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C-chart, X-chart, and the Katz Family of
Distributions
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University of Oregon, 1208 College of Business, Eugene, OR 97403

In statistical process control, the primary method used to monitor the number of nonconfor-

mities is the c-chart. The conventional c-chart is based on the assumption that the occurrence

of nonconformities in samples is well modeled by a Poisson distribution. When the Poisson

assumption is not met, the X-chart (individuals chart) is often used as an alternative charting

scheme in practice. In this article I investigate the relative merits of the c-chart compared to

the X-chart for the Katz family covering equi-, under-, and over-dispersed distributions relative

to the Poisson distribution. The need to use an X-chart rather than using the c-chart depends

upon whether or not the ratio of the in-control variance to the in-control mean is close to unity.

The X-chart, which incorporates the information on this ratio, can lead to significant improve-

ments under certain circumstances. Both the 3-sigma c- and X-charts fail in providing reliable

information on the status of the process with a small in-control process mean when a downward

mean shift occurs. In these cases, charts based on probability limits are much more appropriate.

KEY WORDS: Average run length; Maximum likelihood; Method of moments; Poisson distri-

bution; Robustness; Statistical process control

Introduction

Statistical process control (SPC) techniques for monitoring the number of nonconformities
are widely used in industry for process monitoring (see Woodall (1997) for a comprehensive
review of attribute control charts). Various statistical control charts, exemplified by the c-chart,
have been developed to evaluate the stability of processes characterized by such count data.
These techniques are usually based on the underlying assumption that the Poisson distribution
provides an appropriate model. Most available software packages that support c-chart analysis
also rely on the Poisson assumption.

∗Dr. Fang is an Associate Professor of Decision Sciences at Lundquist College of Business, University of
Oregon. His email address is yfang@darkwing.uoregon.edu.

1



The use of the Poisson distribution requires assumptions that may be overly simplistic in
some applications. For example, two basic and simple generalizations of the Poisson distribution
may lead to the negative binomial distribution. One model assumes that nonconformities occur
in clusters. If the number of clusters has a Poisson distribution and the number of nonconformi-
ties per cluster follows a logarithmic series distribution (Johnson, Kotz and Kemp (1992)), then
the observed total number of nonconformities has a negative binomial distribution (Friedman
(1993)). Alternatively, the other model is based on the assumption that the parameter of the
Poisson distribution itself varies when the process is in-control. If this parameter has a gamma
distribution, the negative binomial marginal distribution results (Haight (1967)).

When the Poisson assumption is not met, the X-chart (individuals chart) may be used as
an alternative charting procedure (Wadsworth, Stephens and Godfrey (1986), Heimann (1996),
and Wheeler (1995)). Both the c- and the X-charts are widely used techniques, due in part to
some common appealing aspects, such as being easy to set up, implement and interpret.

In this article we investigate the relative merits of the 3-sigma c-chart compared to the X-
chart for count data generated from a variety of distributions of the Katz family. The primary
objective of the article is to quantify the conditions attributing to the failure of the 3-sigma
c- and the X-charts and to study the conditions under which the use of these two charts is
appropriate. The implications of the results for the use of charts based on probability limits
are discussed. Issues on the model specification and parameter estimation of the Katz family
of distributions are also addressed.

The Katz Family

Distributions of count data over the non-negative integers can be uniquely represented by the
recursive probability

Pj+1 = f(j,Θ)Pj, j = 0, 1, 2, ..., (1)

with Θ is a vector of parameters. Katz (1963) considered a system with two parameters
Θ = (θ1, θ2) for which

f(j,Θ) =
θ1 + θ2j

1 + j
, j = 0, 1, 2, ..., (2)

where θ1 > 0 and θ2 < 1. It is understood that if θ1 + θ2j < 0 then Pj+i = 0 for all i > 0.
As a commonly used recursive probability system, the Katz family has a simple probability

structure in which distributions are of the Poisson, Bernoulli, or Pascal type. It can be shown
that conditions θ2 < 0, 0 < θ2 < 1, and θ2 = 0 give rise to the binomial distribution (B(N,P )),
the negative binomial distribution (NB(k, p)) and the Poisson distribution (P (λ)), respectively,
with parameters N = −θ1/θ2, P = θ2/(θ2 − 1), k = θ1/θ2, p = θ2, and λ = θ1 (Johnson, Kotz
and Kemp (1992), and Gurland (1983)). Aside from these three distributions, the Katz family
contains only mild generalizations obtained from binomial distributions by permitting the two
parameters to take any real values within specified ranges. The area of the (θ1, θ2) plane
occupied by the Poisson, binomial and negative binomial distributions can be found in, for
example, Johnson and Kotz (1969, pp. 42). Note that distributions in the Katz family are
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Table 1: The Katz Family of Distributions

Parameters Distribution Ratio of Variance to Mean Skewness Kurtosis

θ1 > 0 and θ2 = 0 Poisson 1 > 0 > 3

θ1 > 0 and θ2 < 0 Generalized Binomial < 1 ≥ 0 iff r ≥ 1/2 ≥ 3 iff r ≥ 1

3−
√

3
or r ≤ 1

3+
√

3

θ1 > 0 and 0 < θ2 < 1 Negative Binomial > 1 > 0 > 3

related through various well-known limiting forms. For example, as θ2 → 0, both binomial and
negative binomial distributions converge to the Poisson distribution with parameter θ1.

The probability generating function of distributions in the Katz family, g(.), satisfies the
equation

dlogg(t)

dt
=

θ1

1− θ2t

with g(1) = 1. Hence,

g(t) =

{
eθ1(t−1) if θ2 = 0
[(1-θ2t)/(1− θ2)]−θ1/θ2 otherwise.

The moments about the origin are

µ′r+1 ≡ E(Xr+1) =
r∑
j=0

(
r
j

)
(θ1µ

′
j + θ2µ

′
j+1).

In particular, the mean is µ ≡ µ
′
1 = θ1/(1− θ2), the variance is σ2 ≡ µ

′
2 − (µ

′
1)2 = θ1/(1− θ2)2,

and the skewness is E(X − µ)3/σ3 = (1 + θ2)θ
−1/2
1 . Note that the coefficient of variation is

σ/µ = θ
−1/2
1 .

Despite its simple probability structure, the Katz family covers a wide spectrum of distribu-
tions with the property of being equi-, under-, or over-dispersed relative to Poisson distributions.
The ratio of the variance to the mean is

r ≡ (1− θ2)−1. (3)

The Poisson distribution has r = 1 and is said to exhibit equi-dispersion. The binomial and
negative binomial distributions are under-dispersed (r < 1) and over-dispersed (r > 1), respec-
tively.

Table 1 lists some of the properties of the Katz family of distributions. Since violation of
the condition r = 1 is sufficient for violation of the Poisson assumption, as far as the robustness
study of control charts is concerned, the ratio r may serve as a reasonable measurement of the
magnitude of the departure from the Poisson distribution.

To gain more insight into the Katz family of distributions, Figure 1 shows various shapes of
distribution functions of distributions with some specific parameter values. To demonstrate the
important similarities and differences between distributions with different r, four distribution

3



functions of under- and over-dispersed distributions are presented in contrast to that of the
Poisson distribution with the same mean. For illustrative purposes, the mean of all distributions
is taken to be 5 and the values of r for the under- and over-dispersed distributions are chosen
to be 1/2, 3/4, 5/4 and 2 in Figures 1A - 1D, respectively. In each of the four charts, the
Poisson distribution serves as the reference distribution and its probability function is drawn in
black while that of the under- or over-dispersed distribution is represented in the lighter bars.
Except for the generalized binomial distribution with r = 1/2, all other distributions in Figure
1 are skewed to the right.
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Figure 1. Under- and over-dispersed distributions (in lighter bars) in comparison to

the Poisson distribution (in black) with the same mean (µ = 5)

(A) r = .5 (B) r = .75 (C) r = 1.2 (D) r = 2

As noted in Katz (1963), for purposes of estimation of the parameters of the Katz family of
distributions, it is more convenient to consider ξ ≡ θ1(1 − θ2)−1 and η ≡ θ2(1 − θ2)−1, rather
than θ1 and θ2. Let {xi}ni=1 be an in-control historical Phase I sample (see Woodall (2000)
for a discussion on Phase I and Phase II of statistical process control). The logarithm of the
likelihood function is

L(ξ, η) = (
∑

xi) ln[η(1 + η)−1]− nξ

η
ln(1 + η) +

∑
ln Γ(

ξ

η
+ xi)−

∑
ln(xi!)− n ln Γ(

ξ

η
).
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Setting ∂L
∂ξ

= 0 and ∂L
∂η

= 0 produce directly

n ln(1 + η) =
∑

F (
ξ

η
+ xi − 1)− nF (

ξ

η
− 1)

and
nξ =

∑
xi,

respectively, where F (y − 1) = d
dy

ln Γ(y) is the digamma function. Hence, the maximum
likelihood estimators (MLEs) of ξ and η are given by

ξ̂
MLE

= x̄, (4)

and

n ln(1 + η̂
MLE

) =
∑

F (
x̄

η̂
MLE

+ xi − 1)− nF (
x̄

η̂
MLE

− 1), (5)

respectively. Equation (5) can be solved numerically.
Alternative estimates of the parameters can be obtained using the method of moments.

Since E(xi) = θ1/(1 − θ2) and E(s2) = θ1/(1 − θ2)2, it can be shown that the method of
moments estimators (MMEs) of ξ and η are

ξ̂
MME

= x̄ and η̂
MME

=
s2 − x̄
x̄

, (6)

respectively. Both MLEs and MMEs are consistent but estimates based on the method of
moments are easy to compute and often provide estimates with similar estimation errors as the
MLEs (Katz (1963)).

The C-chart versus the X-chart

In this paper we consider the Phase II performance of the c- and X-charts with the parameters
assumed to be known. Since the mean (µ) and variance (σ2) of the process are the same for the
Poisson distribution (i.e., r = 1), the upper control limit (UCL) and lower control limit (LCL)
of the c-chart are

µ± k√µ, (7)

where k is a constant. More generally, one can define the UCL and LCL as

µ± kσ or µ± k√rµ. (8)

The control limits in Equation (8) correspond to those of an X-chart. Although the X-chart is
typically used for continuous measurement data and the c-chart is used for count data, the UCL
and LCL of the two charts are identical in theory for Poisson data if the Poisson parameter is
assumed to be known. If the parameter is unknown, then typically the average moving range
is used to estimate the standard deviation for the X-chart in Phase I, while the sample average
is used for estimating the variance used to determine the control limits of the c-chart. In this
study, we consider control charts with 3-sigma limits (i.e., k = 3) only because these are the
most frequently used in practice. We also discuss the use of probability-based control limits as
recommended by Ryan and Schwertman (1997) and others.
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Table 2: The In-control ARLs of c- and X-charts with 3-sigma Control Limits†

c- and X-charts c-chart X-chart

µ‡ r = 1 r = 0.75 r = 0.9 r = 1.25 r = 1.5 r = 0.75 r = 0.9 r = 1.25 r = 1.5
5.0 183.4 1069.1 310.6 78.6 47.2 253.7 310.6 165.2 161.5
6.0 275.6 1911.7 493.0 107.8 61.1 477.5 176.0 219.7 198.4
7.0 174.9 894.0 288.4 76.9 46.4 244.0 288.4 148.1 138.4
8.0 269.0 1665.8 470.4 107.3 61.0 475.4 470.4 203.6 177.0
9.0 412.1 3091.8 764.4 149.3 80.0 278.0 302.3 279.9 226.9

10.0 285.7 1716.8 498.7 112.9 63.3 539.8 498.7 207.2 173.1
12.5 397.7 2657.8 720.5 146.6 78.3 320.9 312.5 260.4 203.3
15.0 283.8 1562.8 488.0 112.4 62.1 585.2 488.0 194.9 246.3
17.5 425.8 2728.4 768.7 155.2 81.3 430.8 365.4 262.3 196.2
20.0 339.7 1932.2 593.5 129.6 69.4 346.4 294.0 355.5 248.7
22.5 284.8 1485.6 485.7 112.4 61.2 296.3 485.7 297.0 210.7
25.0 443.1 2724.5 795.9 160.2 82.6 265.0 415.6 256.2 272.7
27.5 388.6 2240.7 685.6 144.1 75.3 496.2 368.2 358.1 240.1
30.0 349.9 1919.8 608.8 132.4 69.8 455.3 335.3 319.5 313.8
32.5 321.9 1699.1 554.0 123.7 65.7 427.8 312.0 290.5 283.6
35.0 301.4 1543.5 514.3 117.2 62.7 409.7 295.6 268.4 260.0
37.5 286.3 1432.4 485.4 112.3 60.4 398.3 284.0 378.7 342.6
40.0 275.4 1352.8 464.5 108.8 58.6 392.1 464.5 355.0 318.9
42.5 426.6 2444.5 755.7 155.0 79.3 390.0 449.6 336.4 299.8
45.0 413.0 2329.3 728.6 151.0 77.4 391.2 439.4 321.6 284.3
47.5 403.3 2246.6 709.1 148.0 76.1 395.3 433.1 310.0 271.6
50.0 396.7 2189.4 695.8 146.0 75.1 402.0 429.9 300.9 261.2

† ARL ≡ 1/(1− β), where 1− β = P (X < LCL) + P (X > UCL).
‡ µ is the in-control process mean.

In-control ARLs of c- and X-charts

Table 2 presents the in-control average run lengths (ARLs) of the c- and X-charts with 3-sigma
control limits for the Katz family of distributions with five different levels of r: the Poisson
distribution (r = 1), two under-dispersed distributions (r = 0.75 and 0.90) and two over-
dispersed distributions (r = 1.25 and 1.50). Note that for a given value of r, the parameter
θ2 is uniquely determined by Equation (3). The distribution with the desired process mean is
obtained by taking different levels of θ1. For example, if r = 1.25, then θ2 = 0.2 and θ1 = 0.8µ.
The range of the in-control process mean is chosen to be from 5 to 50, which is similar to
that examined in the previously published studies such as that given in Ryan and Schwertman
(1997).

The ARLs of the c- and X-charts are identical in the Poisson case (r = 1). When r = 1, the
ARL starts at a low level when the process mean is small (say, less than 9), moves up as the
process mean increases, and fluctuates eventually around the level 370 (= 1/0.0027) based on
an underlying assumption of a normal distribution. Notice, however, that even for processes
with relatively large means, most of the in-control ARLs differ considerably from this nominal
value since the Poisson random variable is discrete.

When r 6= 1, the behavior of the ARLs of the c-chart depends greatly on whether the
process is under- or over-dispersed. If r > 1, the probability of a false alarm of the c-chart
can be considerably inflated due to the over-dispersed probability structure of the distribution;
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as the case of r = 1.50 demonstrates. The ARL is between 60 and 80 for distributions with
a mean greater than 9. These results are similar to those based on other control charts for
over-dispersed in-control distributions (see, for example, Heimann (1996) for discussions on the
p-chart, and Woodall and Thomas (1995) on the X-bar chart).

In comparison to the over-dispersion case, the case of r < 1 is less explored in the literature.
As shown in Table 2, when r < 1, the probability of a false alarm of the c-chart may be
significantly less than the nominal level (0.0027) and as a consequence, the in-control ARL could
increase considerably for a under-dispersed process even with a slight departure (measured by
r) from the Poisson distribution. For example, the ARL could be as high as 769 for a process
with r = 0.9 and µ = 17.5.

As can be seen from Table 2, there is a marked contrast between ARLs of the c-chart and
those of the X-chart when r 6= 1. In general, the in-control ARLs of the X-chart are much
closer to their values under the Poisson assumption − a significant improvement is achieved
by utilizing the information on both mean and variability of the distribution. Although the
X-chart does not completely remove the distortions, the ARLs of the X-chart for both under-
and over-dispersed processes are within a much tighter band around the ARL based on the
Poisson distribution with the same mean in comparison to those of the c-chart.

Out-of-control ARLs for c- and X-charts

To assess the ability of c- and X-charts to detect a process mean shift, the ARLs of the two
charts are calculated for processes with the 5 selected levels of r when the process mean has been
shifted by a half, one, and two standard deviations of the corresponding Poisson distribution
with the same in-control process mean (i.e., the same size of mean shift in absolute terms is
used for the various distributions). For brevity, we will report results only for ARLs when the
process mean has shifted one standard deviation (see Table 3).

Three general conclusions emerge from the results which are displayed in Table 3. First,
the c-chart is not robust to the violation of the Poisson assumption. The ARLs increase for the
processes with r < 1 and the magnitude of the increase can be substantial; as the case when
the process mean has shifted upward by one standard deviation demonstrates, the ARLs can be
more than 70 if r = 0.75. These numbers are more than twice the ARL for the Poisson process
with the same mean. Although the ARLs for processes with r > 1 are small, the c-chart is of
less practical usefulness due to its extremely low level of in-control ARLs (Table 2).

Second, the X-chart is identical to the c-chart for processes with r = 1 but the two charts
show a remarkable difference in ARLs for processes with r 6= 1. The X-chart is quite robust to
the departure from the Poisson assumption in either the under- or over-dispersed case, especially
when an upward shift occurs, with the robustness improving as the process mean increases. If
the mean shift is upward by one standard deviation, then the ARLs for most of under- and
over-dispersed processes examined are approximately within the same range outlined by the
saw-tooth pattern of the ARL from the Poisson distribution.

Third, both c- and X-charts with 3-sigma control limits are not effective in detecting down-
ward changes, in particular when the process mean is relatively small. With 3-sigma limits used
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Table 3: The ARLs of c- and X-charts with 3-sigma Control Limits when the Process Mean
has Shifted by One Standard Deviation†

Panel A: Upward mean shift

c- and X-charts c-chart X-chart

µ‡ r = 1 r = 0.75 r = 0.9 r = 1.25 r = 1.5 r = 0.75 r = 0.9 r = 1.25 r = 1.5
5.0 15.4 34.0 18.9 13.5 10.9 14.7 18.9 23.1 27.8
6.0 20.2 46.9 25.8 16.2 14.7 20.7 13.5 27.3 37.0
7.0 15.1 28.7 18.4 12.2 10.0 14.1 18.4 19.5 22.6
8.0 20.1 39.7 25.0 14.8 13.3 19.5 25.0 23.4 30.0
9.0 26.7 54.5 33.7 17.9 13.8 14.2 18.8 28.0 29.9

10.0 21.2 45.4 27.1 16.1 12.6 23.3 27.1 24.7 26.4
12.5 26.7 55.4 34.3 18.2 13.9 16.8 20.5 27.0 27.7
15.0 22.0 44.8 28.1 16.1 13.7 25.5 28.1 23.1 37.0
17.5 28.9 67.4 38.3 20.5 15.4 22.8 24.2 29.3 28.5
20.0 25.5 57.3 32.9 18.7 15.4 21.0 21.5 37.0 38.0
22.5 23.2 50.5 29.2 17.4 13.4 19.7 29.2 33.0 30.7
25.0 30.9 64.4 39.4 20.2 15.2 16.8 26.4 27.4 34.1
27.5 28.9 67.0 37.2 20.7 15.5 27.2 25.4 37.9 33.9
30.0 27.3 61.2 35.5 19.6 15.8 25.9 24.6 35.0 44.5
32.5 26.2 56.8 32.8 18.7 14.2 25.0 23.2 32.7 37.9
35.0 25.5 53.3 31.9 18.0 14.6 24.2 22.8 30.8 38.1
37.5 24.9 50.5 31.2 17.5 13.4 23.6 22.5 38.5 42.6
40.0 24.5 48.3 30.6 17.0 13.9 23.2 30.6 36.5 43.1
42.5 32.4 68.3 41.7 21.1 15.7 22.8 30.2 34.8 38.0
45.0 32.0 72.9 40.9 21.9 16.2 24.7 29.9 36.0 38.7
47.5 31.8 69.9 41.8 21.4 16.8 24.4 30.7 34.6 39.5
50.0 31.7 67.3 41.3 20.9 15.6 24.2 30.6 33.4 35.5

Panel B: Downward mean shift

c- and X-charts c-chart X-chart

µ‡ r = 1 r = 0.75 r = 0.9 r = 1.25 r = 1.5 r = 0.75 r = 0.9 r = 1.25 r = 1.5
5.0 30244.9 ∗ 244236.8 2863.8 1261.9 4194304.0 244236.8 8218.7 6901.3
6.0 46069.1 268435500.0 333795.8 4375.8 1137.9 6242685.0 57030.8 11905.8 5459.2
7.0 19459.5 13463850.0 102086.6 2737.1 1137.9 133.0 102086.6 6964.0 5185.7
8.0 33247.7 33778120.0 193342.8 4585.9 1209.8 315.3 193342.8 11346.0 5071.1
9.0 56827.7 25028040.0 285517.2 5219.5 1356.6 110.7 552.0 12349.8 5327.0

10.0 905.1 2361.7 1281.2 374.3 171.7 236.2 1281.2 8967.9 5561.8
12.5 770.9 1862.7 1079.4 293.4 137.8 73.5 198.8 2078.3 7162.5
15.0 221.9 514.0 304.3 104.5 63.3 137.4 304.3 354.4 3341.9
17.5 333.4 899.1 476.6 153.3 78.1 87.3 152.0 468.2 676.8
20.0 182.5 466.5 250.8 92.6 56.4 64.8 97.2 644.8 892.3
22.5 122.2 297.6 161.3 66.0 37.9 52.6 161.3 335.0 370.1
25.0 199.2 543.6 282.8 100.4 60.4 45.2 123.6 212.4 564.0
27.5 149.7 387.8 202.2 78.1 44.2 78.9 96.2 319.8 308.7
30.0 120.7 298.2 164.1 64.4 40.9 68.9 83.0 228.9 483.6
32.5 102.3 241.8 132.4 55.3 33.0 61.9 70.6 176.1 303.3
35.0 89.9 203.9 116.5 48.9 32.2 56.8 64.7 142.5 251.0
37.5 81.2 177.2 105.1 44.2 27.4 53.0 60.3 211.6 322.9
40.0 75.0 157.6 96.7 40.6 27.4 50.1 96.7 176.4 279.9
42.5 116.9 264.7 155.8 58.0 34.8 47.9 90.3 151.4 209.1
45.0 108.8 268.3 143.8 58.2 34.9 51.1 85.4 145.8 192.8
47.5 102.6 242.9 140.2 54.2 35.2 49.5 84.8 129.9 180.8
50.0 97.9 222.8 132.3 51.0 31.3 48.1 81.6 117.5 146.5

† ARL ≡ 1/(1− β), where 1− β = P (X < LCL) + P (X > UCL).
‡ µ is the in-control process mean.
* ARL not computable since the probability of obtaining an out-of-control signal is effectively zero.

8



in the c- and X-charts, the calculated LCLs of these two charts may become negative and, thus,
there is no LCL. For example, for the Poisson process (r = 1), there is no LCL for the c-chart
when the in-control process mean is less than 9. The chart without an LCL cannot detect
process improvement without the use of supplementary runs rules. Probability limits can be
used, however, with any chart to determine an LCL. See, for example, Ryan and Schwertman
(1997).

In summary, these results, together with those obtained from Table 2, suggest that it would
be preferable to use the X-chart whenever there is an indication of any departure from the
Poisson assumption in the in-control state, especially in cases that the process mean is not
small and the attribute of interest is the upward mean shift. Wheeler (1995) recommends to
always use the X-chart for situations in which the c-chart is traditionally used. We would like
to remark, however, that if a downward mean shift is of interest, as it usually is, the X-chart
would also not be acceptable, unless the in-control process mean is fairly large.

The Need to Verify the Poisson Assumption

The results presented in the previous sections emphasize the fact that the properties of the
c- and X-charts differ substantially across processes with different magnitudes of dispersion.
In this section we discuss several techniques for discriminating between equi-, under-, and
over-dispersed distributions relative to the Poisson distribution.

From Equation (2), we have

uj ≡
(j + 1)Pj+1

Pj
= θ1 + θ2j. (9)

Note that the right-hand side of Equation (9) is a linear function of j. Hence, for the Katz
family of distributions, the plot of uj against j gives a straight line with the slope =, <, or >
zero for the equi-, under-, and over-dispersed distributions, respectively.

This graphical method for testing the dispersiveness for a given data set has been suggested
by, for example, Katz (1963) and Ord (1967). Although different shapes of uj curves for different
distributions appear to be useful in developing strategies for determining whether the data are
equi-, under-, or over-dispersed, results based only on the uj curve using observed frequencies
can be misleading as demonstrated in Jinkinson and Slater (1981), and Hoaglin, Mosteller and
Tukey (1985). In terms of applications, therefore, those graphical methods may only be used
as a starting point for more rigorous and sophisticated inference procedures.

Katz (1963) considered the test based on

Jn ≡
√
n

2
(
s2 − x̄
x̄

), (10)

where s2 =
∑

(xi − x̄)2/n, for testing the null hypothesis of equi-dispersion (r = 1) against
the alternative hypothesis of under- or over-dispersion (r < 1 or r > 1). He found that Jn
is distributed asymptotically as the standard normal distribution under the null hypothesis of
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equi-dispersion. It can be shown that Katz’ test based on Jn is a special case of a class of statis-
tics based on the generalized method of moments (GMM) and it has satisfactory performance
for moderate size samples (Fang (2001)).

Charts Based on Probability Limits

The incidence of a false alarm is more likely to be due to a value above the UCL than to a value
below the LCL, because in general, distributions in the Katz family are skewed to the right
(Table 1). Consequently, the charts with 3-sigma control limits such as the c- and X-charts
can perform poorly under certain circumstances, as indicated by the results presented in the
previous sections. In this section, we consider charts based on probability limits. Unlike the
c-chart and the X-chart, which have control limits that depend only on the first two moments
of the process of interest, the chart based on probability limits can provide a refinement on the
control limits over the X-chart for equi-, under-, and over-dispersed distributions, particularly
when the in-control process mean is small.

We note that for Poisson processes with small means, various data transformations were
recommended by Ryan (1989), Nelson (1994), and McCool and Joyner-Motley (1998), among
others. Since the approach of transforming data can often make the tail areas closer to those
under normality, such normalizing transformations will ameliorate the problem when the X-
chart is used for processes with small means. An obvious shortcoming of this approach, however,
is that a transformed statistic is plotted, rather than the statistic of interest. The optimal limits
method devised by Ryan and Schwertman (1997) is rather more satisfactory in this respect.
However, like the conventional c-chart, the Ryan and Schwertman’s optimal c-chart is not
robust to the departure of the Poisson assumption and was not intended to be.

It is also worth mentioning that, because of the special probability structures of the Katz
family of distributions, increasing the size of the inspection unit results in increasing the process
mean. Hence, if it is feasible, an often easy solution to increasing the process mean to a
designated level is to have a larger inspection unit. However, when it is neither easy nor
desirable to increase the size of the inspection unit, charts based on probability limits should
be of practical use.

The UCL and LCL of the chart based on probability limits can be determined by

minUCL
subject to: P (X > UCL) ≤ α/2

and
maxLCL

subject to: P (X < LCL) ≤ α/2,
(11)

where the probability of a false alarm, α, is often taken to be 0.0027. Assuming that a given
set of data can be approximated by a distribution from the Katz family, the solution of the
UCL and LCL in Equation (11) depends on the values of θ1 and θ2 in Equation (2).
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Table 4: The Data Used in Example 1

The 40 random numbers simulated from the negative-binomial distribution NB(30, 0.4)

20 19 23 23 27 19 25 14 35 10 17 15 28 18 27 27 20 9 24 20
17 15 22 21 18 22 34 19 15 20 26 14 18 16 31 23 10 22 14 20

In the next section, we will utilize the method of moments to obtain parameter estimates
and demonstrate the usefulness of the control chart based on probability limits. We do not
consider, however, the effects of estimation error on the statistical properties of the chart.

Two Illustrating Examples

Example 1. To compare the performance of the c-chart, the X-chart, and the chart
based on probability limits, we have drawn 40 samples from the negative-binomial distribu-
tion NB(30, 0.4) with µ = 20 and r = 5/3. The data are given in Table 4.

Figure 2. Control Charts for Data Used in Example 1
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Since this paper focuses on the Phase II performance of the control charts with known
parameters, the c-chart, X-chart and the probability-limit chart, which are shown in Figure 2,
are based on NB(30, 0.4). Three charts share the same centerline (µ = 20) but have different
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upper and lower control limits. Since the data are over-dispersed, the control limits of the
c-chart (UCL = 33.42 and LCL = 6.58) are too narrow; as Figure 2 demonstrates, the 9th
and 27th observations are above the UCL. In contrast, improved control limits are obtained
by using the X-chart and the chart based on the estimated probability limit. Although the
α-risk allocated above the UCL and below the LCL differs slightly for the X-chart and the
probability-limit chart based on NB(30, 0.4), all of the 40 points are within the control limits
of either the X-chart (UCL = 37.32 and LCL = 2.68) or the probability-limit chart (UCL = 39
and LCL = 6).

Note that the estimated mean, variance and r are 20.4, 36.3 and 1.78, respectively. Applying
the Katz’s test, Jn is 3.48 with p-value 0.00025, which is significant at all the usual significance
levels. The MMEs of ξ and η are about 20.4 and 0.777, respectively. Hence, the estimated
θ1 and θ2 are 11.5 and 0.437, suggesting that if the distribution for the in-control process is
unknown, the negative-binomial distribution NB(26, 0.44) may be a candidate based on the
given sample in Table 4.

Example 2. To illustrate the fact that more appropriate control limits can be achieved
by using the chart based on probability limits when the in-control process mean is small and a
downward mean shift occurs, we have simulated 100 observations from two binomial distribu-
tions. The first 60 observations are from the binomial distribution B(20, 0.3) with µ = 6.0 and
r = 0.7, which represents the in-control process; while the last 40 observations are from the
binomial distribution B(13, 0.3) with µ = 3.9 and r = 0.7, presenting the out-of-control process
with a downward mean shift. The downward mean shift, 2.1, is about one standard deviation
of the in-control distribution. The data are given in Table 5.

As in Example 1, we focus on the Phase II performance of the control charts with known
parameters. Hence, the c-chart, X-chart and the probability-limit chart are based on B(20, 0.3),
which are shown in Figure 3. The UCL for the c-chart is 13.3 and there is no LCL effectively
since (6 − 3

√
6) < 0. Since the process is under-dispersed, the probability of a false alarm

of the c-chart is much smaller than the designed 0.0027 level, and the c-chart is not sensitive
to the downward mean shift (see also Panel B of Table 3). As Figure 3 indicates, all 100
observations are within the control limits of the c-chart. Although the control limits of the X-
chart (UCL = 12.2 and no LCL effectively since (6− 3

√
4.2) < 0) are tighter than those of the

c-chart, 100 observations are all within the control limits of the X-chart. The probability-limit
chart, which has UCL = 11 and LCL = 1, detects the process mean change.

Based on the first 60 observations (Panel A of Table 5), the estimated r is 0.58 with estimated
mean 5.83 and variance 3.4. The Katz’s test Jn is -2.29, which is significant at the 5 percent
significance level. The MMEs of ξ and η are about 5.83 and -0.418, respectively. Hence, the
estimated θ1 and θ2 are 10.02 and -0.718, suggesting that the binomial distribution B(14, 0.42)
may be a candidate for the in-control process distribution based on the given sample.
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Table 5: The Data Used in Example 2

A: The 60 random numbers simulated from the binomial distribution B(20, 0.3)

4 7 5 7 3 4 6 6 5 3 9 2 5 5 3 5 4 7 5 9
6 8 9 6 8 7 8 5 7 6 3 6 5 6 7 7 7 4 6 5
7 6 8 5 4 8 5 9 7 3 4 9 6 6 3 7 8 4 8 3

B: The 40 random numbers simulated from the binomial distribution B(13, 0.3)

3 7 4 5 2 5 4 2 6 5 2 5 1 4 5 4 1 3 0 4
5 2 4 2 4 7 6 5 1 3 5 4 2 5 4 2 6 1 1 3

Figure 3. Control Charts for Data Used in Example 2
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Concluding Remarks

The c-chart has proven to be useful for monitoring count data in a wide range of applications.
Using the Katz family of distributions, we demonstrate that the condition r < 1 tends to
reduce the sensitivity of the c-chart because the control limits become too wide and therefore,
the detection of out-of-control processes becomes slower. On the other hand, the c-chart control
limits are too narrow for the distributions with r > 1. Consequently, the probability of false
alarms of the c-chart increases. We show that the X-chart, which incorporates (implicitly)
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the information on r, is superior to the c-chart for under- and over-dispersed distributions,
especially when the process mean is relatively large and when the mean shift is upward. We
also show that when the in-control process mean is small and a downward process mean shift
occurs, neither the c- nor the X-chart is adequate. Since increasing the size of the inspection
unit often results in increasing the process mean, we recommend using the X-chart based on a
moderately large sized inspection unit. When it is neither easy nor desirable to increase the size
of the inspection unit, charts based on probability limits can be adapted to obtain an in-control
ARL value closer to a specified value with a lower control limit.

The results obtained in this article are relevant to other types of control charts for noncon-
formities. For example, the conventional p−chart is based on the binomial distribution (the
case that r < 1); that is, the probability of occurrence of a conforming unit is constant, and
successive units are independent. For processes where nonconforming units are clustered (Al-
bin and Friedman (1989)), or where successive units are correlated (Bhat and Lal (1990)), it
is likely that control limits based upon other distributions in the Katz family or in the com-
pound Poisson class may be a better choice. In such cases, control limits with corresponding
adjustments are more appropriate.

The idea of using the Katz family of distributions in the robustness study of control charts
for count data can be extended to the CUSUM and EWMA charts. As illustrated by an example
using negative binomial distributions in Hawkins and Olwell (1998) (Section 5.4.5), the ARLs
for CUSUMs of Poisson variables are very sensitive to departures from the assumed Poisson
distribution.
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