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Abstract

We present a semi-parametric method for testing mixing distributions in the mixed Poisson model. The proposed method, which
is based on the generalized method of moments, does not demand the complete specification of the probability function but only
requires a specification of a set of moment conditions which the model should satisfy. We demonstrate that an explicit expression
for moment relations between the mixing and the mixed distributions provides a natural way in selecting moment restrictions and
model parameterization. The Monte Carlo evidence suggests that the test has satisfactory performance for moderate size samples.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Mixed Poisson distributions are obtained from the homogeneous Poisson distribution by assuming that the Poisson
parameter is itself a random variable with positive support. Special types of mixed Poisson distributions are obtained by
considering specific distributional types of the mixing distribution. In the class of continuous distributions, the gamma
distribution is one well-known example. Other members of the Pearson family of distributions may also serve as the
mixing distribution. Commonly used discrete mixing distributions include the logarithmic series or a more general
class of discrete distributions—the class of generalized power series distributions (Haight, 1967; Johnson et al., 1993).

In this article we consider the problem of testing for the mixing distribution when the mixed distribution is assumed
to be a mixed Poisson. More specifically, let F denote a family of distributions with distribution function U(x), where
U(0) = 0. Suppose that we have an observed sample {xi : i = 1, 2, . . . , n} of the variable X defined by

Pk ≡ P(X = k) =
∫ ∞

0
e−� �k�−1(k + 1) dU(�). (1)

We would like to test the null hypothesis H0 that the mixing distribution ∈ F. Initially we develop the arguments in a
general setting. Then, we focus our attention on the Pearson family of distributions or its sub-families as F to further
investigate the properties of the test and to demonstrate its use by applying it to a claim frequency example.
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It should be pointed out that the mixing distribution is unobservable, since the data are drawn from the mixed
distribution. The identifiability result from Douglas (1980) allows us to identify the mixing distribution based on the
mixed distribution.

Note that by allowing F to be a general family, the probability function of the mixed Poisson distribution can
become unwieldy. For example, consider the Pearson family as F. Then, there is no general explicit expression of the
probability function for the mixed Poisson since the integral in (1) can be carried out only for some special cases. As
a result, many widely used methods such as the Pearson chi-square (�2) and likelihood-based tests may not be easy
to apply. In contrast, as will be shown, our testing procedure provides a flexible methodology in dealing with such
a complicated F and has a computational advantage since it does not require this sort of full knowledge but only
demands the specification of a set of moment conditions, which are usually easy to establish.

We examine approximate slopes of the tests and show that asymptotic properties of the tests depend intimately on
the over-identifying moment restrictions. The Monte Carlo simulations suggest that in general, the test has satisfactory
performance for moderate size samples, in particular the proposed test performs well in comparison with the Pearson
�2 test, as demonstrated by a study of the data of Johnson and Hey (1971).

A common feature of mixed Poisson models is the presence of heterogeneity. The heterogeneity property has spurred
broad applications of mixed Poisson distributions. For example, mixed Poisson distributions have been widely used in
modeling insurance claims (Bühlmann, 1970; Panjer, 1986; Fang, 2003a). The number of claims occurred in a given
time period is often approximated by a Poisson distribution with a risk parameter � representing the claim intensity
(i.e., the intensity of claim-causing events). The claim intensity is rarely a constant because it is subject to variations
of many factors including external background factors, such as weather and economic conditions. A mixed Poisson
distribution provides a more realistic model for the number of claims than the homogeneous Poisson distribution with
a constant �. One commonly used techniques to introduce the mixing effect is the use of method of moments. As a
semi-parametric specification approach, the method of moments focuses only on the key characteristics, in particu-
lar lower-order moment such as the standard deviation and skewness. It is a natural approach in modeling insurance
claims because the lower-order moments are the most important in specifying the mixing distribution. The differ-
ences in the structures of the tail characterized by higher-order moments, even though maybe significant, concern
only a very small number of accidents and do not necessarily have any major effect on the finance of the business
(Daykin et al., 1994).

The structure of the paper is as follows. Section 2 describes our method and asymptotic properties of the test.
Section 3 presents finite-sample properties of the test via Monte Carlo simulations. An empirical example is given in
Section 4. Section 5 contains a discussion.

2. Method and tests statistics

2.1. Preliminaries

As aspect of particular importance when dealing with the inference of mixing distributions is the concept of iden-
tifiability. Douglas (1980) has shown that for any mixed Poisson distribution, the mixing distribution is unique: if
probability generating functions of mixed Poisson distributions equal, then the mixing distributions have the same
distribution function. Thus, in dealing with mixed Poisson distributions, the mixing distribution is identifiable.

Since our approach depends upon the moments of mixing distributions and those of their mixtures with Poisson, we
start with moment generating functions. Let � be a mixing distribution with distribution function U(x) ∈ F. It can be
shown that the factorial moment generating function of X equals the moment generating function of �:

∑
(1 + s)jPj =

∫ ∞

0
esx dU(x). (2)

In fact, a necessary and sufficient condition that a distribution be a mixed Poisson is that its factorial moment generating
function be equal to the moment generating function of a random variable with positive support (Haight, 1967). From
(2) one can obtain moments of mixed Poisson in terms of moments of the mixing distribution.

Let �k , �′
k and �(k) denote respectively the kth central moment, kth moment about zero and kth factorial moment of

X. Similarly, let �k denote the kth central moment and �′
k the kth moment about zero of �. Supposing all moments to
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exist we have the mean and variance of X

�′
1 = �′

1 and �2 = �2 + �′
1 (3)

and in general, for the kth factorial moments

�(k) = �′
k . (4)

The property (3) characterizes the “over-dispersed” aspect of mixed Poisson distributions. The moment relationships
between X and � in (4) have fundamental implications for statistics based on the generalized method of moments
(GMM) which, as shown in later sections, play a central role in developing specification tests for mixing distributions.

The following results, which we will use later, are adapted from Johnson et al. (1993, p. 42), showing the connections
between different types of moments:

�k =
k∑

j=0

(−1)j
(

k

j

)
�′j

1 �′
k−j (5)

and

�′
k =

k∑
j=0

(�j 0k/j !)�(k), (6)

where �j 0k/j ! is the Stirling number of the second kind. In particular, we may write (6) in the matrix form:
(�′

1, �
′
2, . . . , �

′
j )

′ = 	(�(1), �(2), . . . , �(j))
′, where the transformation matrix 	 is lower triangular with 1 as diag-

onal elements. For the inverse calculation of (6), 	−1, which is also lower triangular, has Stirling numbers of the first
kind as its elements. Note that both (5) and (6) are valid for any random variables, assuming all required moments
exist. Hence, they hold for the mixing variable � as well.

2.2. Test statistics

Suppose that F involves p unknown parameters 
. Let fn(xi, 
) be a continuous q-dimensional vector function of

 with q �p. Consider the moment restrictions:

E[fn(xi, 
)] = 0. (7)

When the number of orthogonality moment restrictions in (7) exceeds the number of parameters, the model is over-
identified. In the over-identified case, (7) implies substantive restrictions. If the hypothesis of the model that leads to
(7) in the first place is incorrect, some of the sample moment restrictions will be systematically violated, providing a
basis for developing a specification test (Hall, 2005).

Let 
̂ be the GMM estimate of 
, which is the value of 
 that minimizes the quadratic form

Qn(
) ≡ fn(
)′V −1
n fn(
), (8)

where fn(
) ≡ n−1∑n
i=1fn(xi, 
) and Vn is a consistent estimator of V = limn→∞ Var[n1/2fn(
)]. By construction,

the following statistic

Jn(q) ≡ nf n(
̂)′V̂ −1
n fn(
̂) (9)

can be used to test the validity of the hypothesis H0 : E[fn(xi, 
)] = 0. It can be shown that under the null hypothesis
of the model, Jn(q) has an asymptotic �2 distribution with (q −p) degrees of freedom under some regularity conditions
(Hansen, 1982).

Consider the moment restrictions (7), where fn(xi, 
) = �gn(xi, 
), � is a given q × q non-singular weighting
matrix, and gn(xi, 
)= (xi −�′

1, x
2
i −�′

2, . . . , x
q
i −�′

q)′. It is important to note that the test statistic Jn(q) is invariant
to the weighting matrix �, suggesting that the choice of � has no impact on the properties of the tests statistic. However,
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by taking different values in �, one obtains different moment restrictions in (7). Although these moment restrictions
are equivalent, we suggest that � is taken to be 	−1. In this case, applying (4), (7) becomes

E[fn(xi, 
)] = E[(xi − �′
1, x

(2)
i − �′

2, . . . , x
(q)
i − �′

q)′] = 0, (10)

where x
(k)
i =xi(xi −1) . . . (xi −k +1). Having (7) being represented as moment restrictions of the mixing distribution

is of great interest. It will simplify the analysis of moment restrictions and as demonstrated later, will provide insight
into how the test works.

An advantage of having fn(xi, 
) be written in terms of gn(xi, 
) is that it offers a natural way to carry out some
required numerical computations. For example, it can be verified that the (i, j)-th element of W is (�′

i+j − �′
i�

′
j ),

where W is the matrix of limn→∞ Var[n1/2gn(
)] with gn(
) ≡ n−1∑n
i=1gn(xi, 
). Consequently, V −1 can be

easily obtained as V −1 = 	′W−1	 and the close form of the test statistic in (9) may be derived similarly as in
Fang (2003b).

2.3. Asymptotic properties

To examine the asymptotic properties of the proposed testing strategy, we study the approximate slope of the test.
According to Bahadur (1960) the approximate slope of a test is defined to be the rate at which the logarithm of the

asymptotic marginal significance level of the test decreases as sample size increases. Geweke (1981) has shown that
if the test statistic’s limiting distribution under the null hypothesis is a �2 distribution, then the approximate slope of
the test equals the probability limit of the statistic divided by sample size n. Geweke’s result provides a simple way to
obtain the approximate slope of test statistics in many situations including our cases. Let cq be the approximate slope
of Jn(q). Applying Geweke’s result, we have

cq = E[fn(xi, 
)′]V −1E[fn(xi, 
)] = E[gn(xi, 
)′]W−1E[gn(xi, 
)]. (11)

With respect to the GMM approach discussed in this article, it is possible to calculate the approximate slopes of
Jn(q) for any q given the alternative hypothesis. This is of interest because we can quantify the potential for efficiency
gain in power from additional moment restrictions. We note however that despite its simplicity, the approximate slope
may be a poor measure of the exact slope in many cases (Bahadur, 1967) and has to be used with caution. Especially
it cannot be used by itself to compare the merits of tests in finite samples.

As an illustrative example, we consider the standard gamma distribution with one-parameter distribution function
U(x) = ∫ x

0 f (x) dx, where

f (x) = �(�)−1x�−1 e−x; � > 0; x > 0. (12)

In this simple case F consists of a one-parameter family of distributions and p=1. Let 
=�. The only one identifying
restriction is E(xi) − �′

1 = 0 and the GMM estimator for �, �̂, is x̄. For q > 1, consider the null hypothesis (7) with

fn(xi, 
) = (xi − �′
1, x

(2)
i − �′

2, . . . , x
(q)
i − �′

q)′. With the moment �′
k = �(� + k)/�(�) (Stuart and Ord, 1987) and

moment relationships (4) through (6), the test statistic Jn(q) is ready to be obtained. Under the null hypothesis that
E[fn(xi, �)] = 0, Jn(q) is asymptotically distributed as a �2

q−1 random variable.
Noting that the gamma distribution belongs to the Pearson family, we consider two other members of the Pearson

family as alternative mixing distributions: the chi-square and the beta distributions. To provide some perspectives for
non-Pearson distributions, we also include the rectangular and log-normal distributions in our study. Our choice of
parameters in the alternative mixing distributions was determined by several considerations. We would like to have
parameters of the mixing distribution such that the mean of the mixed Poisson has the span ranging from about 1 to
20. We also avoid confronting null hypotheses with extreme alternatives, since such alternatives hold little interest and
have no bearing on asymptotics, the power being near 1 for very small sample sizes.

Table 1 provides a comparison of approximate slopes of Jn(q) (q = 2, 3 and 4) for the four alternative mixing
distributions.As can be seen, cq appears to depend not only on the probability structures but also on the parameterizations
of the alternative hypotheses. In general, approximate slopes increase with q. This implies that including additional
moment restrictions will not reduce asymptotic efficiency of the test. For the chi-square and the beta distributions, the
change in cq is limited for most parameterizations as q goes from 2 to 4. However, the gain in cq with higher value of q
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Table 1
Approximate slopes cq

Mixing � Approximate slopes Mixing �  Approximate slopes

Distribution c2 c3 c4 Distribution c2 c3 c4

Chi-squarea 1 0.06250 0.06250 0.07129 Betab 1 1 0.02170 0.04209 0.05331
2 0.08333 0.08333 0.09583 2 1 0.02375 0.02563 0.02576
5 0.10417 0.10417 0.12126 5 1 0.01843 0.02465 0.02861

10 0.11364 0.11364 0.13333 1 5 0.02170 0.04209 0.05331
15 0.11719 0.11719 0.13795 2 5 0.02232 0.02563 0.02576
20 0.11905 0.11905 0.14045 5 5 0.02389 0.02465 0.02861

� c2 c3 c4 � � c2 c3 c4

Rectangularc 1 0.02894 0.05679 0.07436 Lognormald 0.0 0.5 0.03054 0.05104 0.05829
2 0.02778 0.05247 0.07843 0.0 1.0 0.26142 2.45964 121.0823
5 0.00248 0.03564 0.53536 1.0 0.5 0.00148 0.00643 0.00686

10 0.04627 0.32848 10.06836 1.0 1.0 4.58872 152.9395 32134.3
20 0.61869 4.67032 173.4152 −1.0 0.5 0.02858 0.05680 0.07317
40 3.82275 51.80903 2751.452 −1.0 1.0 0.00008 0.02497 0.12618

aThe mixing variable � follows �2
� (0).

bThe mixing variable � = �′, where �′ is Beta(�, 2.0).
cThe mixing variable � follows Rectangular(0,�).
dThe mixing variable � is Lognormal(�,�2).

Table 2
Sizes of tests of the standard gamma null hypothesis

Sample size � 1% test 5% test 10% test

Size Jn(2) Size Jn(3) Size Jn(4) Size Jn(2) Size Jn(3) Size Jn(4) Size Jn(2) Size Jn(3) Size Jn(4)

50 1 0.022 0.020 0.021 0.040 0.039 0.040 0.069 0.065 0.058
2.5 0.016 0.022 0.020 0.043 0.044 0.039 0.086 0.072 0.060
5 0.014 0.023 0.019 0.048 0.046 0.038 0.091 0.075 0.061
10 0.013 0.018 0.019 0.047 0.046 0.042 0.091 0.079 0.067
20 0.010 0.015 0.021 0.045 0.048 0.044 0.090 0.083 0.072

100 1 0.018 0.020 0.018 0.042 0.046 0.042 0.078 0.069 0.062
2.5 0.014 0.021 0.018 0.048 0.049 0.039 0.095 0.079 0.063
5 0.012 0.021 0.020 0.048 0.045 0.040 0.099 0.078 0.065
10 0.010 0.017 0.018 0.051 0.051 0.048 0.097 0.088 0.076
20 0.009 0.020 0.023 0.046 0.048 0.047 0.087 0.080 0.078

200 1 0.013 0.021 0.017 0.051 0.047 0.039 0.098 0.075 0.062
2.5 0.016 0.019 0.017 0.056 0.052 0.040 0.110 0.091 0.071
5 0.014 0.023 0.022 0.055 0.058 0.050 0.110 0.092 0.080
10 0.013 0.019 0.022 0.055 0.053 0.051 0.104 0.090 0.080
20 0.012 0.020 0.022 0.058 0.055 0.056 0.112 0.095 0.090

500 1 0.017 0.024 0.021 0.058 0.055 0.047 0.112 0.093 0.073
2.5 0.012 0.020 0.023 0.054 0.058 0.050 0.109 0.096 0.082
5 0.012 0.021 0.023 0.053 0.056 0.054 0.102 0.099 0.087
10 0.008 0.014 0.020 0.051 0.052 0.050 0.105 0.095 0.082
20 0.011 0.012 0.018 0.052 0.047 0.048 0.098 0.096 0.087

can be considerable for the rectangular and log-normal mixing distributions, especially when the mixed distribution has
a relatively large mean value. For example, the approximate slope for the rectangular with � = 10 starts at about 0.05
when q=2 and jumps to 0.3 at q=3. Comparing the approximate slopes for q=2 and 3, the ratio is approximately 14%.
This implies that about 7 times as many observations are needed to reject the alternative hypothesis when q is chosen
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Table 3
Power of tests against chi-square as mixing distributions

Sample size � 1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Jn(4) Jn(2) Jn(3) Jn(4) Jn(2) Jn(3) Jn(4)

50 1 0.218 0.216 0.194 0.318 0.317 0.278 0.380 0.379 0.341
2 0.281 0.278 0.244 0.398 0.400 0.358 0.473 0.477 0.430
5 0.343 0.338 0.305 0.482 0.480 0.433 0.556 0.565 0.509

10 0.359 0.359 0.333 0.508 0.499 0.458 0.600 0.583 0.538
15 0.384 0.391 0.365 0.543 0.538 0.501 0.630 0.620 0.581
20 0.382 0.386 0.364 0.540 0.527 0.496 0.620 0.612 0.577

100 1 0.376 0.380 0.339 0.509 0.512 0.465 0.585 0.592 0.547
2 0.487 0.489 0.440 0.633 0.643 0.590 0.704 0.714 0.665
5 0.609 0.598 0.553 0.749 0.740 0.693 0.810 0.805 0.764

10 0.651 0.633 0.601 0.793 0.776 0.734 0.851 0.840 0.802
15 0.660 0.649 0.615 0.801 0.786 0.750 0.861 0.845 0.809
20 0.676 0.650 0.622 0.818 0.790 0.758 0.877 0.852 0.822

200 1 0.625 0.643 0.599 0.754 0.772 0.732 0.811 0.831 0.794
2 0.766 0.780 0.731 0.879 0.889 0.853 0.918 0.929 0.899
5 0.881 0.877 0.850 0.951 0.947 0.925 0.969 0.969 0.956

10 0.912 0.903 0.879 0.967 0.956 0.941 0.979 0.977 0.963
15 0.929 0.919 0.900 0.974 0.968 0.957 0.986 0.983 0.974
20 0.932 0.912 0.895 0.975 0.968 0.952 0.986 0.981 0.971

500 1 0.946 0.965 0.949 0.978 0.986 0.978 0.988 0.992 0.987
2 0.988 0.991 0.989 0.997 0.998 0.997 0.997 0.999 0.998
5 0.998 0.998 0.998 1.000 1.000 0.999 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

to equal 2. Similar astonishing increases in cq as q varies from 2 to 4 can be observed in the cases of the rectangular
distributions with � = 20 and 40, and the log-normal with (�, �) = (0.0, 1.0) and (1.0, 1.0).

3. Monte Carlo evidence

Although the above results characterize the asymptotic power of Jn(q) for large samples, further insight into the
operating characteristics of the test in finite samples can be gained by means of Monte Carlo simulation. In this section,
as an illustration, we conduct Monte Carlo simulations to examine the finite-sample properties of Jn(q) of the standard
gamma null hypothesis via simulation experiments under the four alternative hypotheses considered in Section 2.3.
All simulations are based on 10,000 replications and performed in single-precision FORTRAN using various random
number generators of the IMSL subroutine library. The nominal significance level is chosen to be 1%, 5% and 10%,
while the sample size is taken to be 50, 100, 200, and 500.

3.1. The size

Table 2 reports the empirical sizes of tests with q = 2, 3, and 4 under the null hypothesis of the standard gamma
distribution. The results show that the empirical sizes of 1% tests are above the nominal value for small samples and
decrease, in general, with the sample size. For 5% and 10% tests, the empirical sizes start low, increase as the sample
size goes from 50 to 200, and settle at their nominal values when n > 200 in most cases. For sample sizes less than
100, the empirical sizes of Jn(q) appear to be closer to the nominal values for mixing distributions with relatively large
mean values. Not surprisingly, for a fixed sample size, the empirical size of the test with smaller value q is, in general,
closer to its nominal value than that with the higher value q for the same size.
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Table 4
Power of tests against beta as mixing distributions

Sample size �  1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Jn(4) Jn(2) Jn(3) Jn(4) Jn(2) Jn(3) Jn(4)

50 1 1 0.000 0.001 0.005 0.000 0.025 0.048 0.014 0.113 0.115
2 1 0.000 0.011 0.040 0.012 0.146 0.190 0.153 0.330 0.295
5 1 0.000 0.074 0.122 0.116 0.368 0.352 0.460 0.571 0.507
1 5 0.001 0.001 0.002 0.008 0.010 0.008 0.032 0.028 0.020
2 5 0.002 0.007 0.004 0.074 0.061 0.026 0.205 0.131 0.064
5 5 0.066 0.109 0.049 0.457 0.374 0.218 0.686 0.543 0.371

100 1 1 0.000 0.033 0.068 0.057 0.263 0.269 0.330 0.481 0.427
2 1 0.006 0.234 0.297 0.407 0.624 0.585 0.749 0.788 0.728
5 1 0.145 0.557 0.557 0.776 0.862 0.814 0.942 0.935 0.894
1 5 0.001 0.001 0.001 0.013 0.014 0.009 0.052 0.031 0.022
2 5 0.038 0.043 0.018 0.253 0.167 0.094 0.453 0.285 0.171
5 5 0.542 0.520 0.356 0.891 0.808 0.671 0.962 0.903 0.806

200 1 1 0.061 0.433 0.463 0.674 0.800 0.755 0.904 0.911 0.868
2 1 0.565 0.856 0.841 0.965 0.976 0.960 0.994 0.992 0.984
5 1 0.942 0.984 0.978 0.999 0.999 0.997 1.000 1.000 0.999
1 5 0.003 0.002 0.001 0.036 0.016 0.016 0.096 0.043 0.041
2 5 0.251 0.193 0.109 0.639 0.453 0.307 0.793 0.607 0.464
5 5 0.976 0.957 0.907 0.999 0.994 0.982 1.000 0.999 0.994

500 1 1 0.975 0.994 0.990 0.999 1.000 0.999 1.000 1.000 1.000
2 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 5 0.018 0.004 0.006 0.119 0.038 0.075 0.234 0.090 0.161
2 5 0.894 0.788 0.675 0.983 0.938 0.891 0.994 0.975 0.946
5 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Since the sampling theory for Jn(q) is obtained only asymptotically, the actual size of those tests will of course
differ from their nominal values in finite samples. Although Table 2 indicates that such differences may not be large
for reasonable sample sizes, it may nevertheless seem more desirable to base tests upon corrected �2 critical values. It
can be done, for example, using standard regression techniques to related the percentage points of Jn(q) derived from
Monte Carlo experiments, against the parameter �, as in Rayner and Best (1989). The finite-sample bias correction
depends however on the null hypothesis and must be resolved with the particular model and data at hand. Since our
main objective for using the gamma distribution is to demonstrate the proposed approach, we have not made any effect
to correct for finite-sample biases in this article.

3.2. The power

Tables 3 through 6 report the power results of Jn(q) for the four alternatives. In examining the results from Tables 3
through 6 four general conclusions emerge.

First, for a fixed number of observations, it becomes apparent that choosing an appropriate value q for the tests
depends intimately on the alternative hypothesis of interest. For example, the power of Jn(q) against the chi-square
alternative declines slightly as q increases (Table 3). On the other hand, when the rectangular distribution is considered,
the power of the tests increases with q and the increase can be significant; as the case of 100 observations demonstrates,
the power against the rectangular distribution with �=10 is 29.8% when q=2 but jumps to 70.9% when q=3 (Table 5).

Second, the power of the test depends on both the structure and the parameterization of the mixing distribution
considered in the alternative hypothesis. For example, except for several cases (which will be discussed next), the
power of the test seems to increase with the mean value of the mixing distribution for a given value of q, regardless of
the size of the test.
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Table 5
Power of tests against rectangular as mixing distributions

Sample size � 1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Jn(4) Jn(2) Jn(3) Jn(4) Jn(2) Jn(3) Jn(4)

50 1 0.000 0.040 0.072 0.007 0.269 0.253 0.097 0.470 0.398
2 0.000 0.044 0.040 0.038 0.209 0.148 0.193 0.357 0.249
5 0.000 0.002 0.004 0.008 0.013 0.022 0.034 0.033 0.047
10 0.134 0.556 0.603 0.274 0.742 0.772 0.382 0.824 0.840
20 0.963 0.999 0.999 0.988 1.000 1.000 0.993 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1 0.002 0.134 0.174 0.272 0.471 0.422 0.624 0.656 0.567
2 0.022 0.092 0.071 0.306 0.335 0.238 0.570 0.495 0.367
5 0.002 0.004 0.009 0.018 0.018 0.029 0.060 0.040 0.065
10 0.298 0.709 0.762 0.534 0.859 0.881 0.651 0.908 0.922
20 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 1 0.346 0.700 0.674 0.897 0.918 0.875 0.974 0.967 0.939
2 0.361 0.448 0.339 0.815 0.753 0.621 0.930 0.866 0.755
5 0.003 0.005 0.019 0.037 0.027 0.094 0.102 0.055 0.175
10 0.648 0.975 0.983 0.835 0.992 0.996 0.902 0.996 0.997
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
2 0.988 0.984 0.959 0.999 0.998 0.993 1.000 0.999 0.997
5 0.018 0.011 0.191 0.122 0.108 0.492 0.251 0.298 0.661
10 0.982 1.000 1.000 0.997 1.000 1.000 0.998 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Third, the results show that in general, the tests have satisfactory performance for moderate sample sizes but may
not perform well in certain situations in which some or all over-identifying moment restrictions are approximately
satisfied by the alternative mixing distribution. For example, one over-identifying restriction E[x(2)

i ] − �′
2 = 0 is

satisfied when the rectangular distribution with � = 6 is assumed. In the case that � = 5, the above over-identifying
restriction is approximately satisfied and therefore, Jn(2) has difficulty distinguishing between the standard gamma
and the rectangular distributions even with sample sizes as large as 500, as demonstrated by the fact that the inclusion
of the third moment, Jn(3) is comparable to Jn(2) (Table 5). In contrast, the use of the fourth moment can enhance
the power (of Jn(4)) considerably especially when the sample size is large. Other two similar examples are the beta
distribution with �=1.0, �=2.0 and =5 (Table 4), and the log-normal distribution with �=1.0 and �=0.5 (Table 6).

Fourth, the approximate slope in many cases does not pick up the test that has maximum power in finite samples.
Consequently, as mentioned in Section 2.3, the criterion that q is chosen to maximize the approximate slope of the test
against the alternative of interest may not be reliable.

4. An empirical example

Such specification problems arise naturally in many applications. In an insurance context, for instance, if the number
of claims follows a Poisson distribution with a risk parameter � which is assumed to itself be a random variable, the
mixed model is used to describe the heterogeneity of risks that are in a single classification of the insurer.

As an empirical example, we examine the data from Johnson and Hey (1971), republished by Beard et al. (1984).
Johnson’s data contain 421,240 observations. They are the United Kingdom comprehensive motor policies in 1968
which are classified according to the number of claims ranging from 0 to 5, with the average number of claims per
policy being 0.1317 and the sample variance 0.1385.
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Table 6
Power of tests against lognormal as mixing distributions

Sample size � � 1% test 5% test 10% test

Power Power Power Power Power Power Power Power Power
Jn(2) Jn(3) Jn(4) Jn(2) Jn(3) Jn(4) Jn(2) Jn(3) Jn(4)

50 0.0 0.5 0.001 0.032 0.036 0.092 0.174 0.142 0.285 0.297 0.237
1.0 0.363 0.349 0.336 0.444 0.420 0.403 0.494 0.468 0.447

1.0 0.5 0.016 0.034 0.030 0.064 0.071 0.061 0.129 0.110 0.093
1.0 0.945 0.938 0.931 0.969 0.964 0.956 0.975 0.974 0.966

−1.0 0.5 0.000 0.006 0.246 0.003 0.095 0.140 0.079 0.255 0.241
1.0 0.042 0.042 0.476 0.063 0.064 0.754 0.087 0.102 0.103

100 0.0 0.5 0.059 0.198 0.174 0.430 0.472 0.395 0.662 0.621 0.528
1.0 0.579 0.566 0.549 0.645 0.651 0.629 0.723 0.704 0.679

1.0 0.5 0.014 0.041 0.037 0.075 0.095 0.079 0.155 0.150 0.122
1.0 0.998 0.997 0.996 1.000 0.999 0.998 1.000 1.000 0.999

−1.0 0.5 0.000 0.142 0.208 0.235 0.498 0.484 0.598 0.689 0.633
1.0 0.063 0.074 0.834 0.099 0.121 0.129 0.158 0.165 0.169

200 0.0 0.5 0.485 0.616 0.562 0.840 0.851 0.791 0.924 0.922 0.882
1.0 0.818 0.804 0.788 0.881 0.860 0.843 0.905 0.891 0.876

1.0 0.5 0.023 0.072 0.068 0.108 0.158 0.137 0.195 0.233 0.212
1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

−1.0 0.5 0.332 0.744 0.751 0.985 0.932 0.917 0.969 0.976 0.957
1.0 0.080 0.121 0.135 0.152 0.192 0.201 0.234 0.255 0.268

500 0.0 0.5 0.984 0.995 0.991 0.997 0.999 0.993 0.999 1.000 1.000
1.0 0.991 0.990 0.988 0.996 0.995 0.993 0.998 0.996 0.995

1.0 0.5 0.058 0.176 0.173 0.181 0.343 0.327 0.274 0.453 0.434
1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

−1.0 0.5 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0 0.109 0.244 0.278 0.213 0.365 0.414 0.300 0.453 0.500

Table 7
UK comprehensive motor policies in 1968

Number of claims Observed frequencies Fitted Poissona Fitted negative binomialb

0 370 412 369 246 370 460
1 46 545 48 644 46 411
2 3935 3204 4045
3 317 141 301
4 28 5 21
5 3 . 1

Parameters � = 0.1317 � = 2.5598
� = 0.0514

Chi-square 543.0 6.9
Degrees of freedom 2 4
p-value < 1% 14%

aPr(N = k) = e−�(�k
/k), k = 1, 2, 3, . . . , �> 0.

bPr(N = k) = (
k+�−1

k
(1/1 + �)�(�/1 + �)k , k = 1, 2, 3, . . . , �> 0,�> 0.

Beard et al. (1984) have shown that the Poisson distribution is a poor fit because of its short tail. They, therefore, used
the “over-dispersed” negative binomial distribution and anticipated that the negative binomial provides a much better
fit in the tail region, an observation confirmed by the Pearson �2 test using the parameters based on ML estimates.
According to Beard et al., the value of the Pearson �2 test statistic is 6.9 which gives a significance level 14% for
4 degrees of freedom. They concluded that although there is a slight indication that the negative binomial may be
under-representing the tail, for most applications the model may be safely used (Table 7).
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It is well known the negative binomial is a mixed Poisson with a two-parameter gamma as the mixing distribution.
Here we apply the test statistic Jn(q) to test the negative binomial model or equivalently the mixing distribution
specified by

f (x) = x�−1 e−x/�

���(�)
, (� > 0, � > 0; x > 0). (13)

Since F is the set of gamma distributions with two-parameters (i.e., p = 2), we calculate Jn(q) for q = 3, 4, and
5. The values of Jn(q) for three values of q are 3.7130, 11.3074 and 10.2359, respectively. The test statistic based on
q = 4 is significant at the 1%, although the test statistic for q = 3 is significant at the 10% but not at 1 or 5% level, and
that with q = 5 is significant at the 5% but not at the 1% level.

Over all, the evidence is fairly strong against the negative binomial, especially in view of the result of q = 4 that
the hypothesis is rejected at all three significance levels. The result is a complete contrast to that of Beard et al. that
the Pearson �2 test cannot reject the negative binomial at significance levels less than 14%. We interpret this result as
evidence that Jn(q) is more powerful than the Pearson �2 test.

Several models can be considered as alternatives to the negative binomial distribution. Klugman et al. (1998) proposed
the zero-modified Poisson and zero-modified geometric distributions for the Johnson’s data. Here we consider the three-
parameter gamma with the density function given in (14) as the mixing distribution:

f (x) = (x − �)�−1 e−(x−�)/�

���(�)
, (� > 0, � > 0; x > �). (14)

The mixed Poisson with three-parameter gamma as the mixing distribution is clearly superior according to the results
from Jn(q) tests. For example, Jn(5) is only 0.021 with the significance level 99.41%. The fit is almost perfect, implying
that the inclusion of one more parameter is justified. Same conclusion is obtained by having other values of q.

Finally, we note that unlike the two-parameter case, if (14) is used, handling (1) with three-parameter gamma as the
mixing distribution is difficult and hence, the Pearson �2 test and methods based on the likelihood function may be
inconvenient.

5. Discussion

Although we restrict our attention to the mixed Poisson distributions, the approach can be easily modified to apply to
many other situations. For example, consider the claim frequency distribution that is the sum of two or more independent
components, which represent common and particular risks. This kind of model has been studied by Ruohonen (1988).
Ruohonen made remarks on the difficulty of testing the model by using the Pearson �2 test since the mixture nature of
the model, but did not make any effort to resolve the problem. For this mixture model GMM tests can be developed
along similar lines as those provided in this article, though relatively large size samples may be desirable to obtain
reliable results due to large values of p in mixture models, especially if one allows correlations among components.
Nevertheless, the flexibility, simplicity and reliability of the GMM-based test make it a valuable tool for inference.
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