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ABSTRACT

Measurement errors can have dramatic impact on the outcome of empirical
analysis. In this article we quantify the e�ects that they can have on
predictions generated from ARMA processes. Lower and upper bounds
are derived for di�erences in minimum mean squared prediction errors
(MMSE) for forecasts generated from data with and without errors.
The impact that measurement errors have on MMSE and other relative
measures of forecast accuracy are presented for a variety of model
structures and parameterizations. Based on these results the need to set up
the models in state space form to extract the signal component appears to
depend upon whether processes are nearly non-invertible or non-stationary
or whether the noise-to-signal ratio is very high. Copyright # 1999 John
Wiley & Sons, Ltd.
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INTRODUCTION

Virtually all data contain observation errors. In addition, the measures often available to study
economic and scienti®c phenomena are imperfect measurements of what is actually needed. The
presence of measurement errors introduces added complexity in model identi®cation since they
will have an impact on the covariance structure of the observed data. Moreover, as demonstrated
by Bell and Hilmer (1990) among others, parameter estimation is also very sensitive to the
inclusion of error component factors in models.

Although much research has been conducted to deal with many of the problems associated
with errors in variables, particularly in the area of parameter estimation or in the case of repeated
time series measurements (Wong andMiller, 1990), as pointed in Wilcox (1992), most researchers
do not spend much e�ort investigating the quality of the data, and often ignore measurement
errors which may be important enough to in¯uence the conclusions of empirical work as typically
conducted.
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The presence of measurement errors naturally will also have an e�ect on predictability.
Consider, for example, the following discrete-time system,

yt � xt � et �1�

where yt is the observed series, xt is a stationary and invertible ARMA signal process and the
series et , the error component, also referred to as the noise, is a sequence of uncorrelated random
variables with mean zero and variance s2e , assumed to be independent to xt. Then, for a given
speci®c signal process xt with an ARMA (p,q) structure, the observed series, yt, will be identi®ed
as an ARMA(p,Q) process with Q4max(p,q), which may be di�erent from the ARMA(p,q)
structure of {xt} (Granger and Morris, 1976).

In the case that q5 p, the possible misspeci®cation may introduce prediction bias. If q5 p, the
observed series may be identi®ed correctly as an ARMA(p,q) process, but the extra volatility
from the measurement errors will distort the parameter estimation, and hence may cause
problems with prediction particularly for small samples.

If a model without measurement errors is used in a situation where measurement errors are
present, the l-step ahead prediction of xt based on the observed sequence {yt} is ~xt�l � �
E� yt�l j yt, ytÿ1, . . .). The impact of measurement errors on prediction can then be de®ned as the
di�erence between the minimum mean squared predictive errors (MMSE) of ~xt�l � and x̂t�l �,
where x̂t�l � � E�xt�l jxt, xtÿ1, . . .) is the prediction based on the signal {xt}. Denote this
di�erence as DMMSE, that is,

DMMSE � MMSE� ~xt�l �� ÿMMSE�x̂t�l �� �2�

Consequently,

HMMSE � DMMSE

MMSE�x̂t�l ��
�3�

provides a measurement of the relative impact of measurement errors on MMSE predictions.
Our study will focus on the e�ects that {et} have on DMMSE and HMMSE. The results

obtained here should provide useful guidelines for evaluating predictions based on ARMA
models when measurement errors are present but not treated explicitly.

The paper is organized as follows. In the next section we investigate the problem of making
linear predictions when measurement errors are present, and discuss some of the properties
of DMMSE and HMMSE. We also derive lower and upper bounds for both DMMSE and
HMMSE for stationary linear models, and show that the results are only dependent on the
autocovariance structures, and not on the model speci®cations of {xt} and {yt}. In the third
section, we derive exact expressions for DMMSE and HMMSE for some low-order ARMA
processes, and show that the impact of measurement errors on MMSE predictions is not signi®-
cant unless the signal process, {xt}, is nearly non-invertible or non-stationary. In the fourth
section we extend our ®ndings to seasonal ARMA processes. In the ®nal section we o�er some
conclusions and directions for further research.
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MMSE PREDICTION WITH MEASUREMENT ERRORS

In this section we investigate the problem of predicting the value of xt�l in terms of fyigti�1,
and discuss the properties of DMMSE and HMMSE. We will start by assuming that {xt} is
a stationary linear process, and then proceed to develop lower and upper bounds for these
measures of predictability when the signal process follows a stationary and invertible ARMA
process,F�B�xt � Y�B�at, whereF�B� andY�B� are ®nite polynomials in the backshift operatorB
such that Bjwt � wtÿj and {at} is a white noise process with variance s2a. Such a signal process can
also be expressed as autoregressive or moving average processes respectively, i.e. P�B�xt � at, or
xt � C�B�at, where P � Yÿ1F and C � Cÿ1Y.

MMSE predictors
If measurement errors {et} are not present, the observed time series is simply yt � xt. The MMSE
l-step ahead of prediction of xt, based on a weighted average of previous observations and the
forecasts made at previous lead times from the same origin, is de®ned in terms of the conditional
expectation,

x̂t�l � � E�xt�l j yt; ytÿ1; . . . ; y1� � E�xt�l j xt; xtÿ1; . . . ; x1� �4�

If we restrict ourselves to the class of linear predictors, then

x̂t�l � � E�xt�l j yt; ytÿ1; . . . ; y1� � E�xt�l j xt; xtÿ1; . . . ; x1� �
Xt
i�1

pli;xxi �5�

where Pl
x � �pl1;x, pl2;x, . . ., plt;x)0 is the weight vector estimated from the data which will yield the

MMSE for x̂t�l � (We have added the subscript x to theP's to emphasize that we are dealing with
the series {xt}. The theoretical expectation (5) requires knowledge of the xi's going all the way
back to the in®nite past. However, because we have assumed that the model is invertible, the P
weights in (5) form a convergent series. Consequently, for computational purposes, given a
certain level of accuracy, the dependence on the distant past should be negligible.)

If the model contains measurement errors, the l-step ahead of linear prediction of xt, ~xt�l �, will
be based on {yt}, which will be distorted by the noise {et}, and will be de®ned as

~xt�l � � E� yt�l j yt; ytÿ1; . . . ; y1� �
Xt
i�1

pli;yyi �6�

Although the forecasts obtained from equation (6) are unbiased, as we shall show, DMMSE 6� 0.

Bounds for DDDDDMMSE and HHHHHMMSE
Let Xt � �xt, xtÿ1 , . . ., x1)0, Yt � � yt, ytÿ1, . . ., y1)0, Rl

t;x � �gx�l �, gx�1 � l �, . . ., gx�t ÿ 1 ÿ l ��0,
where gx��� is the autocovariance function of xt, and Gt;x � �gx�i ÿ j��i;j�1;2;...;t. Then, the Yule±
Walker-type estimators for Pl

x are given by Pl
x � Gÿ1t;xRl

t;x. Thus,

x̂t�l � � �Pl
x�0Xt � �Gÿ1t;xRl

t;x�0Xt �7�
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and consequently, the MMSE of equation (7) becomes

E�x̂t�l � ÿ xt�l�2 � gx�0� ÿ Rl
t;x
0Gÿ1t;xRl

t;x �8�

(Corollary 5.1.1 in Brockwell and Davis, 1991).
Now letRl

t;y, Gt;y andPl
y be similarly de®ned for yt. Hence,Pl

y � Gÿ1t;yRl
t;y � Gÿ1t;yRl

t;x since the
autocovariance functions for {xt} and {yt} are the same. Moreover,

~xt�l � � �Pl
y�0Yt � �Gÿ1t;yRl

t;x�0Yt �9�

and the MMSE of equation (9) can be calculated as follows:

E� ~xt�l � ÿ xt�l�2 � E� ~xt�l � ÿ yt�l � et�l�2

� E� ~xt�l � ÿ yt�l�2 � 2E� ~xt�l � ÿ yt�l�et�l � Ee2t�l

� gy�0� ÿ Rl
t;y
0Gÿ1t;yRl

t;y ÿ 2s2e � s2e

� gx�0� � s2e ÿ Rl
t;y
0Gÿ1t;yRl

t;y ÿ s2e

� gx�0� ÿ Rl
t;x
0Gÿ1t;yRl

t;x

�10�

Hence,

DMMSE � Rl
t;x
0Gÿ1t;xRl

t;x ÿ Rl
t;x
0Gÿ1t;yRl

t;x �11�

and

HMMSE � R
l
t;x
0Gÿ1t;xRl

t;x ÿ Rl
t;x
0Gÿ1t;yRl

t;x

MMSE�x̂�l �� �12�

The conditions that gx�0�4 0 and gx�h� ! 0 as h!1 are su�cient to ensure that both Gt,x

and Gt,y are non-singular for every t (Proposition 5.1.1 in Brockwell and Davis, 1991). It should
be noted that simpli®cation of the matrix [Gÿ1t;x ÿ Gÿ1t;y ] is, in general, very di�cult, even though
[Gt;y ÿ Gt;x] is of the form s2e I , where I is a t � t identity matrix. The following theorem, which is
the main result in this section, provides lower and upper bounds for DMMSE and HMMSE.

Theorem 1 If Gt,x is positive de®nite, then

s2e
s2e � maxili

B1;t 4DMMSE4
s2e

s2e � minili
B1;t �13�

and

s2e
s2e � maxili

B2;t 4HMMSE4
s2e

s2e � minili
B2;t �14�

where lis are eigenvalues of Gt;x, B1;t � gx�0� ÿMMSE�x̂�l �� and B2;t � �gx�0� ÿMMSE�x̂�l ���/
MMSE�x̂�l ��.
The proof of the theorem is given in the Appendix.
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As can be seen, the bounds depend on s2e , and on the quality of the predictor x̂�l �, which is
measured by B1;t or B2;t. In addition, the distribution of eigenvalues of Gt;x also plays a critical
role in the evaluation of DMMSE and HMMSE. Furthermore, in the following sections, we will
see that the eigenvalues of Gt;x are closely related to process stationarity and invertibility.

In addition, the expected result that DMMSE5 0 and HMMSE5 0, which we state below as a
corollary, can be easily veri®ed, because gi's, B1;t and B2;t in equations (13) and (14) are non-
negative.

Corollary 1 If Gt;x is positive de®nite, then

DMMSE5 0 and HMMSE5 0

As measurement errors decrease, yt converges to xt, and the e�ects of measurement errors on
predictions vanish. This result is a direct consequence of Theorem 1, which can be stated as
follows:

Corollary 2 As se! 0,

DMMSE ! 0 and HMMSE ! 0

The results derived thus far are very general and depend only on the autocovariance structures. In
the subsection below, we will assume that {xt} follows an ARMA process.

Lower and upper bounds for some low-order ARMA processes
The derivation of theoretical lower and upper bounds for DMMSE and HMMSE for general
ARMA(p,q) models is very di�cult and tedious. Here we provide derivations for just two
processesÐAR(1) and MA(1). Higher-order processes will be discussed in the following two
sections. There we will obtain numerical values for both DMMSE and HMMSE based on some
speci®c model parameterizations.

Example 1 Consider the case that {xt} follows an AR(1) process. Let xt � fxtÿ1 � at with
s2a � 1 and de®ne

f �z� � 1 ÿ f2

1 ÿ 2f cos �z� � f2

Then the smallest and largest eigenvalues of Gt,x are

lmin �
1

1 ÿ f2
minz2� 0;p� f �z� �

1

�1 � jf j �2

and

lmax �
1

1 ÿ f2
maxz2�0;p� f �x� �

1

�1 ÿ jf j �2
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(Grenander and SzegoÈ , 1958, see also Proposition 4.5.3 in Brockwell and Davis, 1991 for results
on lmin and lmax for more general ARMA processes). Hence, by Theorem 1,

s2e

s2e �
1

�1 ÿ jf j �2
B1;t 4DMMSE4

s2e

s2e �
1

�1 � jf j �2
B1;t �15�

and

s2e

s2e �
1

�1 ÿ jf j �2
B2;t 4DMMSE4

s2e

s2e �
1

�1 � jf j �2
B2;t �16�

In general, B1;t 5B2;t since MMSE�x̂t�l ��5s2a � 1. If l � 1, we have B1;t � B2;t � gx�0�ÿ
MMSE�x̂t�1�� � gx�0� ÿ s2a � 1=�1 ÿ f2� ÿ 1 � f2=�1 ÿ f2�.

When jf j is small, equations (15) and (16) provide tight limits for DMMSE and HMMSE. As
jf j goes to zero, the lower and upper bounds in equation (15) approach

s2e
s2e � 1

B1;t

the lower and upper bounds in equation (16) approach

s2e
s2e � 1

B2;t

When f increases, the range between the lower and upper bounds increases. As jf j approaches
one, the lower bounds in equations (15) and (16) go to zero, while the upper bounds approach

s2e
s2e � 0.25

B1;t

and

s2e
s2e � 0.25

B2;t

respectively.

Example 2 In the second example, we assume that {xt} follows an MA(1) process. Let xt �
at ÿ yatÿ1 and s2a � 1. Then the eigenvalues of Gt,x (see, Gregory and Karney, 1969) are

li � gx�0� � 2gx�1� cos
kp

n � 1

� �
k � 1; 2; . . . ; n
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where gx�0� � �1 � y2� and gx�1� � ÿy. Hence, lmax � �1 � j y j �2 and lmin � �1 ÿ j y j �2.
Applying Theorem 1, we have

s2e
s2e � �1 � j y j �2

B1;t 4DMMSE4
s2e

s2e � �1 ÿ j y j �2
B1;t �17�

and

s2e
s2e � �1 � j y j �2

B2;t 4HMMSE4
s2e

s2e � �1 ÿ j y j �2
B2;t �18�

When l � 1, B1;t � B2;t � gx�0� ÿMMSE�x̂t�1�� � gx�0� ÿ s2a � �1 � y2� ÿ 1 � y2. If l4 1,
B1;t � B2;t � 0 since MMSE�x̂t�l �� � MMSE� ~xt�l ��.

When l � 1, if j y j is small, the range associated with equations (17) and (18) is very narrow.
As j y j goes to zero, the lower and upper bounds in these equations approach

s2e
s2e � 1

y2

When y increases, the di�erence between the lower and upper bounds increases. As j y j goes to
one, the lower and upper bounds in equations (17) and (18) approach

s2e
s2e � 4

y2 and y2;

respectively.

Model misspeci®cation and MMSE predictors
Granger and Morris (1976) have proven that the sum of two uncorrelated processes,
ARMA(p1 , q1) and ARMA(p2 , q2) is an ARMA(p*, q*) process, where p*4 p1 � p2 and
q*4max(p1 � q2 , p2 � q1). Thus, as pointed out earlier, given a speci®c ARMA (p, q) signal
process {xt}, the observed series {yt} will be identi®ed as an ARMA(p,Q) process, where
Q4max(p, q).

If q5 p, the number of past observations used in equations (5) and (6) to predict xt�l may be
di�erent because of the structural di�erence between Gÿ1t;x and Gÿ1t;y . If q5 p, the observed series
will probably be correctly identi®ed. However, the projection coe�cients Pl

t;x and Pl
t;y will be

di�erent due to the impact of s2e in Gl
t;y.

Example 3 Suppose that {xt} follows an AR(1) process, xt ÿ fxtÿ1 � at. If there is no
measurement error, only the last observation xt is useful in predicting xt�l. Therefore, the
projection coe�cients of Xt, P

l
x � �1; 0; 0; . . . ; 0�0 and x̂t�l � � flxt. If the measurement errors

are not zero, yt will follow an ARMA(1,1) process. Consequently, pli;y will not be equal to zero for
all i � t, t ÿ 1, . . ., 1, hence the whole past history of {yt} will be used in the calculation of the
MMSE prediction of yt�l . The projection coe�cients of yt, i.e. p

l
i;y, approach zero asymptotically

instead of cutting o� abruptly.

Example 4 Assume that {xt} follows MA(1) process, that is xt � at ÿ y1atÿ1 with s2a � 1. Then
yt � xt � et will also follow an MA(1) process. Now assume that yt � bt ÿ Wbtÿ1, where {bt} is a
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white noise process uncorrelated with {at}. The non-zero autocovariances of yt are given by
gt�0� � �1 � y2� � s2e � �1 � W2�s2b and gy�1� � ÿy � ÿWs2b. These two equations yield

�1 � y2� � s2e � �1 � W2�y=W �19�

Using equation (19) one can easily show that W and y have equal sign and that j W j 4 j y j . This
implies that the projection coe�cients Pl

y and ~xt�l � are determined by an MA(1) process with
j W j 4 j y j and s2b 5 1 ��s2a). Both Gt;x and Gt;y are tridiagonal matrices. A closed form of the
inverse of tridiagonal matrices has been given by Gregory and Karney 1969). Thus, applying
Gregory and Karney's result, one can ®nd both Gÿ1t;x and Gÿ1t;y .

PREDICTIONS BASED ON ARMA MODELS

In this section, we derive exact values for DMMSE and HMMSE associated with some low-order
ARMA models. We have chosen model parameterizations of {xt} which not only conform to
other previously published studies, such as Pukkila, Koreisha and Kallinen (1990) but which also
cover a wide spectrum of parameter values ranging from well-de®ned stationary and invertible
processes to nearly non-invertible or non-stationary processes. Without loss of generality, we will
assume that the variance of {at}, s

2
a, is one.

The assumption s2a � 1 implies that if l � 1, MMSE�x̂�l �� � s2a � 1. Hence, we have
DMMSE � HMMSE for the process without an MA part and DMMSE� HMMSE for the
process with an MA part. When l4 1, DMMSE4HMMSE since MMSE�x̂�l ��4 1.

To provide a measure of the magnitude of the measurement error relative to the signal process,
let us de®ne the noise-to-signal ratio as r � se=sx. In this study, we will evaluate the conse-
quences on several-steps-ahead forecasts when r will be set equal to 1%, 10% or 25%. Since
HMMSE is calculated in terms of second moments, we will compare HMMSE with r2 instead of
r. The corresponding r2 values are 0.0001, 0.01 and 0.0625, respectively. These three levels of r
(or r2) cover a wide range of situations usually encountered in practice (Bell and Wilcox, 1993).

It should be noted that if xt is an AR(p) process, HMMSE does not depend on the sample size t
as long as t4 p. This is because the only last p observations are used for prediction. On the other
hand, if xt has an MA component, HMMSE does depend on t since all past observations are
required to calculate the MMSE prediction. However, these statistics are not noticeably a�ected
by the sample size, especially when roots of the polynomials in equation (4) are not near the unit
circle. Hence, for brevity, we will report results only for t � 100. For illustrative purposes,
however, we will also provide rests on t � 400 for MA(1) structures.

Tables I±V contain HMMSE's for some of the low-order ARMA(p,q) structures we studied
for several prediction horizons, l, and levels of r2. (For brevity we have omitted the results
associated with DMMSE for most of the ARMA(p,q) structures in these tables. Table IV,
however, contrasts DMMSE and HMMSE for various ARMA(1,1) parameterizations). In
general we see that the impact that measurement errors have on MMSE predictions depends
mainly on the invertibility and stationary properties of the {xt} processes, and naturally, on the
magnitude of r2. Unless the roots of the characteristic polynomials are near the unit circle, the
impact is relatively negligible and concentrated primarily around the ®rst few-steps-ahead fore-
casts. When the processes are nearly non-stationary, as exempli®ed by the AR(1) process with
jf j 5 0.99 and the AR(2) process with f1 � 1.8, and f2 � ÿ0.9, the impact of measurement
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errors as measured by HMMSE for the ®rst-step-ahead forecast can be quite dramatic: 36% when
r � 10%, and 130% when r � 25% for the AR(1) process; and 116% when r � 10%, and
388%when r � 25% for the AR(2) process. Note, however, how small the impact becomes, even
for these processes, when the forecast horizon increases to ten periods: 3.28% and 11.9% for the
AR(1) process, and 0.6% and 2.53% for the AR(2) process, when r � 10% and 25%, respect-
ively. For pure MA processes the impact of measurement errors are only felt for forecast horizons
l4 q since gx�l � is zero for l4 q. As can be seen, the impact of measurement errors in the model
prediction follows a pattern very similar to pure AR processes, more noticeably when the
processes are nearly non-invertible, but they are generally of lower magnitude.

For mixed processes the impact also appears to be dependent on model parameterization.
Those structures which when converted into equivalent AR(1 ) representations have p-weights
which go to zero relatively slowly as the lag length increases, feel more of the impact of
measurement errors than those for which the p-weights go to zero rapidly. Note, for example,
when l � 1, how large is the di�erence in HMMSE for r � 10% and r � 25%, respectively
for ARMA(1,1) processes with f � 0.8, y � 0.7 (p1 � 0.1, p2 � 0.1 � 0.7, p3 � 0.1 � 0.72, . . .)
and with f � 0.8 and y � ÿ0.7 �p1 � 1.5, p2 � 1.5 � 0.7, p3 � 1.5 � 0.72, . . .). The impact of
the measurement errors also decreases dramatically as the forecast horizon increases. For the

Table I. HMMSE of AR(1) and AR(2) processes for several forecast horizons and di�erent levels of
measurement errors

AR(1): f1 AR(2): (f1 , f2)

r2 l
0.30 or
ÿ0.30

0.50 or
ÿ0.50

0.90 or
ÿ0.90

0.99 or
ÿ0.99

(1.42,
ÿ0.73)

(1.80,
ÿ0.90)

(0.50,
0.30)

(ÿ0.30,
0.50)

0.0001 1 9.889e-06 3.333e-05 0.0004261 0.0049006 0.0016699 0.0204784 2.627e-05 7.082e-05
2 8.165e-07 6.666e-06 0.0001907 0.0024257 0.0005925 0.0096284 5.832e-05 7.082e-05
5 5.904e-10 9.774e-08 5.351e-05 0.0009411 1.457e-05 0.0022898 1.350e-05 1.444e-05

10 3.486e-15 9.535e-11 1.383e-05 0.0004469 2.075e-06 8.338e-05 2.390e-06 3.376e-06

0.01 1 0.0009783 0.0032896 0.0405791 0.3596025 0.1455287 1.1615970 0.0075236 0.0069681
2 8.077e-05 0.0006579 0.0181597 0.1779943 0.0499810 0.4802442 0.0057359 0.0069593
5 5.841e-08 9.647e-06 0.0050957 0.0690587 0.0014318 0.0984472 0.0013287 0.0014225

10 3.449e-13 9.412e-09 0.0013174 0.0327956 0.0001962 0.0059951 0.0002332 0.0003324

0.0625 1 0.0057862 0.0192588 0.2094753 1.3018980 0.6219203 3.8795890 0.0439953 0.0402842
2 0.0004778 0.0038518 0.0937431 0.6444068 0.1951217 1.3721710 0.0330805 0.0399863
5 3.455e-07 5.648e-05 0.0263046 0.2500185 0.0083004 0.2300115 0.0077032 0.0082634

10 2.040e-12 5.510e-08 0.0068006 0.1187326 0.0010888 0.0252748 0.0013516 0.0019278

Notes:
(1) The observations follow yt � xt � et.
(2) In the AR(1) case, xt ÿ f1xtÿ1 � at with s2a � 1 and

s2e � r2
1

1 ÿ f2
1

:

(3) In the AR(2) case, xt ÿ f1xtÿ1 ÿ f2xtÿ2 � at with s2a � 1 and

s2e � r2
1 ÿ f2

�1 � f2���1 ÿ f2�2 ÿ f2
1�
:

(4) The result does not depend on the sample size t; results shown here are for t � 100 observations.
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ARMA(1,2) structure with f1 � ÿ0.8, y1 � 1.4 and y2 � ÿ0.6 for r � 10%, HMMSE changes
from 115% when l � 1 to 0.22% when l � 10; for the ARMA(2,1) with f1 � ÿ0.5, f2 � ÿ0.9
and y � 0.6, the corresponding values when r � 25% are 87% and 4.1% for l � 1 and 10
respectively.

Finally, as mentioned earlier, sample size does not have a noticeable e�ect on the prediction
measures as can be seen by contrasting the values of these measures for t � 100 and t � 400 in
Table II.

SEASONAL ARMA PROCESSES

Seasonal models can be viewed as special forms of the ARMA models. Results for low-order
non-seasonal ARMA processes in the previous sections, as we shall demonstrate, can be used to
show the impact that measurement errors have on the predictability of seasonal models. To
illustrate how one can apply the results for low-order non-seasonal ARMA models to seasonal
ARMA processes, we will consider two often used multiplicative structures.

Example 5 Suppose that xt is an ARMA(0,1)� SARMA(1,0)12 process, that is xt � Fxtÿ12
�at ÿ yatÿ1. Then gx�0� � �1 � y2�=�1 ÿ F2�, gx�12k� � Fkgx�0�, and gx�12k ÿ 1� � gx�12k �
1� � ÿyFkgx�0�=�1 � y2� for k � 1; 2, . . ., gx��� � 0 at all other lags. De®ne the ARMA(1,1)
process fx*tg as x*t � Fx*tÿ1 � at ÿ yatÿ1. If we compare the covariances of {xt} with those of
fx*tg, we see that

MMSE�x̂t�l �� � MMSE�x̂*t�l*�� for 12�l* ÿ 1�5 l4 12l*; l* � 1; 2; 3; . . . �20�

Table II. HMMSE of MA(1) process for several forecast horizons and di�erent levels of measurement
errors (t � 100 and t � 400)

y1

0.30 or ÿ0.30 0.50 or ÿ0.05 0.90 or ÿ0.90 0.99 or ÿ0.99

r2 l t � 100 t � 400 t � 100 t � 400 t � 100 t � 400 t � 100 t � 400

0.0001 1 1.078e-05 1.078e-05 4.166e-05 4.166e-05 0.0007678 0.0007678 0.0051690 0.0071218
2, 5, 10 0 0 0 0 0 0 0 0

0.01 1 0.0010640 0.0010640 0.0040766 0.0040766 0.0555977 0.0559775 0.1175039 0.1208585
2, 5, 10 0 0 0 0 0 0 0 0

0.0625 1 0.0062287 0.0062287 0.0229490 0.0229490 0.1869673 0.1869673 0.2799237 0.2837658
2, 5, 10 0 0 0 0 0 0 0 0

Notes:
(1) The signal is an MA(1) process xt � at ÿ y1atÿ1 with s2a � 1 and the observations follow yt � xt � et.
(2) s2e � r2�1 � y21�.
(3) The sample size e�ects are negligible, especially when the signal process is not nearly non-invertible. When the signal

process is nearly non-invertible ( j y1 j 5 0.9), some of HMMSEs at t � 400 are greater than those at t � 100 due to
the di�erent decay speeds of MMSE(xÄt(l)) and MMSE(xÃt(l)). For example, when j y1 j � 0.99, MMSE� ~xt�1�� �
1.008193 and MMSE�x̂t�1�� � 1.003008 and for t � 100, and MMSE� ~xt�1�� � 1.007128 and MMSE�x̂t�1�� �
1.000006 for t � 400.
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where x̂t�l � is the MMSE predictor of xt�t � l � based on {xt} and x̂*t�l*� is the MMSE predictor
of x*t�t � l*� based on fx*tg. A similar relationship exists for MMSE� ~xt�l �� and MMSE� ~x*t�l*��,
where ~xt�l � is the MMSE predictor of yt�t � l � based on {yt} and ~x*t�l � is the MMSR predictor
of y*t�t � l*� based on y*t � x*t � et, namely,

MMSE� ~xt�l �� � MMSE� ~x*t�l*�� for 12�l* ÿ 1�5 l4 12l*; l* � 1; 2; 3; . . . �21�

Therefore, in order to analyze the impact of measurement errors on MMSE predictions for
ARMA(0,1)� SARMA(1,0)12 , one only needs to evaluate the corresponding statistics for the
ARMA(1,1) process, fx*tg.

Example 6 Airline Model (The actual airline passenger model has an integrated component
(see Box and Jenkins, 1976, p. 531.)) Suppose that xt follows an ARMA(0,1)� SARMA(0,1)12 ,
that is, xt � at ÿ yatÿ1 ÿ Yatÿ12 � yYatÿ12ÿ1. If s2a � 1, the autocovariance function for xt
is gx�0� � �1 � y 2��1 � Y 2�, gx�1� � y�1 � Y2�, gx�k� � 0 for k � 2, 3,. . ., 12ÿ 2,
gx�12 ÿ 1� � yY, gx�12� � Y�1 � y2�, gx�12 � 1� � yY, and gx�l � � 0 for l5 12 � 2.

Table III. HMMSE of MA(2) and MA(3) processes for several forecast horizons and di�erent levels of
measurement errors

MA(2): (y1 , y2) MA(3): (y1 , y2 , y3)

r2 l
(1.42,
ÿ0.73)

(1.8,
ÿ0.9) (0.5, 0.3)

(ÿ0.3,
0.5)

(1.0, 0.8,
ÿ0.9)

(0.5, 0.3,
ÿ0.3)

(0.8, 0.8,
ÿ0.64)

(ÿ0.4,
ÿ0.55,
ÿ0.22)

0.0001 1 0.0019661 0.0228484 0.0001665 0.001450 0.0211620 8.482e-05 0.0058830 6.506e-05
2 0.0004091 0.0043595 2.163e-05 6.398e-05 0.0007031 1.511e-05 0.0002882 5.647e-05
3 0 0 0 0 0.0064248 1.530e-05 0.0010984 7.152e-06
5 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0

0.01 1 0.1495970 0.5493175 0.0150871 0.0131661 0.3621351 0.0082420 0.1970614 0.0063627
2 0.0275923 0.0716249 0.0019943 0.0059355 0.0290324 0.0014899 0.0218090 0.0054987
3 0 0 0 0 0.0866441 0.0014806 0.0328719 0.0006956
5 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0

0.0625 1 0.5269499 1.2148580 0.0670375 0.0589886 0.7721829 0.0450623 0.4749465 0.0358288
2 0.0756443 0.1155425 0.0094341 0.0286489 0.1181814 0.0087035 0.0947855 0.0303103
3 0 0 0 0 0.1515817 0.0079593 0.0703101 0.0038140
5 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0

Notes:
(1) The observations follow yt � xt � et.
(2) For the MA(2) case, xt � at ÿ y1atÿ1 ÿ y2atÿ2 with s2a � 1 and s2e � r2�1 � y21 � y22�.
(3) For the MA(3) case, xt � at ÿ y1atÿ1 ÿ y2atÿ2 ÿ y3atÿ3 with s2e � 1 and s2e � r2�1 � y21 � y22 � y23�.
(4) The result does not depend on the sample size t � 100 observations.
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Let x*t � at ÿ yatÿ1 ÿ Yatÿ2 � yYatÿ3. Furthermore, let x̂t�l � be the MMSE predictor of
xt�t � l � based on {xt}, and x̂*t�l*� be the MMSE predictor of x*t�t � l*� based on fx*tg. Following
a similar line of logic as in the previous example, we have

MMSE�x̂t�l � � MMSE�x̂*t�l*�� �22�

for l* � 1 if l � 1; l* � 2 if l � 2; 3; . . . ; 12; l* � 3 if l � 12 � 1; and l*4 3 if l4 12 � 1.
Equation (22) holds forMMSE� ~xt�l �� andMMSE� ~x*t�l*��, where ~xt�l � is the MMSE predictor of
yt�t � l � based on {yt} and ~x*t�l � is the MMSE predictor of y*t�t � l*� based on y*t � x*t � et.

In examining the results, for instance, for the MA(3) model in Table III with y1 � ÿ0.40,
y2 � ÿ0.55 and y3 � ÿ0.22 (equivalent to the wt � �1 � 0.4B��1 � 0.55B12�at parameterization
obtained by Box and Jenkins, 1976 for the airline data), we see that the impact of measurement
errors regardless of the value of r is rather negligible. For equivalent seasonal processes with
eigenvalues nearer the unit circle we observe the same type of behaviour noted earlier for non-
seasonal processes, namely that their impact decreases as the forecast horizon increases. Note, for
example, how dramatic are the changes in HMMSE for the parameterization y1 � 1.0, y2 � 0.8
and y3 � ÿ0.9 (equivalent to the MA(13) model with only three non-zero parameters y1 , y12 ,

Table IV. DMMSE and HMMSE of ARMA(1,1) process for several forecast horizons and di�erent levels
of measurement errors

(f1 , y2)

(0.8, ÿ0.7) or
(ÿ0.8, 0.7)

(0.8, 0.7) or
(ÿ0.8, ÿ0.7)

(0.9, ÿ0.9) or
(ÿ0.9, 0.9)

(0.3, 0.5) or
(ÿ0.3, ÿ0.5)

r2 l DMMSE HMMSE DMMSE HMMSE DMMSE HMMSE DMMSE HMMSE

0.0001 1 0.0031771 0.0031771 2.015e-06 2.015e-06 2.015e-06 0.0269167 5.567e-06 5.567e-06
2 0.0020334 0.0006256 1.290e-06 1.277e-06 0.0218025 0.0051421 5.010e-07 4.818e-07
5 0.0005330 8.595e-05 3.381e-07 3.304e-07 0.0115868 0.0010817 3.653e-10 3.499e-10
10 5.723e-05 8.109e-06 3.630e-08 3.534e-08 0.0040401 0.0002608 2.157e-15 2.066e-15

0.01 1 0.2166930 0.2166930 0.0002000 0.0002000 0.6608152 0.6608119 0.0005494 0.0005494
2 0.1386835 0.0426719 0.0001280 0.0001267 0.5352603 0.1262405 4.945e-05 4.755e-05
5 0.0363551 0.0058624 3.355e-05 3.280e-05 0.2844593 0.0265551 3.605e-08 3.453e-08
10 0.0039036 0.0005469 3.603e-06 3.507e-06 0.0991848 0.0064019 2.129e-13 2.039e-13

0.0625 1 0.7277709 0.7277709 0.0012022 0.0012022 1.7204460 1.7204370 0.0032118 0.0032118
2 0.4657734 0.1433149 0.0007694 0.0007618 1.3935610 0.3286697 0.0002891 0.0002779
5 0.1220997 0.0196890 0.0002017 0.0001971 0.7405955 0.0691368 2.107e-07 2.019e-07
10 0.0131104 0.0018369 2.166e-05 2.108e-05 0.2582297 0.0166674 1.244e-12 1.192e-12

Notes:
(1) The signal is an ARMA(1,1) process xt ÿ f1xtÿ1 � at ÿ y1atÿ1 with s2a � 1 and the observations follow

yt � xt � e2.
(2)

s2e � r2
1 � y21 ÿ 2f1y1

1 ÿ f2
1

:

(3) The result does not depend on the sample size t; results shown here are for t � 100 observations.
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and y13) when the forecast horizon changes from one to two periods. As one would expect, the
rate of decrease is smaller for large values of r.

CONCLUSIONS AND PATHS FOR FURTHER RESEARCH

In this paper we examined the impact that measurement errors have on prediction generated by
ARMAmodels. Using MMSE and other measures of forecast accuracy we showed that the e�ect
on forecasts generated from observed data vis-aÁ-vis the true signal process is generally very small
when the noise-to-signal ratio is small and the model parameters are well within the unit circle.
The impact, however, can be quite large, particularly for the early forecast horizons, when the
parameters are near the unit circle, and they increase in magnitude as the noise-to-signal ratio
increases. In these cases it would behoove the model builder to formulate the model in state space
form to extract the signal to generate forecasts.

We are currently investigating the possibility of extending our results to non-stationary models.
This is mathematically complicated because Theorem 1 and its corollaries are based on the
assumption that measurement errors et are uncorrelated in time. If xt, and hence, yt are stationary

Table V. HMMSE of ARMA(1,2) and ARMA(2,1) processes for several forecast horizons and di�erent
levels of measurement errors

ARMA(1,2): (f1 , y1 , y2) ARMA(2,1): (f1 , f2 , y1)

r2 l
(ÿ0.8,

1.4, ÿ0.6)

(0.6,
ÿ0.5,
ÿ0.9)

(0.3,
ÿ0.5, 0.3)

(ÿ0.3,
0.3, ÿ0.5)

(1.4,
ÿ0.6,
ÿ0.8)

(ÿ0.5,
ÿ0.9, 0.6)

(0.3,
ÿ0.5, 0.3)

(ÿ0.3,
0.3, ÿ0.5)

0.001 1 0.0385551 0.0049626 0.0003949 0.0001271 0.0373196 0.0047054 3.701e-05 1.032e-05
2 0.0125130 0.0036421 8.082e-07 8.818e-05 0.0113879 0.0004566 3.701e-05 6.634e-06
5 0.0011102 6.436e-05 5.878e-10 4.681e-08 0.0007381 0.0002473 2.336e-06 2.406e-07

10 9.853e-05 3.773e-07 3.471e-15 2.763e-13 8.269e-05 0.0001450 5.223e-08 1.047e-08

0.01 1 1.1520600 0.2282193 0.0334433 0.0123377 1.0559050 0.2883617 0.0036461 0.0010210
2 0.2772410 0.1594559 7.032e-05 0.0084952 0.2756534 0.0322743 0.0036473 0.0006560
5 0.0245971 0.0028177 5.115e-08 4.509e-06 0.0150383 0.0202891 0.0002308 2.377e-05

10 0.0021831 1.654e-05 3.020e-13 2.662e-11 0.0018817 0.0106396 5.157e-06 1.034e-06

0.0625 1 2.8910510 0.6771251 0.13252727 0.0675198 2.8509200 0.8721216 0.0211792 0.0060423
2 0.5636513 0.4227167 0.0003029 0.0448998 0.6317397 0.1399589 0.0212131 0.0038709
5 0.0500077 0.0074697 2.203e-07 2.383e-05 0.0282102 0.0894723 0.0013586 0.0001398

10 0.0044384 4.384e-05 1.300e-12 1.407e-10 0.0040122 0.0409981 3.025e-05 6.083e-06

Notes:
(1) The observations follow yt � xt � et.
(2) For the ARMA(1,2) case, xt ÿ f1xtÿ1 � at ÿ y1atÿ1 ÿ y2atÿ2 with s2a � 1 and

s2e � r2
1 � y21 � y22 ÿ y1f1 ÿ y2f

2
1y1y2f2

1 ÿ f2
1

:

(3) For the ARMA(2,1) case xt ÿ f1xtÿ1 � f2xtÿ2 � at ÿ y1atÿ1 with s2a � 1 and

s2e � r2
1 ÿ f2 � y21 ÿ f2y

2
1

�1 � f2���1 ÿ f2�2 ÿ f2
1�
:

(3) The result does not depend on the sample size t; results shown here are for t � 100 observations.
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after applying the di�erencing operator d(B), the new error term d(B)et will be stationary
but not uncorrelated. This makes closed forms of DMMSE and HMMSE for d(B)xt and d(B)yt
very di�cult, if not impossible, to derive because Rl

t;d�B�xt is not the same as Rl
t;d�B�yt , and the

di�erence between Gt;d�B�xt and Gt;d�B�yt is no longer a diagonal matrix as in equations (11) and
(12). Numerical calculations of the mean squared errors for the original, non-stationary series,
although tedious, can be made by ®rst obtaining the MMSE's of the stationary series d(B)xt and
then applying the ®lter dÿ1(B) to those MMSE's.

It is also interesting to note that extension to non-stationary structures is closely related to
models having a stationary signal component and measurement errors that are correlated in time.
For example, if the model yt � xt � et is non-stationary, and if taking ®rst di�erences leads to the
stationary model (1 ÿ B�yt � �1 ÿ B�xt � �1 ÿ B�et, then �1 ÿ B�yt is a combination of a
stationary ARMA process with an AR(1) measurement error term. Having more information on
di�erent error structures could provide model builders with an even more ¯exible framework for
which to evaluate forecasts.

APPENDIX

Proof of Theorem 1: Applying Theorem 2.4.7 in Mathai and Provost (1992), we have

mminRl
t;x
0Gÿ1t;xRl

t;x 4Rl
t;x
0Gÿ1t;yRl

t;x 4mmaxRl
t;x
0Gÿ1t;xRl

t;x �A1�

where mmin and mmax are smallest and largest eigenvalues of Gt;xG
ÿ1
t;y , respectively. Since Gt;xG

ÿ1
t;y �

�Gt;y ÿ s2e It�t�Gÿ1t;y � It�t ÿ s2eG
ÿ1
t;y . Hence we have,

mmin � mini 1 ÿ s2e
1

s2e � li

� �
and mmax � maxi 1 ÿ s2e

1

s2e � li

� �
where flig are eigenvalues of Gt;x. It is easy to verify that

mmin � 1 ÿ s2e
s2e � min li

and mmax � 1 ÿ s2e
s2e � max li

�A2�

Replacing mmin and mmax in equation (A1) by (A2) we obtain

1 ÿ s2e
s2e � minili

� �
Rl

t;x
0Gÿ1t;xRl

t;x 4Rl
t;x
0Gÿ1t;yRl

t;x 4 1 ÿ s2e
s2e � maxili

� �
Rl

t;x
0Gÿ1t;xRl

t;x

or

s2e
s2e � maxili

Rl
t;x
0Gÿ1t;xRl

t;x 4DMMSE4
s2e

s2e � minili
Rl

t;x
0Gÿ1t;xRl

t;x

If we let

B1;t � gx�0� ÿMMSE�x̂�l �� � Rl
t;x
0gÿ1t;xRl

t;x
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and

B2;t � �gx�0� ÿMMSE�x̂�l ���=MMSE�x̂�l ��
we obtain the two inequalities for DMMSE and HMMSE of Theorem 1.
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