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SINGULAR ANGLES OF WEAK LIMITING METRICS UNDER
CERTAIN INTEGRAL CURVATURE BOUNDS

QING CHEN, XIUXIONG CHEN AND WEIYONG HE

We prove that a nonvanishing weak limit of Riemannian metrics in surfaces
with an integral curvature bound admits only weak cusp singularities. The
result is useful toward generalizing classical uniformization theory to sur-
faces with boundary.

1. Introduction

Classical uniformization theorem says that in a compact Riemann surface without
boundary there is a constant curvature metric in any conformal class of metrics.
There have been many attempts to generalize this theory to surfaces with boundary.
The main focus, started by the independent work of Troyanov [1991] and McOwen
[1988], has been to study the existence or nonexistence of constant curvature met-
rics in surfaces with conical singularities. Much work has followed since; see, for
example, [Chen and Li 1991; Chang and Yang 1988; Luo and Tian 1992].

The disadvantage of this classical approach is that the Gaussian curvature is a
second-order differential operator of the metric, while the condition of prescribing
conical singularities is equivalent to prescribing both the metric and its derivatives
near the set of singular points at infinitesimal level. Thus, the constant curva-
ture equation with prescribed conical singularities is an overdetermined elliptic
equation. In general, one should not expect to get a clear-cut statement about the
existence (or nonexistence) of solutions.

We now describe another approach. Given a compact Riemann surface � and
a Hermitian metric g0 on �, any metric g on � is said to be conformal to g0 if
there exists a smooth function e2ϕ such that g = e2ϕg0 on �. Define the variational
space G(�) to be the set of all metrics that are conformal to g0 and agree with g0

on ∂� up to first derivatives. For each g ∈ G(�), define the energy functional

E(g) =

∫
�

K 2 dg,
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where K is the Gaussian curvature of g. The problem is to minimize this functional
with the area constraint

A(g) =

∫
�

dg = const.

A critical point of this functional is called an extremal Hermitian metric; see
[Calabi 1982]. The Euler–Lagrange equation is

4g K + K 2
= C,

where we have, in a local system,

−4ϕ = K e2ϕ if g = e2ϕ
|dz|2.

By a theorem of Calabi, any metric solving this Euler–Lagrange equation on a sur-
face without boundary must have constant scalar curvature. This result conforms
with the classical uniformization theorem.

One of us (X. Chen) has been using the approach just described, namely the
study of the variational problem of minimizing E(g) in G(�) with fixed area, with
the goal of generalizing uniformization results to surfaces with boundary. Some of
the ideas go back to E. Calabi (private communications).

To attack this variational problem, one first studies the weak compactness of
any subset of metrics in G(�) with finite energy and area. Generally speaking, for
a sequence of metrics {gn, n ∈ N} with finite energy and area, there exists a weak
limit metric g such that gn converges to g weakly in any compact subset away
from a finite set of singular points. An important feature of the limit is the bubbling
phenomenon, first observed by Sacks and Uhlenbeck in 1979, when they studied the
existence theorem for harmonic maps between two spheres [Uhlenbeck 1982]. The
key observation was that the noncompactness is associated with the concentration
of the energy density at isolated bubble points. Around each such point, one can
define a weak singular angle in the approximation sense (see Definition 2 below).
If the weak singular angle is 0, it is called a weak cusp singular point. An intriguing
question is that whether all points is weak cusp singular points if the weak limit
metric g 6= 0. In this paper, we will prove (see Section 2 for terminology and
notation):

Theorem 1.1. Let {gn} be a sequence of conformal metrics in domain � with
finite area and finite energy. There exist a subsequence of {gn}, a limit met-
ric g0 and a finite set of bubble points {p1, p2, . . . , pm} such that gn ⇀ g0 in
H 2,2

loc (�\{p1, p2, . . . , pm}). If g0 6= 0(ϕ0 6= −∞), then g0 has a weak cusp singu-
larity at each bubble point pi . There is no ghost vertex in the bubble-tree decom-
position.

This motivates the following classification result:
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Theorem 1.2 [Chen 1999]. Let � be a surface without boundary and let g be
an extremal Hermitian metric in �\{p1, . . . , pn} with finite energy and area, and
having only weak cusp singularities at all singular points.

(1) If χ(�) 6 0, then K is a negative constant.

(2) If n > 3 and χ(�) = 2 (that is, � is a sphere), then K is a negative constant.

(3) If n = 2 and χ(�) = 2, there exists no extremal Hermitian metric.

(4) If n = 1 and χ(�) = 2, there exists a unique extremal Hermitian metric deter-
mined by total area, and the metric must be rotationally symmetric.

These results are critical for the generalization of uniformization theory to a
surface with boundary.

The main result was stated in [Chen 1998a; 1999] without proof and was used
crucially in [Chen 2001], in deriving the long-time existence of the Calabi flow
in Riemannian surfaces. At present, there is strong interest in the Calabi flow for
general Kähler manifolds. Clarification of this important technical step will likely
be indicative of what happens in more general settings.

2. The problem from an analytic viewpoint

In a coordinate chart (D, z), any metric g can be written as

g = e2ϕ(dx2
+ dy2),

and the curvature function is
K = −

4ϕ

e2ϕ
.

A metric is said to have finite area C1 and finite energy C2 if

(2-1)
∫

D
e2ϕ dx dy 6 C1 and

∫
D

(4ϕ)2

e2ϕ
dx dy 6 C2.

A sequence of metrics {gn}, where gn = e2ϕn (dx2
+ dy2), is said to have finite

area C1 and finite energy C2 if each ϕn satisfies (2-1). From now on we will always
use either {ϕn} or {gn} to denote a sequence of metrics with finite area and finite
energy.

For any subdomain � in D, relabel the energy and area for a conformal param-
eter function as

(2-2) Ac(ϕ, �) =

∫
�

e2ϕ dx dy, Kc(ϕ, �) =

∫
�

(4ϕ)2

e2ϕ
dx dy.

A “zero metric” should have zero area and zero energy. Since the zero metric has
a conformal parameter function identically equal to −∞, we define Ac(−∞, �)=

Kc(−∞, �) = 0. For notational convenience, define Ĥ 2,2
loc (�) = H 2,2(�)∪{−∞}.
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A sequence of functions {ϕn} ∈ H 2,2(�) is said to converge weakly to a function
ϕ0 in Ĥ 2,2

loc (�) if one of two mutually exclusive alternatives holds:

1 (Vanishing case): If ϕ0 ≡ −∞, then ϕn → −∞ uniformly in any relatively
compact subdomain of �.

2 (Nonvanishing case): If ϕ0 ∈ H 2,2(�), then ϕn ⇀ ϕ0 weakly in H 2,2
loc (�).

Consequently, a sequence of Riemannian metrics {gn}∈ H 2,2(�) converges weakly
to a limit metric g0 in H 2,2

loc (�) if and only if either

1 gn → 0 everywhere (and g0 ≡ 0), or

2 ϕn ⇀ ϕ0 in H 2,2
loc (�), where gn = e2ϕn gbk and g0 = e2ϕ0 gbk, for gbk a smooth

background metric in �.

Definition 2.1. A point p is said to be a bubble point of {ϕn} if , for any r > 0,

lim inf
n→∞

∫
Dr (p)

4(ϕn)
2

e2ϕn
dx dy > α > 0 and lim inf

n→∞

∫
Dr (p)

e2ϕn dx dy > β > 0,

where Dr (p) is a coordinate disk centered at p with radius r .

The largest possible numbers α and β are the concentration weights of the energy
function and area function at point p.

For convenience we restate here the three main theorems from [Chen 1998b].
Their proofs can be found there.

Theorem 2.2. Let {ϕn, n ∈ N} be a sequence of metrics in H 2,2(D) with finite
area C1 and energy C2. There exists a subsequence {ϕn j , j ∈ N} of {ϕn}, a finite
number of bubble points {p1, p2, . . . , pm} with respect to {ϕn j , j ∈ N} (where
0 6 m 6

√
C1C2/(4π)), and a metric ϕ0 ∈ Ĥ 2,2

loc (D \{p1, p2, . . . , pm}) such that

ϕn j ⇀ ϕ0 in Ĥ 2,2
loc (D \{p1, p2, . . . , pm}).

Theorem 2.3 (Bubbles on bubbles). Let {ϕn} be a sequence of metrics in D with
finite area C1 and finite energy C2. Suppose that p = 0 is the only bubble point in
D, that it has area concentration Ap and energy concentration K p, and that there
exists a metric ϕ0 ∈ Ĥ2,2(D \{p}) such that ϕn ⇀ ϕ0 in Ĥ2,2(D \{p}). A sequence
of numbers {δn ↘ 0} can be chosen to renormalize the sequence of metrics as
φn(x, y) = ϕn(δnx, δn y) + log δn , for n ∈ N.

There exists a subsequence {ϕn j , j ∈ N} of {ϕn}, a finite number of bubble points
{q1, q2, . . . , qm} with respect to the subsequence of metrics {φn j } (where 0 6 m 6√

Ap K p/(4π2)), and a metric φ0 ∈ Ĥ 2,2(S2
\{∞, q1, q2, . . . , qm}) such that

φn j ⇀ φ0 ∈ Ĥ 2,2
loc (S2

\{∞, q1, q2, . . . , qm}).

If φ0 ≡ −∞ (vanishing case), then m > 2 and p is a bubble point of {φn j , j ∈ N}.
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Theorem 2.4 (Bubble tree). The limit of any locally weakly convergent sequence
of metrics {gk, k ∈ N} in G(�) encompasses the following data:

(1) A finite rooted tree T , possibly reduced to just the base vertex f .

(2) The base vertex f ∈ T is a limit metric in � with a finite number of bubble
points {pi } deleted; the edge emanating from the base vertex is {pi }.

(3) Any other vertex fs is a limit metric defined on S2
\{∞, psi }; the edges ema-

nating from this vertices are {psi }.

(4) For each pair of vertex fs1 and fs2 bounding a common edge in T , they are
tenuously connected at the pair of respective singular points. The number of
vertices whose valence 6= 2, is bounded from above by

√
C1C2. The depth of

the tree is also finite in a reasonable sense. Each vertex f I = fi1i2···ik has the
property that, if it vanishes in any point in its domain, it vanishes everywhere;
in this case we call it a ghost vertex. The number of ghost vertices is finite.

Definition 2.5. Around each bubble point, define the weak singular angle

α = lim
r→0

∫
∂ Dr (p)

kgdsg = lim
r→0

lim
n→∞

∫
∂ Dr (p)

kgn dsgn

if the limit is well defined. Here kg and kgn are geodesic curvatures of g and gn .

The weak angle does exist, as we shall see in the next section, and has some
interesting properties. From now on, we will always assume that {gn} converges,
by substituting a convergent subsequence if necessary.

If the weak singular angle is zero, the bubble point p is called a weak cusp
singularity. Our purpose is to prove:

Main Theorem 2.6. Let {gn} be a sequence of conformal metrics in � with
finite area and finite energy. There exists a subsequence of {gn}, a limit met-
ric g0 and a finite set of bubble points {p1, p2, . . . , pm} such that gn ⇀ g0 in
H 2,2

loc (�\{p1, p2, . . . , pm}) (following the notations of Theorem 1.1). If g0 6= 0,
then g0 has a weak cusp singularity at each bubble point pi , and there is no ghost
vertex in the bubble-tree decomposition.

3. Asymptotic geometry of singular points

In this section, we introduce the blowing-up process and the definition of a neck.
We also prove several lemmas that are essential to our main theorem.

Definition 3.1. For any metric ϕ with finite area C1 and energy C2 in D \{0}, set

ϕ̄(r) =
1

2π

∫ 2π

0
ϕ(r cos θ, r sin θ) dθ.
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Lemma 3.2 [Chen 1998b]. Suppose ϕ is a metric with finite area C1 and energy
C2 in D \{0}.

(1) lim
r→0

(ϕ(r cos θ, r sin θ) + log r) = −∞.

(2) lim
r→0

ϕ̄r (r) r exists and is finite.

(3) There exists constants λ ∈ (0, 1) and C3, C4 such that

1
λ
(ϕ̄(r) + log r) + C3 ≤ ϕ(r cos θ, r sin θ) + log r ≤ λ(ϕ̄(r) + log r) + C4.

Similarly, one can prove:

Corollary 3.3. Suppose φ is a metric in R2
\ D̄r0(0) with finite area C1 and energy

C2, where D̄r0(0) is a closed disk with radius r0.

(1) lim
r→∞

(φ(r cos θ, r sin θ) + log r) = −∞.

(2) lim
r→∞

φ̄r (r)r exists and is finite.

(3) There exists constants µ ∈ (0, 1) and C5, C6 such that

1
µ

(ϕ̄(r) + log r) + C5 ≤ ϕ(r cos θ, r sin θ) + log r ≤ µ(ϕ̄(r) + log r) + C6.

Lemma 3.4 [Chen 1998b]. Let {ϕn} be a sequence of metrics with finite area C1

and energy C2. There exists a constant ε0 such that if

max
r6ρ

|∂ Dr |gn = max
r6ρ

∫ 2π

0
eϕn(r cos θ,r sin θ)r dθ 6 ε0 for all n ∈ N,

then {ϕn} has no bubble points in D.

We can now explain the blowing-up process. To simplify the problem, let {gn =

eϕn (dx2
+ dy2)} be a sequence of metrics in D with finite area and finite energy,

converging to a limit metric g = eϕ0(dx2
+ dy2) 6= 0, and having {0} as its only

bubble point. Following Lemma 3.2, we have

lim
r→0

max
06θ62π

(ϕ0(r cos θ, r sin θ) + log r) = −∞.

Then there exists r1 > 0 such that

max
06θ62π

(ϕ0(r cos θ, r sin θ) + log r) � 0 for all r ≤ r1.

If n is large enough, the convergence implies that

max
06θ62π

(ϕn(r1 cos θ, r1 sin θ) + log r1) � 0 for all n > N ;



SINGULAR ANGLES OF WEAK LIMITING METRICS UNDER CURVATURE BOUNDS 41

equivalently, if the length of the circle |z| = r1 is very small, then

|∂ Dr1 |gn =

∫ 2π

0
eϕn(r1 cos θ,r1 sin θ)r1 dθ ≤ ε for all n > N .

According to Lemma 3.4, if ε is small enough, for each n > N we can choose δn

such that

|∂ Dr |gn =

∫ 2π

0
eϕn(r cos θ,r sin θ)r dθ < ε for all r with r1 ≥ r > δn,

and

|∂ Dδn |gn =

∫ 2π

0
eϕn(δn cos θ,δn sin θ) δn dθ = ε.

Renormalize this sequence of metrics as

φn(z) = ϕ(δn z) + log δn for all |z| <
1
δn

and
g̃n(z) = e2φn(z)

|dz|2 = gn(δn z).

The theorems in Section 2 assert that there is a subsequence {g̃n j } of metrics {g̃n},
a limit metric g̃ and finitely many bubble points {q1, q2, . . . , qm} such that either

g̃ ≡ 0(φn j → −∞) or g̃n j ⇀ g̃

in Ĥ 2,2
loc (S2

\{∞, q1, q2, . . . , qm}).
Choose r2 big enough that {q1, q2, . . . , qm} ⊂ Dr2 . The annulus bounded by

the two circles |z| = r1 and |z| = r2 δn is called the neck of the blowing-up
process and denoted by Neck(r1, r2). The blowing up procedure or the renor-
malization procedure depends only on the filter size ε > 0 (once a coordinate
system is fixed). Since gn ⇀ g0 in Ĥ 2,2

loc (D \{p}), the surface (g0, D \{p}) and
(g̃0, S2

\{∞, q1, q2, . . . , qm}) are called tenuously connected at p and at z = ∞.

Lemma 3.5. If the limit metric g is nonzero, the weak angle α exists and is finite,
and α > 0.

Proof. In polar coordinates (r, θ), we have

α= lim
r→0

∫
∂ Dr (p)

kg dsg =
1

2π
lim
r→0

∫ 2π

0
(∂rϕ(r cos θ, r sin θ)r+1) dθ = lim

r→0
ϕ̄′(r)+1.

According to Lemma 3.2, the weak angle exists and is finite. Now we only have to
prove α ≥0. Assume α <0. By the preceding equality we know that ϕ̄r (r)r +1<0
for r small enough, say for r < r0; that is,

ϕ̄r (r) +
1
r

< 0 when r < r0.
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Then, for 0 < r1 < r2 < r0,

0 >

∫ r2

r1

(
ϕ̄r (r) +

1
r

)
= (ϕ̄(r) + log r)|

r2
r1 = (ϕ̄(r2) + log r2) − (ϕ̄(r1) + log r1).

Letting r1 → 0, since ϕ̄(r1) + log r1 → −∞, it follows that

0 >

∫ r2

r1

(
ϕ̄r (r) +

1
r

)
= (ϕ̄(r2) + log r2) − (ϕ̄(r1) + log r1) → ∞,

which is a contradiction. �

Definition 3.6. Let {ϕn} be a sequence of metrics in D with finite area C1 and
finite energy C2. Suppose that p = 0 is the only bubble point in D in the blowing-
up process just described in Lemma 3.4. We define the out angle β around p in
Neck(r1, r2) as

β = lim
r2→∞

lim
n→∞

∫
∂ Dr2δn (p)

kgn dsn

if the limit exists, where kgn is the geodesic curvature.

Lemma 3.7. In the notations in Lemma 3.4, if the (renormalized) limit metric φ0

is not −∞, the out angle β exists and is finite. Furthermore, β 6 0.

Proof. By the definition of β, we have

β = lim
r2→∞

lim
n→∞

∫
∂ Dr2δn (p)

kgn dsn = lim
r2→∞

lim
n→∞

∫
∂ Dr2 (p)

kg̃n ds̃n.

If the limit metric g̃0 does not vanish, that is, if φ0 6= −∞, we have

β = − lim
r2→∞

∫
∂ Dr2

kg̃0ds̃0.

By Lemma 3.2, β is well defined and finite. Just as the argument in the proof of
Lemma 3.7, we can then prove that β 6 0. �

Remark 3.8. The out angle β (more precisely, its negative) can be regarded as the
weak angle at {∞} in the blowing-up process.

When the limit metric vanishes, the weak angle can still be defined:

Lemma 3.9. If a sequence of metrics {gn = eϕn (dx2
+ dy2)} on D has vanishing

limit metric and {0} as its only bubble point, the weak angle at {0} exists and finite.

Proof. It suffices to show the existence of the limit

α = lim
r→0

lim
n→∞

∫
∂ Dr (p)

kgn dsgn = lim
r→0

lim
n→∞

∫ 2π

0
(∂rϕn r + 1) dθ.
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But for any 0 < r1 < r2,∣∣∣∣∫ 2π

0
(∂rϕn(r2 cos θ, r2 sin θ)r2 +1) dθ −

∫ 2π

0
(∂rϕn(r1 cos θ, r1 sin θ)r1 +1) dθ

∣∣∣∣
=

∫ r2

r1

∫ 2π

0
∂r (∂rϕn r) dθ dr =

∫ r2

r1

∫ 2π

0
4ϕn dθ dr

6
∫ r2

r1

∫ 2π

0

(4ϕn)
2

e2ϕn
dθ dr

∫ r2

r1

∫ 2π

0
e2ϕn dθ dr

= Kn(r1, r2)An(r1, r2),

which tends to 0 as n → ∞. Hence the limit exists and α is defined. �

4. Proof of the main theorem

In the neck of the blowing-up process (page 41), the sequence of metrics has an
average property around concentric circles:

Lemma 4.1 (Max-min inequality). Let {gn = e2ϕn (dx2
+ dy2)} be a sequence

of metrics with finite area and finite energy, converging weakly to a limit metric
g = e2ϕ(dx2

+ dy2) in H 2,2
loc (D \{0}) and having {0} as its only bubble point. In

Neck(r1, r2), there exists a constant c ∈ (0, 1), independent of r , such that

c 6

∣∣∣∣maxθ (ϕn(r cos θ, r sin θ) + log r)

minθ (ϕn(r cos θ, r sin θ) + log r)

∣∣∣∣ 6 1.

Proof. Renormalize the sequence of metrics around p = {0} as

φn(z) = ϕ(δn z) + log δn,

g̃n(z) = e2φn(z)
|dz|2 = gn(δn z).

Lemma 3.2 yields, for the limit metrics ϕ and φ,

λ−1(ϕ̄(r) + log r) + C3 ≤ ϕ(r cos θ, r sin θ) + log r ≤ λ(ϕ̄(r) + log r) + C4,

µ−1(φ̄(r) + log r) + C5 ≤ φ(r cos θ, r sin θ) + log r ≤ µ(φ̄(r) + log r) + C6,

with λ, µ ∈ (0, 1). For r1 small enough and n, r2 big enough, we then have

(4-1) λ−1(ϕ̄n(r1) + log r1) + C3 ≤ ϕn(r1 cos θ, r1 sin θ) + log r1

≤ λ(ϕ̄n(r1) + log r1) + C4,

µ−1(φ̄n(r2) + log r2) + C5 ≤ φn(r2 cos θ, r2 sin θ) + log r2

≤ µ(φ̄n(r2) + log r2) + C6,
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where C3, C4, C5, C6 are independent of r . This last pair of inequalities leads to

µ−1(ϕ̄n(r2 δn) + log(r2 δn) + C5 ≤ ϕn(r2δn cos θ, r2δn sin θ) + log(r2 δn)

≤ µ(ϕ̄n(r2 δn) + log(r2 δn)) + C6.

Combining this with (4-1), one obtains, still for r1 small enough and n, r2 big
enough,

λ2

2
6

∣∣∣∣maxθ (ϕn(r1 cos θ, r1 sin θ) + log r1)

minθ (ϕn(r1 cos θ, r1 sin θ) + log r1)

∣∣∣∣ 6 1

and
µ2

2
6

∣∣∣∣maxθ (ϕn(r2 δn cos θ, r2 δn sin θ) + log(r2 δn))

minθ (ϕn(r2 δn cos θ, r2 δn sin θ) + log(r2 δn))

∣∣∣∣ 6 1.

Thus the max-min inequality holds at the two boundary circles.
Set u = − log r = − log

√
x2 + y2 and θ = tan−1(y/x). The domain D\{0} be-

comes an infinite annulus {(u, θ) :0<u 6∞, −π 6θ 6π} via this transformation.
Let

ξ(u, θ) = ϕ(e−u cos θ, e−u sin θ) − u , ξn(u, θ) = ϕn(e−u cos θ, e−u sin θ) − u

and define 4u,θ =∂2
u +∂2

θ . For any small r1 =e−u0 >0, define ϕ̃(v, θ)=ξ(v+u0, θ)

and ϕ̃n(v, θ) = ξn(v + u0, θ). Then

−4v,θ ϕ̃ = K (v + u0, θ)e2ϕ̃ for all (v, θ) ∈ D̃,

−4v,θ ϕ̃n = Kn(v + u0, θ)e2ϕ̃n for all (v, θ) ∈ D̃,

where D̃ = [−1, 1] × S1. There exists a constant C such that ϕ̃, ϕ̃n 6 C for n
big enough; thus the right-hand sides of both equalities are uniformly bounded in
L2(D̃).

Define ω, ωn by{
−4ω = K (v + u0, θ)e2ϕ̃,

ω|∂ D̃ = 0,

{
−4ωn = Kn(v + u0, θ)e2ϕ̃n ,

ωn|∂ D̃ = 0.

Then ‖ω‖L∞, ‖ωn‖L∞ are uniformly bounded from above; the bound is actually
independent of u0, since L2 norm of ϕ̃(v, θ) and ϕ̃n(v, θ) in D̃ converge uniformly
to 0 as n → ∞ and u → ∞.

The function hn = ϕ̃n − ωn is harmonic. Consider the two concentric circles
v1 =0 (|z|=r1), v2 = log r1−log r2δn (|z|=r2 δn). For any circle v3 = log r1−log r3

(|z| = r3) between the two, set

Mn(v) = max
v

hn(v, θ), mn(v) = min
v

hn(v, θ).
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Apply Hadamard’s Three-Circle Theorem to obtain

Mn(v3) 6

Mn(v1)
(
log(v2 + u0) − log(v3 + u0)

)
+ Mn(v2)

(
log(v3 + u0) − log(v1 + u0)

)
log(v2 + u0) − log(v3 + u0)

and

mn(v3) >

mn(v1)
(
log(v2 + u0) − log(v3 + u0)

)
+ mn(v2)

(
log(v3 + u0) − log(v1 + u0)

)
log(v2 + u0) − log(v3 + u0)

.

Since the max-min inequality holds at the two boundary circles, we obtain

Mn(v1) = maxθ hn(0, θ) = maxθ (ϕ̃n(0, θ)− ωn(0, θ)) 6 maxθ ϕ̃n(0, θ)+ C,

mn(v1) = minθ hn(0, θ) = minθ (ϕ̃n(0, θ) − ωn(0, θ)) > minθ ϕ̃n(0, θ) − C,

where C is the uniform bound of ‖ωn‖L∞ . By the definition of ϕ̃n(0, θ), we have

maxθ ϕ̃n(0, θ) = maxθ (ϕn(r1 cos θ, r1 sin θ) + log r1)

6 1
2λ2 minθ (ϕn(r1 cos θ, r1 sin θ) + log r1) =

1
2λ2 minθ ϕ̃n(0, θ).

This implies
Mn(v1) 6 1

2λ2mn(v1) + 2C.

Similarly, we obtain
Mn(v2) 6 1

2µ2mn(v2) + 2C.

For any v3 ∈ (v1, v2), the inequality at the top of this page implies

Mn(v3) 6 1
2 min(λ2, µ2)mn(v3) + 4C;

thus
max

θ
ϕ̃n(v3, θ) 6 1

2 min(λ2, µ2) minθ ϕ̃n(v3, θ)+ 6C,

and so

max
θ

(ϕn(r3, θ)+ log r3) 6 1
2 min(λ2, µ2) minθ (ϕn(r3, θ)+ log r3) + 6C.

Because ϕ + log r → −∞ when r → 0, and C is independent of r , we see that if
r1 small enough and n big enough, then

minθ (ϕn(r3, θ)+ log r3) 6 max
θ

(ϕn(r3, θ)+ log r3) 6 c minθ (ϕn(r3, θ)+ log r3)

for any r3 ∈ (r2 δn, r1), where c ∈ (0, 1) is a constant. This immediately implies
that the max-min inequality holds in Neck(r1, r2). �
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Proof of Main Theorem 2.6. Case 1: The renormalized limit metric φ does not
vanish. According to the definition of the weak angle and the out angle, for r1

small enough and r2, n large enough we have∣∣∣∣∫
|z|=r1

kgn dsn − α

∣∣∣∣ < ε,

∣∣∣∣∫
|z|=r2δn

kgn dsn − β

∣∣∣∣ < ε.

By Lemmas 3.7 and 3.9, we have α > 0 and β 6 0. If α > 0, there exists a circle
|z| = r3,n such that ∫

|z|=r3,n

kgn dsn =
α

2
,

and we can assume that r3,n is maximal satisfying this condition. Define

ϕ̄(r) =
1

2π

∫ 2π

0
ϕ(r cos θ, r sin θ) dθ,

ϕ̄n(r) =
1

2π

∫ 2π

0
ϕn(r cos θ, r sin θ) dθ.

Then

(4-2)
∫ ∫

r3,n6|z|6r1

α

2
e2ϕ̄n r dr dθ 6

1
2

∫ 2π

0

∫ r1

r3,n

e2ϕ̄n r
∫

|z|=r
kgn dsn dr dθ

= π

∫ r1

r3,n
e2ϕ̄n r(∂r ϕ̄n r + 1)dr

= π

∫ r1

r3,n
e2(ϕ̄n+log r)

(
∂r ϕ̄n +

1
r

)
dr

=
π

2
e2(ϕ̄n+log r)

∣∣∣r1

r3,n
.

Using the max-min inequality (Lemma 4.1), one easily gets

(4-3) e2(ϕ̄n+log r)
|r1 6

(
1

2π

∫ 2π

0
e(ϕn+log r)|r1 dθ

)1/c

,

where c ∈ (0, 1) is the constant in the max-min inequality. Since∫ 2π

0
e(ϕn+log r)|r1 dθ < ε

(from the blowing up process), inequalities (4-2) and (4-3) then imply∫ ∫
r3,n6|z|6r1

α

2
e2ϕ̄n r dr dθ → 0.
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If α > 0, then ∫ ∫
r3,n6|z|6r1

e2ϕ̄n r dr dθ → 0

as r1 → 0, r2 → ∞ and n → ∞. Using the max-min inequality again, we obtain∫ ∫
r3,n6|z|6r1

e2ϕn r dr dθ → 0.

On the other hand, for the annulus bounded by two concentric circle |z| = r1

and |z| = r3,n , we apply the Gauss–Bonnet Theorem to get

(4-4)
∫

|z|=r1

kgn dsn −

∫
|z|=r3,n

kgn dsn +

∫
r3,n6|z|6r1

Kn dgn = 0,

while ( ∫
r3,n6|z|6r1

Kn dgn

)2

6
∫

r3,n6|z|6r1

K 2
n dgn

∫
r3,n6|z|6r1

dgn

and ∫
r3,n6|z|6r1

dgn =

∫ ∫
r3,n6|z|6r1

e2ϕn r dr dθ → 0.

This means that
∫

r3,n6|z|6r1
Kn dgn → 0. Taking the limit in (4-4), we get α−

1
2α =

0, a contradiction. Thus we have proved that α = 0 in this case.

Case 2: The renormalized limit metric φ0 vanishes. If the out angle β is nonposi-
tive, we apply the Gauss–Bonnet theorem directly:∫

|z|=r1

kgn dsn −

∫
|z|=r2 δn

kgn dsn +

∫
r2δn6|z|6r1

Kn dgn = 0.

Since the limit metric vanishes,∫
r2δn6|z|6r1

Kn dgn → 0.

Taking the limit in the last equality, we have α − β = 0, so α = β = 0.
If β > 0, we consider the bubble tree decomposition. The renormalized limit

metric φ has two bubble points at least, by Theorem 1.2. Assume the bubble points
are {q1, q2, . . . , qm}, with m > 2, and the weak angle at qi is αi . Let hn = g̃n be
the renormalized metrics, and take disks Dr (i)(qi ) around qi with radius r (i) such
that ∣∣∣∣αi −

∫
∂ Dr(i) (qi )

khn dsn

∣∣∣∣ < ε

for n big enough, and a fixed small ε. Set

� = Dr2(p) \
⋃

16i6m
Dr (i)(qi )
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(before renormalization, the disk is Dr2δn (p)). Now apply to the Gauss–Bonnet
Theorem to �:

(4-5)
∫

|z|=r2

khn dsn −

m∑
i=1

∫
|z|=r (i)

khn dsn +

∫
�

Kndhn = −(m − 1).

Because {hn} → 0, An(�) =
∫
�

dhn → 0 when n → ∞ , we have( ∫
�

Kndhn

)2

6
∫

�

K 2
n dhn

∫
�

dhn → 0.

Taking limits in (4-5) we get
∑m

i=1 αi = m − 1 + β. Thus there must exist some
i with 1 6 i 6 m such that αi > 0. We can assume α1 > 0, and consider a pair
of angles {α1, β1} (where β1 is the out angle at the point q1) and the blowing-up
process around {q1}. If β1 6 0, then by the argument above we have α1 = 0, a
contradiction. If β1 > 0, we argue as in the case β > 0: we get a new pair of
angles {α11, β11} at the bubble point q11 in the blowing-up process around q1, such
that α11 > 0. If β11 6 0, there is a contradiction. If β11 > 0, then we apply the
blowing-up once more. Since β > 0, the limit metric of renormalization is zero
and the limit metric is a ghost vertex in the bubble tree. Thus, if α > 0, we get an
infinite series of ghost vertices in the bubble tree. But we know that there are only
finitely ghost vertices in the bubble tree, so we reach a contradiction. This proves
that α is zero in this case too, as desired. �
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