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Abstract

The recent discovery of the compass rose pattern (Crack and Ledoit J. Finance 51(2) (1996) 751)
has sparked considerable interest among researchers. This paper explores the signi1cance of the e2ect
of the compass rose pattern on random walk tests and measures to what extent its in3uence may limit
the performance of test statistics. We show that in general, the asymptotic theory of test statistics is
invalid for transactions data. However, Monte Carlo simulations indicate that the impact of the pattern,
measured by the empirical size, is visible for moderate size samples only when the tick=volatility ratio
is above some threshold, a condition that is readily met with intraday but not daily or weekly returns.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Crack and Ledoit (1996) 1rst documented the existence of the compass rose pat-
tern from an analysis of phase diagrams, where daily returns are plotted against
themselves with a one-day lag. They found that the graphical representation takes
the form of evenly spaced rays emanating from the origin with the most prominent
rays pointing in several major directions, a structure which they termed the compass
rose. Crack and Ledoit postulated that the pattern is caused by the discrete jumps in
prices. The notion that the compass rose indeed is a consequence of price discrete-
ness is further supported by studies of Kramer and Runde (1997) and Szpiro (1998)
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using di2erent data sets. In this paper, we investigate the implication of the compass
rose pattern on random walk tests.

The random walk model is fundamental to modern 1nancial economics and many
investment strategies. A great deal of research has been devoted to developing various
random walk tests since the late 1980s (see, for example, French and Roll, 1986;
Fama and French, 1988; Lo and MacKinlay, 1988; Poterba and Summers, 1988;
Jegadeesh, 1991, among others). While exploring the information contained in past
stock prices in di2erent ways, those tests are attained by assuming that stock prices
are modeled by continuous-state stochastic processes. Since major stock exchanges
require that quotes and transaction prices be stated as some multiple of a minimum
price variation (or trading tick), individual stocks often display compass rose patterns,
suggesting that continuous-state models are only approximations to actual market
prices. We anticipate that such compass rose patterns can induce spurious serial
autocorrelations in return. Consequently, the asymptotic theory of test statistics based
on the continuous-state argument is in question for transaction prices.

To address the problem of testing the random walk model in the presence of the
discrete jumps in prices, we focus our attention to variance-ratio tests; in particu-
lar to the one proposed by Lo and MacKinlay (1988). As one of the most widely
used random walk tests, Lo and MacKinlay’s variance-ratio test is heteroscedastic-
ity consistent. In view of the growing consensus among 1nancial economists that
volatilities do change over time (Merton, 1980; Poterba and Summers, 1986), the
testing results based on heteroscedasticity-consistent tests are of more practical in-
terest in comparison with those from tests without accounting for heteroscedasticity.
However, to provide a perspective on test statistics without heteroscedasticity adjust-
ment, the standard Z test (a simple homoscedastic variance-ratio test) and Ljung and
Box’s (1978) Q statistic are also studied, and both the Gaussian independently and
identically distributed (i.i.d.) null hypothesis and a simple heteroscedastic null are
investigated. We also note that our results do not, generally speaking, apply only
to Lo and MacKinlay’s variance-ratio test. In fact, as will be shown, many random
walk tests (including Lo and MacKinlay’s variance-ratio test) can be expressed as
linear combinations of consistent estimators of autocorrelations. Since those auto-
correlation estimates are biased by price discreteness regardless of the time peri-
ods in calculating returns, the results reported in this paper should be of general
interest.

We show that in general, the asymptotic theory of test statistics is invalid for trans-
actions data. For transactions data with high levels of tick=volatility, the true rejection
probability exceeds the nominal size by wide margins under both homoscedastic and
heteroscedastic null hypotheses. For transactions data with relatively low levels of
tick=volatility, discreteness is, however, considerably less problematic and the actual
size of the test is well approximated by the continuous-state asymptotic theory. The
results are consistent across di2erent nominal signi1cance levels.

The structure of the paper is as follows. Section 2 describes test statistics and
the compass rose pattern. Section 3 examines the compass rose e2ect measured by
the empirical size of the test under both homoscedastic and heteroscedastic null
hypotheses. Section 4 contains a discussion.
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2. Test statistics and the compass rose pattern

2.1. Test statistics

It is assumed throughout that the logarithm of the equilibrium stock price at the
end of the ith period, pi, satis1es the random walk model:

logpi= � + logpi−1 + �i; (1)

where � is the drift term and the disturbance �i is serially uncorrelated with mean
zero, but could be heteroscedastic.

The variance-ratio test is based on the fact that if the price series pi follows a
random walk formulated as in (1), then, the variance of the q-di2erences [log(pi)−
log(pi−q)] grows linearly with the size of q (q is an integer ¿ 1). De1ne the
variance-ratio of q observations, VR(q), as

VR(q)=
2c(q)
2a

(2)

where

2c(q)=
1

q(nq− q+ 1)(1− 1=n)

nq∑
j=q

(logpj − logpj−q − q�̂)2

and

2a=
1

nq− 1

nq∑
j=1

(logpj − logpj−1 − �̂)2

with �̂=(1=nq)(logpnq − logp0). It is well known that the standardized VR(q) can
be used to test the random walk null hypothesis under homoscedasticity and het-
eroscedasticity. If the �is in (1) are i.i.d., the Z test statistic, given by

Z(q)=
VR(q)− 1

[2(2q− 1)(q− 1)=(3q(nq))]1=2
; (3)

follows the standard Gaussian distribution N (0; 1). If the null hypothesis assumes that
pi possesses uncorrelated increments, but allows for heteroscedasticity, the re1ned
Z∗ test statistic,

Z∗(q)=
VR(q)− 1

[�̂=(nq)]1=2
; (4)

is asymptotically a standard Gaussian. The quantity �̂ is the asymptotic variance of
the variance-ratio that is heteroscedasticity consistent (Lo and MacKinlay, 1988).
Note that the fundamental di2erence between Z and Z∗ is that Z∗ relies on the
calculation of standard errors of lagged serial correlation coeOcients using White’s
(1980) heteroscedasticity-consistent covariance matrix estimator, but Z does
not.
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It can be shown that VR(q) satis1es the following asymptotic equality:

VR(q)− 1 ≈
q−1∑
j=1

2(q− j)
q

�̂(j); (5)

where �̂(k) denotes the kth-order autocorrelation coeOcient of continuously com-
pounded returns. As a consequence, the sign of Z (Z∗) depends primarily on whether
returns are positively or negatively autocorrelated, or equivalently, whether there is
mean reversion in the return series (Summers, 1986; Fama and French, 1988).

Note the similarity between Z (Z∗) and the Ljung-Box (1978) Q statistic of order
q− 1,

Q(q− 1)=T (T + 2)
q−1∑
j=1

�̂2(j)
T − j ; (6)

where T = nq + 1. As a portmanteau statistic, the Q statistic is designed to detect
departures from zero autocorrelations at all lags by summing the squared autocorre-
lations.

Although we report results for the Z and Q statistics under a heteroscedastic null,
we emphasize that results are only for illustrative purposes since these two tests have
been designed with the homoscedastic null hypothesis in mind. The inclusion of Z
and Q tests in the study of a heteroscedasticity null does, however, reveal interesting
results on the combined e2ects of price discreteness and heteroscedasticity.

2.2. The compass rose

Suppose that the observed stock price at time i, p∗
i , is subject to price discreteness

e2ects. For example, consider the rounding model:

p∗
i =

[
pi
d

+
1
2

]
d; (7)

where the 3oor function [x] ≡ greatest integer less than or equal to x. The parameter
d is the tick size. In this section, we use an eighth of a dollar (d=0:125) as the
benchmark — the minimum price movement of stocks with prices greater than or
equal to $1 — the longstanding practice on the NYSE before June 24, 1997, when
the NYSE began to trade stocks in sixteenths.

In the rounding model (7), pi is rounded to the nearest multiple of d. The discrete-
ness is speci1ed as a grid on which outcomes must lie, but no distinctive properties
are attributed to particular points on the grid. When the tick size is 1

8 , for instance,
if the current price is 60 1

8 , the price change is equally likely to be 60 or 60 1
4 .

To develop some intuition for properties of rounded prices in relation to the
tick=volatility ratio, we generate a time series of 1000 observations based on (1) with
the i.i.d. zero mean 1 Gaussion disturbance and round it according to the method
described above. Two levels of standard deviation � of �i are used for the purpose

1 Price series with non-zero means are considered in Section 3.
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Fig. 1. Compass rose patterns. (a), (c) and (e) are based on �=0:01; while (b), (d) and (f) are based
on �=0:05. (a) and (b) are obtained from original prices with machine accuracy (16 decimal digits);
(c) and (d) are from the prices rounded by an eighth of a dollar; and (e) and (f) are from prices

rounded to the nearest dollar.

of evaluating the impact of the tick=volatility ratio on test statistics. To be repre-
sentative, � is taken to be 0.01 and 0.05, which represent standard deviations for
daily returns of low- and high-volatilities, respectively. This range of daily stock
volatility is based on the summary statistics for daily returns of Center for Research
in Securities Prices (CRSP) equal- and value-weighted stock indexes and various
individual stocks in di2erent size deciles, which are continuously listed over the
time period from July 3, 1962 to December 30, 1994 (Campbell et al., 1997). The
generated price series is either rounded by an eighth of a dollar or to the nearest
dollar.

Fig. 1 presents six scatter plots for daily returns rounded with di2erent levels of d,
as returns (p∗

i =p
∗
i−1 − 1) at time i are plotted against lagged returns (p∗

i−1=p
∗
i−2 − 1)

at time i − 1. As can be seen, there is a considerable structure in returns if prices
are rounded, especially to the nearest dollar. The radically symmetric structure (the
so-called compass rose) is solely attributable to price discreteness. For low-volatility
returns (Fig. 1a, c and e), the structure is evident when the price is rounded by
an eighth of a dollar and is much more striking when the price is rounded to the
nearest dollar. In contrast, no structure is apparent for high-volatility returns as the
price is rounded by an eighth of a dollar (Fig. 1d). Low-volatility returns display
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less structure than that for low-volatility returns when the price is rounded to the
nearest dollar (Fig. 1f).

The results emerged from Fig. 1 suggest that the tick=volatility ratio is an impor-
tant determinant of the compass rose pattern. It is apparent that the pattern depends
intimately on the tick size. It can also be seen from Fig. 1 that the pattern counts
on volatility likewise. In fact, the tick=volatility ratio is a more appropriate measure
than the tick size in determining whether the pattern is observed. For example, Lee
et al. (1999) have shown that the pattern does not exist for daily foreign exchange
(FOREX) data, while Szpiro (1998) found the pattern in transactions FOREX data.
Noting that the tick=volatility ratio is very small for daily FOREX data but sub-
stantially larger for transactions data, 2 the analysis based on the tick=volatility ratio
sheds light on the seemingly con3icting results (Lee et al., 1999; Szpiro, 1998) which
is diOcult to explain by only the tick size.

The notion that the tick=volatility ratio accounts for the presence of the compass
rose patterns has been implicitly shared by many researchers by viewing the fact
that most empirical studies have been based on daily or weekly data, while the use
of intraday data on testing random walk model is rarely found in the literature. For
example, weekly stock prices were used in testing the random walk hypothesis for
the US stock market in Lo and MacKinlay (1988). As the authors argued, weekly
data is the ideal compromise, minimizing the biases inherent in the daily data while
yielding a large number of observations which is important since the sampling theory
of the test statistic is based on asymptotic approximation. We will provide a formal
justi1cation for this argument and quantify the compass rose e2ect by calculating
the empirical sizes of test statistics in the next section.

3. Properties of test statistics

In the setup given in Section 2, the 1nite-sample properties of test statistics are
largely unknown. The asymptotic theory based on p∗

i cannot be derived due to
intractable nonlinearity. To evaluate the compass rose e2ect on test statistics, we
calculate empirical sizes of Z∗, Z and Q statistics via simulation experiments under
both the Gaussian i.i.d. null hypothesis and a simple heteroscedastic null hypothesis.
All simulations are based on 5000 replications and performed in single-precision
FORTRAN using random number generators of the IMSL subroutine library. The
nominal signi1cance level is chosen to be 1%, 5% and 10%, while the sample size
is taken to be 1000 with the standard deviation of �i chosen to be 0.01 and 0.05.
Test statistics are computed in four di2erent ways: from original prices with machine
accuracy (16 decimal digits), price series rounded to the nearest cent (d=0:01), by
an eighth of a dollar (d=0:125), or to the nearest dollar (d=1:0). To check the

2 The FOREX data are quoted in multiples (ranging from 0 to 20) of one point, with one point being
equal to, for instance, 0.0001 in the Deutsche mark and US dollar, and 0.01 in the Japanese yen and
US dollar.
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sensitivity of the test statistic to the truncation lag length, all statistics are computed
for several di2erent values of q.

To investigate the e2ect of the parameter �, we consider di2erent levels of �
based on the empirical estimates of � for the Standard & Poor’s stocks (French et
al., 1987). Since a compass rose should only be apparent if the e2ective tick size is
suOciently large as compared to volatility regardless of the levels of � (Crack and
Ledoit, 1996), the sizes of the tests are not noticeably a2ected by �, especially when
the price series are rounded to the nearest cent or by an eighth of a dollar. Hence,
for brevity, we will report results only for �=2:5× 10−4. For illustrative purposes,
however, we will also provide results on �=5× 10−4 in Panel A2 of Table 1.

3.1. The Gaussian i.i.d. null hypothesis

Table 1 reports results of the simulation experiment conducted under the Gaussian
i.i.d. null hypothesis. Results for low- and high-volatility returns are organized in
Panels A1 and A2, and B, respectively. Overall, the tail behaviors of the three test
statistics are comparable. The results show that if original prices are rounded to the
nearest cent or by an eighth of a dollar, the rejection rates are in3ated, but are
close to their nominal values for both low- and high-volatility returns. In particular,
when the volatility is high, the tick=volatility ratio is relatively low and the compass
rose bias is essentially not observed. On the other hand, when prices are rounded
to the nearest dollar, the true rejection probabilities exceed the nominal size by
wide margins. For example, about two thirds of the entries for prices rounded to the
nearest dollar in Panels A1 and A2 are above 95%. This implies that for low-volatility
returns, no matter what signi1cance levels are used, the prices rounded to the nearest
dollar almost always yield a rejection of the correct null hypothesis of i.i.d. returns.
Although the compass rose bias is considerably smaller for the high-volatility case,
the empirical sizes still range from about 20% to 40%, depending on the nominal
signi1cance levels (Panel B). It is also interesting to see that the compass rose e2ect
does not appear to depend on q when prices are rounded by an eighth of a dollar.
However, when prices are rounded to the nearest dollar, the bias on the size of the
test decreases with q for low-volatility returns while the bias increases with q for
high-volatility returns.

Finally, as mentioned earlier, the levels of � do not have a noticeable e2ect on
the size of the tests, as can be seen by contrasting the values in Panels A1 and A2.

To gain more insight on these results, we plot histograms of Z based on the
simulated series. For illustrative purposes, six histograms of Z(q) with q=4 are
presented in Fig. 2. Consistent to the 1ndings in Table 1, no clear shift in the shape
of the empirical distribution of Z is observed when prices are rounded to the nearest
cent (which is very similar to those based on original prices and is not reported here
to conserve space) or by an eighth of a dollar. 3 However, if prices are rounded to the
nearest dollar, it becomes apparent that the mean values of Z in Fig. 2e and f move
in a negative direction and are about −4:25 and −0:80 for low- and high-volatility

3 It may be also veri1ed that the normality cannot be rejected at any commonly used signi1cance levels.
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Table 1
Empirical rejection probabilities of the Z∗, Z and Q tests of the random walk null hypothesis with
homoscedastic disturbances (quoted in percent)

Nominal size Z∗ Z Q

10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A1: �=0:01 and �=2:5× 10−4

Original prices q=4 10.52 5.50 1.11 10.64 4.82 1.01 10.16 4.56 1.02
16 10.94 5.66 1.08 10.48 4.78 0.97 10.88 4.82 0.94
64 11.41 6.08 1.44 9.36 4.84 0.85 9.74 4.68 0.90

Prices rounded to q=4 10.38 5.48 1.06 10.38 4.99 0.98 10.14 4.56 0.98
the nearest cent 16 10.96 5.58 1.22 10.82 4.98 1.08 10.78 4.72 0.96

64 11.82 5.86 1.29 9.64 5.04 1.30 9.81 4.89 0.92
Prices rounded q=4 11.80 5.48 1.45 10.99 5.74 1.51 11.08 5.84 1.67
by an eighth 16 11.22 6.04 1.87 11.01 5.27 1.44 10.86 5.64 1.51
of a dollar 64 11.89 6.66 1.64 10.50 5.46 1.11 11.02 5.52 1.18
Prices rounded to q=4 99.96 99.61 99.10 99.78 99.71 99.02 99.10 99.08 98.70
the nearest dollar 16 97.50 97.00 95.21 99.66 99.10 95.58 99.87 99.85 97.70

64 95.24 90.12 78.12 90.12 81.12 71.24 94.78 91.54 84.78

Panel A2: �=0:01 and �=5× 10−4

Original prices q=4 10.52 5.56 1.08 10.58 4.48 0.99 10.15 4.56 1.05
16 10.62 5.66 1.08 10.48 4.70 0.97 10.78 4.82 0.97
64 10.82 5.74 1.25 9.36 4.84 0.87 9.48 4.70 0.91

Prices rounded to q=4 10.84 5.47 1.05 10.72 4.78 0.98 9.98 4.68 1.00
the nearest cent 16 11.18 5.44 1.22 11.05 5.18 1.02 10.88 4.88 0.98

64 11.83 5.72 1.25 10.01 5.09 1.44 9.87 4.95 0.91
Prices rounded q=4 11.46 5.87 1.44 10.98 5.44 1.41 10.10 5.68 1.66
by an eighth 16 11.38 5.68 1.61 10.87 5.25 1.14 10.56 5.80 1.18
of a dollar 64 12.18 6.32 1.64 10.50 5.28 1.08 10.88 5.50 1.16
Prices rounded to q=4 99.45 99.12 98.55 99.56 99.12 98.77 99.05 98.47 97.23
the nearest dollar 16 97.12 95.40 94.41 98.89 97.10 94.51 99.54 99.04 95.55

64 94.55 87.55 73.77 87.12 80.01 69.88 94.14 90.14 81.45

Panel B: �=0:05 and �=2:5× 10−4

Original prices q=4 10.12 5.01 1.01 10.04 4.57 1.02 10.04 4.98 1.05
16 10.52 5.21 1.47 10.44 4.98 0.94 9.98 4.77 0.99
64 10.64 5.88 1.48 10.24 4.87 0.97 10.51 5.14 0.94

Prices rounded to q=4 10.14 4.89 1.12 10.21 4.91 1.05 10.12 4.98 1.14
the nearest cent 16 10.28 5.14 1.32 10.03 5.02 1.08 10.04 4.85 1.01

64 10.54 5.86 1.27 10.51 4.98 1.14 10.27 5.25 1.08
Prices rounded q=4 10.78 5.12 1.14 10.66 4.99 1.11 10.78 5.12 1.24
by an eighth 16 11.02 5.87 1.51 11.02 5.24 1.27 10.54 5.08 1.12
of a dollar 64 10.96 6.01 1.47 10.89 5.78 1.54 10.52 5.58 1.07
Prices rounded to q=4 36.55 28.99 21.78 35.99 30.14 20.58 36.41 30.04 20.55
the nearest dollar 16 36.21 32.45 20.43 36.78 32.02 23.45 36.78 31.24 24.14

64 37.41 32.14 21.12 40.12 29.01 22.14 35.87 30.78 25.06

returns, respectively. The negative mean of the distribution of Z suggests that some
of the lower-order autocorrelations of returns of prices p∗

i turn out to be negative,
which have had serious size implications, as demonstrated by the results in Table 1.
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Fig. 2. Histograms of Z(4) under the i.i.d. N (0; 2� ) null. (a), (c) and (e) are based on �=0:01; while
(b), (d) and (f) are based on �=0:05. (a) and (b) are obtained from original prices with machine
accuracy (16 decimal digits); (c) and (d) are from the prices rounded by an eighth of a dollar; and

(e) and (f) are from prices rounded to the nearest dollar.

3.2. A heteroscedastic null hypothesis

To evaluate the compass rose e2ect on test statistics in the case of heteroscedastic
returns, we perform simulation experiments under the null hypothesis that the distur-
bance �i in (1) is serially uncorrelated but heteroscedastic in the following manner.
Let the random walk disturbance �i satisfy the relation �i ≡ i�i, where �i is i.i.d.
N (0; 1) and i satis1es the following 1rst-order general autoregressive conditional
heteroscedasticity (GARCH(1,1)) (Bollerslev, 1986) process:

2i = �+ �
2
i−1 + �r

2
i−1; (8)

where parameters �, � and � are chosen to yield the desired levels of �, and ri is
the return based on pi. 4 The results are displayed in Table 2.

Not surprisingly, the Z∗ behaves very similarly as under the i.i.d. null because Z∗
is robust to fairly general forms of conditional heteroscedasticity including that in (8).
However, results for both the Z and Ljung-Box Q statistics are evidently di2erent

4 The parameters �=0:8, and �=0:1 and �= 2� (1− �− �).
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Table 2
Empirical rejection probabilities of the Z∗, Z and Q tests of the random walk null hypothesis with
heteroscedastic disturbances (quoted in percent)

Nominal size Z∗ Z Q

10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: �=0:01 and �=2:5× 10−4

Original prices q=4 10.03 4.68 0.99 34.22 25.58 13.99 34.28 25.61 14.21
16 10.88 5.31 1.08 32.05 23.54 12.04 40.11 30.34 17.54
64 11.12 5.61 1.14 27.05 18.54 9.01 36.25 28.54 14.56

Prices rounded to q=4 10.12 4.88 1.06 34.88 25.87 14.11 34.29 25.64 14.35
the nearest cent 16 10.57 5.36 1.24 32.14 23.55 12.14 40.24 30.35 17.66

64 11.13 5.57 1.07 34.67 18.65 8.87 34.56 26.01 15.02
Prices rounded q=4 10.54 5.03 1.14 35.54 26.14 14.57 34.47 26.17 14.78
by an eighth 16 11.41 5.58 1.68 33.14 23.12 13.04 40.05 30.41 17.66
of a dollar 64 11.87 5.98 1.87 27.08 19.04 9.14 36.88 28.74 15.65
Prices rounded to q=4 80.57 74.15 57.96 91.55 88.13 80.05 91.54 87.65 79.86
the nearest dollar 16 70.05 60.89 43.47 81.87 76.78 65.13 84.21 80.15 70.04

64 45.63 36.02 19.78 59.68 52.45 36.54 72.14 64.37 50.24

Panel B: �=0:05 and �=2:5× 10−4

Original prices q=4 10.06 4.97 0.91 33.56 25.87 13.56 33.64 25.64 14.52
16 10.88 5.21 1.04 32.01 23.14 11.64 39.16 30.51 16.31
64 10.67 5.68 1.25 27.05 19.31 8.97 36.21 27.35 15.12

Prices rounded to q=4 10.05 5.04 1.05 33.54 25.67 13.64 34.17 26.47 15.03
the nearest cent 16 11.02 5.63 1.14 32.14 23.34 11.85 39.64 31.58 17.45

64 10.99 5.24 1.36 26.97 19.63 9.05 36.58 28.54 16.33
Prices rounded q=4 10.77 5.34 1.15 34.86 26.87 15.14 35.04 26.98 15.64
by an eighth 16 11.64 5.89 1.31 35.47 27.63 16.76 43.21 33.42 20.68
of a dollar 64 11.05 5.87 1.54 34.55 26.04 16.84 43.11 34.57 22.84
Prices rounded to q=4 31.57 24.04 17.54 51.37 43.14 33.14 50.86 42.54 33.14
the nearest dollar 16 37.87 33.50 24.14 53.08 47.96 36.58 59.14 52.98 41.05

64 41.25 35.17 27.86 52.45 45.63 36.68 59.84 52.84 43.51

due to the inconsistent heteroscedastic nature of these two tests. For example, if
low-volatility prices are rounded with the minimum price change of an eighth of a
dollar, the sizes of Z(4) and Q(4) for the nominal level 1% could be as large as
about 14%. In view of the results in Table 1, it becomes apparent that these high
rejection ratios are attributed almost solely to the e2ects of price heteroscedasticity.
When prices are rounded to the nearest dollar, the higher rejection rates of the Z
and Q statistics are due to the combination e2ects from both heteroscedasticity and
price discreteness. Note that when prices are rounded to the nearest dollar, sizes of
all three test statistics for low-volatility returns decline compared to those in the i.i.d.
case (Table 1).

We remark that although we restrict our discussion to daily data, the results apply
to data with higher or lower sampling frequencies with appropriately transformed
volatility levels. The volatility or the tick=volatility ratio for the return series with a
di2erent sampling frequency can be easily calculated using the well-known temporal
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aggregation results. For example, weekly returns with a standard deviation of 0.05
can be viewed also as a daily return series with a standard deviation of 0.022. 5

In summary, our results show that the compass rose e2ect is observed only if
the tick=volatility ratio exceeds some threshold level. For the case that �=0:01, the
threshold is relatively small. Hence, we see that the empirical sizes of test statistics
are in3ated even when prices are rounded to the nearest cent. With a greater value
for �, such as 0.05, the threshold is high and the compass rose e2ect is very limited
if prices are rounded to the nearest cent. Since intraday returns fall into the former
category of a smaller volatility while daily or weekly returns fall into the later, the
size of the test is well approximated by the continuous-state asymptotic theory if the
test is based on daily or weekly returns but not if based on intraday data.

4. Discussion

We have demonstrated in Section 2 that both Z and Z∗ can be rewritten as
weighted averages of the autocorrelations. We anticipate that our results hold, at
least qualitatively, for a general class of random walk tests which are linear com-
binations of consistent estimators of autocorrelations. Richardson and Smith (1994)
have shown that this class captures many test statistics studied in the recent 1nance
and macroeconomics literature. For example, the test considered in Fama and French
(1988) is based on the statistic:

Z̃(q)=

(1=n)
∑n

i=1 [
∑q

l=1(logpi+ l−logpi+ l−1−�̂)
∑q

l=1(logpi+ l−q−logpi+ l−q−1−�̂)]
(1=n)

∑n
i=1(

∑q
l=1(logpi+ l−logpi+ l−1−�̂))2 ;

(9)

which can be rewritten asymtotically in terms of consistent autocorrelation estimators
as

Z̃(q) ≈
2q−1∑
i=1

min(i; 2q− i)�̂(i)=q: (10)

The limiting distribution of (9) can be derived from (10) and the standard result on
the asymptotic distribution of autocorrelation estimators (for example, Theorem 7:2:1
of Brockwell and Davis, 1991). Although the test statistic based on Z̃(q) is di2erent
from Lo and Mackinlay’s test (albeit with di2erent weights on autocorrelations of
various lags), the standardized Z̃(q) will not be asymptotically a standard Gaussian if
the rounded price p∗

i is used in the calculation of the test statistic. This observation is
supported by empirical evidence from a Monte Carlo simulation. Since the simulation
results of Z̃(q) are similar to those for Lo and MacKinlay’s test in terms of the
robustness to the compass rose pattern, they are not reported here.

5 The standard deviation of daily returns is 0:05=
√
5= 0:022, assuming that there are 5 trading days

per week.
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