found in, for example, Stuart and Ord (1994). In
particular, the jth order of the factorial moment of the negative binomial NB(k;p), �(j), is giv-
en by (k + j − 1)!pj=(k − 1)!, and the jth moment about zero of the two-parameter gamma
in Equation (9), /′

j, equals ˇj- (j + ˛)=- (˛). See also Example 2 for computational details in
obtaining Jn(q).
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is significant at 1 percent and that with q = 5 is significant at 5 percent but not at 1
percent level.

Overall, the evidence is fairly strong against the negative binomial, especially in view
of the result of Jn(4) that the hypothesis is rejected at all conventional significance
levels. The result is in complete contrast to that of Beard et al. (1984) that the Pearson
�2 test cannot reject the negative binomial at significance levels less than 14 percent.

To further elaborate the model, we consider the three-parameter gamma with the
density function given in Equation (10) as the mixing distribution:6

p(x) =
(x − 6)˛−1e−(x−6)=ˇ

ˇ˛- (˛)
(˛ > 0;ˇ > 0; x > 6): (10)

To evaluate the fit of the use of Equation (10), we report the testing result based on
Jn(q) with q = 5. For the Johnson and Hey (1971) data, Jn(5) is only 0.021 with a corre-
sponding significance level of 99.41 percent. The fit is an almost perfect one, implying
that the inclusion of one more parameter is justified. We obtain the same conclusion
with other values of q.

Conclusion
This article proposes a semi-parametric approach to specification problems concern-
ing claim frequency distributions. The approach has been shown to provide a useful
theoretical and empirical framework for studying claim frequency distributions moti-
vated by a great variety of applications. As an alternative approach to the Pearson �2

and other goodness-of-fit tests, it is easy to implement and should be of practical use
in applications involving selecting and validating probability models with complex
characteristics.
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