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ABSTRACT This paper examines the robustness of control schemes to data conditional

heteroscedasticity. Overall, the results show that the control schemes which do not account

for heteroscedasticity fail in providing reliable information on the status of the process.

Consequently, incorrect conclusions will be drawn by applying these procedures in the

presence of data conditional heteroscedasticity. Control charts with time-varying control

limits are shown to be useful in that context.

1 Introduction

Traditional control charts, such as the Shewhart, cumulative sum (CUSUM) and

exponentially weighted moving average (EWMA) control schemes, have been

widely used in statistical process control (SPC). They serve as on-line SPC

procedures to monitor process stability, to detect assignable variation, or to forecast

process movements in industrial processes and other applications. A typical control

chart is constructed from a sample collected when the process is in control. To

determine the parameters of control charts, assumptions about the data generated

by the process have to be made.

In standard SPC applications, a state of control is identi® ed with a process

generating independent and identically distributed (iid) normal random variables.

In practice, it is often diý cult to attain a state of control in this strict sense. In

situations where the normality assumption is violated or the independence assump-

tion is not satis® ed, the control charts based on the iid assumptions may be
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ine þ ective and inappropriate. It is well known that distributions with heavier tails

may increase the presence of outliers in the data. However, in general, the control

charts are not sensitive to the normality assumption and work reasonably well

unless the population is markedly non-normal.

If data are not independent, then the control charts which do not take account

of autocorrelation could wrongly infer that the process is in control or signal that

an assignable cause might have occurred. More sophisticated control schemes have

been proposed for serially correlated observations based on the autoregressive

moving average (ARMA) models (see, for example, Alwan & Roberts, 1988; Harris

& Ross, 1991; Wardell et al., 1994). ARMA (Box & Jenkins, 1994) processes are

linear models. If the disturbance term is assumed to be normally distributed, then

the analysis of ARMA processes is within the Gaussian framework. We can regard

the process based on ARMA models as `in control’ in a broader senseÐ a sense

that goes beyond the simple benchmark of iid random variables.

In order to obtain a better understanding of the process, it is often required to

modify the standard SPC procedures so that the model assumptions are approxi-

mately satis ® ed and a rigorous analysis is possible. For example, serial correlation,

seasonality, missing values and non-constant variance are some common features

in environmental, biological and chemical data (Berthouex et al., 1978). In order

to apply SPC charts to those data, a wider class of stochastic models may be

required.

In this paper, we extend the study of SPC procedures to some non-linear

processes. More speci® cally, we investigate the robustness of control charts to data

conditional heteroscedasticity. In some applications, data conditional heteroscedas-

ticity is common and is often associated with processes that have heavy tails

and variability clusters. For example, Cuthbertson and Gasparro (1993) studied

manufacturing inventories and found that the general autoregressive conditional

heteroscedastic (GARCH) model is consistent with existing theories and with UK

data. Weiss (1984) analyzed 16 US economic series from the Citibank Economic

Database and ® tted ARCH-type models to the data with varying degrees of success.

Heteroscedasticity has an important consequence for control problems. In this

paper, we provide evidence that the control schemes, which do not account for

heteroscedasticity, are not robust to data conditional heteroscedasticity. Our study

indicates that, in general, the conventional calculated control limits are invalid.

The in-control average run length (AR L) falls substantially and the magnitude

depends on the parameters of conditional variance processes. We also develop a

simple control scheme with time-varying control limits and show that the proposed

procedure is useful in dealing with conditional heteroscedasticity data.

To facilitate the study, we assume that the processes can be described by either

GARCH or ARMA± ARCH processes. GARCH models represent one type of non-

linear model, while the conditional variance varies over time; ARMA± ARCH

processes are ARMA models with ARCH errors (see De Gooijer and Kumar

(1992) for a review of non-linear models, and Tong (1990) for further discussion

on the subject). The non-linearity stems from the conditional heteroscedasticity of

the disturbance term. GARCH and ARMA± ARCH processes have been success-

fully applied in many time series (see Bollerslev et al. (1992) for a survey). There

are various reasons for the presence of conditional heteroscedasticity in the observed

sequence. One reason is that any changes in the timescale of data sampling may

create ARCH eþ ects in the observed time series (Stock, 1988).

Among a wide variety of control schemes, the Shewhart, CUSUM and EWMA
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schemes are basic and popular. All three charts have been constructed under the

normality and independence assumptions. They share some common appealing

aspects, such as being easy to set up, implement and interpret. We will focus on

the EWMA chart. The conclusions for the Shewhart and CUSUM charts are

similar and the results are not reported in this paper.

This paper is organized as follows. Section 2 describes the GARCH (1,1) model,

which serves as a data generator. In Section 3, the performance of the EWMA

control scheme is evaluated in the presence of data conditional heteroscedasticity.

The AR Ls, as a measurement of performance, are assessed through a simulation

study, given that a single step shift in the process mean occurs. An adjusted control

scheme with time-varying control limits subject to data conditional heteroscedastic-

ity is discussed in Section 4. Section 5 extends our discussion to the control

schemes designed for serially correlated data. Concluding remarks are presented

in Section 6.

2 GARCH (1,1) model

A wide variety of models based on the ARCH type were developed by Engle (1982)

and were generalized by Bollerslev (1986). In this section, we consider the

GARCH(1,1) model. The GARCH(1,1) model considers a stochastic process y t

in equidistant discrete time t. The distribution of observations { yt } is speci® ed by

the distribution of y t conditional on its past values y t 2 1 . Without loss of generality,

the process mean, when the process is in control, is assumed to be zero. The model

can be formulated as

y t 5 r t e t (1)

and

r
2
t 5 c + a y

2
t 2 1 + b r

2
t 2 1 (2)

where the parameters c , a , b > 0, and a + b < 1. { e t} are iid standard normal. The

parameters a and b are particularly interesting, because they provide information

about the persistence of temporal shocks.

The conditional distribution of y t is normal with mean zero and standard

deviation r t . However, the unconditional distribution of y t is not of any standard

form. By the usual ARMA analog, the process is weakly stationary with mean zero

and constant unconditional variance

r
2 º Var( y t) 5

c

1 2 a 2 b
(3)

The existence of higher moments of y t depends on the levels of both a and b . The

distribution of y t is symmetric, since all the odd moments of y t are zero. The

kurtosis of y t , i.e. j , is given by

j º
E [ y t 2 E ( y t)]4

Var2( y t )
5

3 2 3 ( a + b )2

1 2 3 a
2 2 b

2 2 2 a b
(4)

The kurtosis exists only for (1 2 3 a
2 2 b

2 2 2 a b )> 0 with a , b > 0. In equation (4),

j in (4) is greater than 3 if either a or b is greater than zero; therefore, the model

yields observations with heavier tails than those of a normal distribution.
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FIG. 1. The regions in which the variance r
2 and the kurtosis j are well de® ned.

One can verify equation (4) by applying the fact that y
2
t is ARMA(1,1), i.e.

y
2
t 5 c + ( a + b )y

2
t 2 1 + a t 2 b a t 2 1

where at 5 r
2
t ( e

2
t 2 1) is white noise (Harvey, 1993). In the interests of brevity, we

do not include the detailed computation here. Figure 1 shows the regions of a and

b in which the variance and the kurtosis of y t exist.

3 EWMA scheme in the presence of data conditional heteroscedasticity

The general model of control charts consists of the center line l , which is the

equilibrium level of some quality characteristic of interest; the upper control limits

(UCL) and the lower control limits (LCL), which have the same distance from the

center line, expressed in standard deviation units of the observed sequence r y .

We have

Control limits 5 l 6 k L r zt
(5)

where k is a predetermined constant and the value of the parameter L depends on

the design of the chart. In the EWMA case, zt 5 k yt + (1 2 k )zt 2 1 and

L 5 { k

2 2 k
[1 2 (1 2 k )2t ]}

1/2

where k is the smoothing parameter, which is the weight assigned to the last

observation. We will have that l 5 0 in equation (5), since the process mean is

assumed to be zero when the process is in control.

Theoretical derivations of the AR Ls for GARCH processes are diý cult. We

perform simulation experiments for AR Ls when the process mean has shifted by

q r y for some non-negative parameter q . If q 5 0, then the process is in control.

Data are generated by the GARCH(1,1) model de® ned in equations (1) and (2).

The performance of the EWMA scheme is evaluated on the parameter space

spanned by a and b . The levels of a and b are in the interval [0.0, 1.0) with

increment 0.1. Imposing the weakly stationary condition a + b < 1 implies that
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AR Ls are calculated only on half the a and b space. We assume that r
2
y 5 1 for all

simulations; therefore, the parameter c 5 1 2 a 2 b from equation (3).

To assess the robustness of the EWMA scheme to the data conditional heterosc-

edasticity, we perform simulation experiments for the smoothing parameter k 5 0.1

and 0.3. The multiplier k in equation (5) is chosen so that AR L 5 370 in the case

of no shift in the process mean and no data conditional heteroscedasticity. For

example, when k 5 0.1, k 5 2.715. If k 5 0.3, then k increases to be approximately

2.928. More values of k for diþ erent in-control AR Ls can be found in Lucas and

Saccucci (1990). The process is initialized at the in-control value and the process

mean shifts immediately after the ® rst observation. All simulations are based on

10 000 replications.

Figures 2 ± 5 report the simulation results for k 5 0.1 when q 5 0.0, 0.5, 1.0 and

FIG. 2. Contour plot of the AR L for the in-control EWMA with k 5 0.1.

FIG. 3. Contour plot for the EWMA with k 5 0.1, when the process has shifted by half a standard

deviation.
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FIG. 4. Contour plot of the AR L with k 5 0.1, when the process has shifted by one standard deviation.

FIG. 5. Contour plot of the AR L with k 5 0.1, when the process has shifted by three standard deviations.

3.0 respectively. The AR L for an in-control EWMA ( q 5 0.0) is shown in Fig. 2.

The AR L is less than 370 for most of the a and b combinations, except for the

regions with a » 0 or a + b » 1. A signi® cant reducation in AR L occurs if a is not

close to zero or a + b is not close to unity. The lowest AR L is about 230, which is

equivalent to a reduction of 37.84%. In general, the values of the AR L depend on

both a and b . However, a has more impact on AR Ls than does b .

The kurtosis of yt , i.e. j , plays an important role and the curve

1 2 3 a
2 2 b

2 2 2 a b 5 0 divides the a and b space into two non-overlapping areas. If

1 2 3 a
2 2 b

2 2 2 a b > 0, then j exists. AR L 5 370 when the observations are iid

normal ( a 5 b 5 0). As a and b increase, j > 3. Consequently, the AR L decreases,

as a result of the conditional heteroscedasticity e þ ects.

The behavior of the AR L is interesting when 1 2 3 a
2 2 b

2 2 2 a b < 0. In this case,

the kurtosis of y t does not exist. However, the AR L does not continue to drop as
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a and b increase; instead, rather surprisingly, it increases as a + b approaches unity.

The lowest AR Ls settle around the curve of 1 2 3 a
2 2 b

2 2 2 a b 5 0. For example,

if b 5 0, then the kurtosis of y t is given by

j 5 3(1 2 a
2) /(1 2 3 a

2){5 3, a 5 0

> 3, a < (1/3)1/2

does not exist, a > (1/3)1/2

The AR L ® rst decreases and then increases when a varies from zero to unity. The

lowest AR L is at about 222.7 when a is around (1/3)1/2
5 0.577.

In order to understand the behavior of the AR L when 1 2 3 a
2 2 b

2 2 2 a b < 0, let

us consider an extreme case where a + b » 1. When we set a + b 5 1, the GARCH

(1,1) model in equations (1) and (2) becomes an integrated GARCH (IGARCH)

model. The IGARCH process is no longer weakly stationary, since it does not have

a ® nite second movement. However, the IGARCH process is strictly stationary

and has the strange property that, no matter what the starting point, r
2
t collapses

to zero almost de® nitely (Nelson, 1990). Hence, the observed series eþ ectively

disappears. As a + b approaches unity, the observed series behaves more like an

IGARCH process. The conditional heteroscedasticity eþ ects decrease and the AR L

climbs back to and even beyond the nominal level (370) for some values of a and b .

Figures 3 ± 5 show the eþ ects on the AR Ls when the process mean has shifted.

Again, the AR Ls are more likely in¯ uenced by a than by b . Surprisingly, we ® nd

that the AR Ls have a strong tendency to increase as a increases, especially in the

cases in which q 5 1.0 and q 5 3.0. The magnitude of the increment of the AR Ls

depends on the level of the shift parameter q .

Figures 6 ± 9 report the simulation results for k 5 0.3 when q 5 0.0, 0.5, 1.0 and

3.0 respectively. The AR L for an in-control EWMA ( q 5 0.0) is shown in Fig. 6

and indicates a very similar pattern as for the case k 5 0.1 when a and b vary. The

AR Ls are less than 370 for the majority of a and b . The reduction in the AR Ls is

signi® cant when a is between 0.2 and 0.8

Figures 7 ± 9 show the eþ ects on the AR Ls when the process mean has shifted.

FIG. 6. Contour plot of the AR L for the in-control EWMA with k 5 0.3.
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FIG. 7. Contour plot of the AR L for the EWMA with k 5 0.3, when the process has shifted by half a

standard deviation.

FIG. 8. Contour plot of the AR L for the EWMA with k 5 0.3, when the process has shifted by one

standard deviation.

Unlike the results for k 5 0.1, the AR Ls for q 5 0.5 and q 5 1.0 are not monotonic

increasing functions of a . Instead, they depend on the levels of both a and b . The

monotonic increasing phenomenon of the AR L that we observed when k 5 0.1

arises only for q 5 3.0.

In summary, the EWMAs which do not account for heteroscedasticity are

generally not robust to data conditional heteroscedasticity. The fourth moment of

y t , i.e. j , plays an important role in the determination of the AR Ls. Overall, the

level of a has more impact on the AR Ls than does the level of b . When the process

is in control, the EWMAs with both k 5 0.1 and k 5 0.3 o þ er higher out-of-control

false alarm rates than those for the data without conditional heteroscedasticity.

When the process is in control, the AR Ls are in the range 150 ± 370 for most of a
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FIG. 9. Contour plot of the AR L for the EWMA with k 5 0.3, when the process has shifted by three

standard deviations.

and b . The reduction in the AR L is more signi ® cant for k 5 0.3 than is that for

k 5 0.1. However, when the process is out of control, the EWMAs with k 5 0.1 are

less sensitive to mean shifts of all three levels compared with the results for the

data without conditional heteroscedasticity. In contrast to the case of k 5 0.1, when

the process is out of control, in general, the control scheme with k 5 0.3 is more

sensitive to a small or a median mean shift and is less sensitive to a large mean

shift compared with the result for data without conditional heteroscedasticity.

4 Control charts with time-varying control limits

Although the GARCH model de® ned in equations (1) and (2) implies that the

unconditional variance of { yt } is a constant, the conditional variance of { y t } could

change over time. The model for the temporal dependence in conditional second

moments suggests that time-varying control limits should be appropriate. The set-

up in equation (2) allows for using past information to construct the conditional

variance of the process as an alternative to constant control limit schemes.

We suggest that the control limits for the EWMA scheme have the format

Control limits 5 l 6 k r zt
(7)

where r
2
zt

is the conditional variance of zt 5 k y t + (1 2 k )zt 2 1 and is given by

r
2
zt 5 k

2

R
t 2 1

j 5 0

(1 2 k )2j
r

2
t 2 j + (1 2 k )2t

r
2
0 (8)

The sequence { r
2
t } depends on { y t } and the initial value r

2
0 . Its dynamic is

determined by equation (2). We take r
2
0 to be unity, so that the unconditional

variance of y is unity, as we did in the previous section.

To illustrate control schemes with time-varying control limits, we use a sequence

of simulated observations generated by equations (1) and (2) with parameters

a 5 0.4 and b 5 0.0. Some 100 zt terms are calculated and plotted with two diþ erent



710 Y. Fang & J. Zhang

1.0

0.5

0.0

± 0.5

± 1.0
0 50 100 150 200

1.0

0.5

0.0

± 0.5

± 1.0
0 50 100 150 200

(a)

(b)

FIG. 10. Simulated {zt}
100
t 2 1 from y t 5 r t e t and r

2
t 5 0.6 + 0.4y

2
t 2 1( k 5 0.1): (a) with constant control limits

(equation (5)); (b) with time-varying control limits based on equations (7) and (8).

control schemes (see Fig. 10). One scheme has constant control limits according

to equation (5) and the other scheme uses time-varying control limits based on

equations (7) and (8). The control scheme with time-varying control limits utilizes

the available information and constantly upgrades the estimation on the process

variability. The control scheme with time-varying control limits is insensitive to

data conditional heteroscedasticity, so creates fewer false out-of-control alarms.

To evaluate the performance of the proposed control schemes with time-varying

control limits, we compute AR Ls according to the control limits determined by

equations (7) and (8), as well as AR Ls based on a `two-in-a-row’ rule for

comparison. The two-in-a-row control procedure is used to detect problems in

control with heavier-tailed observations than normal. Two successive observations

in a row which are outside the limits are considered to represent an out-of-control

signal. The two-in-a-row procedure is insensitive to excess variability caused by

occasional outliers (Lucas & Saccucci, 1990). Since b has less in¯ uence on AR Ls

than does a , b is taken to be zero in order to simplify the evaluation. The parameter

a is set equal to 0.1, 0.2, . . . , 0.9. We only report the results for the EWMA with

k 5 0.1. Similar conclusions can be made for EWMAs with other k values. Again,

the control limits are based on a zero-state in-control AR L 5 370, as in Section 3.

Figures 11 ± 13 report the AR Ls for EWMAs with time-varying control limits

and schemes based on the two-in-a-row control rule. For a moderate or large shift

of the process mean ( q 5 1.0 or 3.0), the scheme with time-varying control limits

outperforms the charts based on the two-in-a-row rule. For a small deviation of

the process mean ( q 5 0.5), the performances of the two control schemes are about

the same, except that the scheme with time-varying control limits performs poorly

as a approaches unity.
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FIG. 11. The AR Ls for EWMAs when the process mean has shifted half standard deviation. b 5 0 and

j values are based on zero-state in-control APL 5 370.
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12

FIG. 12. The AR Ls for EWMAs when the process mean has shifted one standard deviation. b 5 0 and

j values are based on zero-state in-control AR L 5 370.

Overall, the control scheme with time-varying control limits is found to perform

better than does the scheme based on the two-in-a-row rule, except for the case

where a is close to unity and q is relatively small. Other control schemes based on

high moments, such as kurtosis, may be instructive and useful in some applications.

However, more sophisticated procedures may be diý cult to interpret and

implement.
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FIG. 13. The AR Ls for EWMAs when the process mean has shifted three standard deviations. b 5 0

and j values are based on zero-state in-control AR L 5 370.

5 Control schemes designed for serially correlated observations

In this section, we extend the discussion to the case of serially correlated observation

sequences. The presence of serial correlation in the observation sequence may

cause excessive variability and, consequently, the traditional control charts, such

as the Shewhart, CUSUM or EWMA schemes, become meaningless. One approach

to monitor the serial correlated data is to ® t the data to a structure model and

examine the residuals or the one-step-ahead forecast error, instead of the original

data sequence.

To model both serial correlation and data heteroscedasticity, the combined

ARMA± ARCH models are useful. ARMA± ARCH models are a natural extension

of ARMA models which allow y t to have time-varying conditional second moments.

For example, ARMA(1,1)± ARCH(1) can be written as

y t 2 u y t 5 (1 2 u ) l + e t 2 h e t 2 1 (9)

where

r
2
t 5 E ( e

2
t ½ e t 2 1 , e t 2 2 , . . . ) 5 c + a y

2
t 2 1 (10)

The process de® ned by equations (9) and (10) has mean l and variance

Var( yt ) 5
(1 + h

2 2 2 u h ) c

1 2 u 2 2 a (1 + h
2 2 2 u h )

(11)

As the case without data conditional heteroscedasticity, one approach to data with

both serial correlation and ARCH error structure is to ® t the observation sequence

to ARMA models and then analyze the residuals by applying control schemes with

time-varying control limits as discussed in Section 4.
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6 Conclusions

Our study indicates that control schemes which do not account for heteroscedastic-

ity are not robust to data heteroscedasticity. In general, the in-control AR Ls fall

substantially if data conditional heteroscedasticity is present, and the magnitude

depends on the kurtosis of the observed process. The control scheme with time-

varying control limits is introduced and the performance is evaluated against the

alternative scheme based on the two-in-a-row rule. The Monte Carlo evidence

suggests that the control scheme with time-varying control limits works well,

making it a useful tool in the presence of heteroscedasticity.

ARCH-type models are non-linear models which include as special cases linear

processes such as white noise and ARMA process. Maximum-likelihood estimation

procedures can be applied to the GARCH and ARMA± ARCH models, and the

algorithm developed by Berndt et al. (1974) provides a convenient method of

computation. More details may be found, for example, in Engle (1982), Weiss

(1984, 1986) and Bollerslev (1986). Although we have selected ARCH-type models

to illustrate SPC procedures in the non-linear settings, in practice, the speci® c

application will dictate which linear and /or non-linear model might be appropriate.

The idea proposed in this paper can be extended to deal with other forms of non-

linearity. It becomes clear that the model chosen to ® t the data is important and

any model misspeci® cation will result in false signals of the state of the process.

That topic is beyond the scope of the discussion of this paper and readers interested

in a comprehensive treatment of it are referred to the literature, such as Weiss

(1986), Bollerslev et al. (1993) and Tiao and Tsay (1994).
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