must be accountable. The department will have to map its curriculum, showing that it teaches each of the required competencies.

But do not be confused. Showing that you teach 150 different competencies is not the same as departmental assessment. The basic, no-frills assessment plan may still work fine. For example, engineering programs often use two measures: senior projects in which students are expected to demonstrate many of the competencies integrated into a single piece of work, plus a student survey such as those produced by Education Benchmarking, Inc. (www.webEBI.com) or a home-grown survey. Placement and retention data are also important.

The department or college meets to discuss these data and take action. (The student projects are a “direct” measure in our terms, and the survey is an “indirect” measure—but be careful, because these two terms may be used differently in different accrediting disciplines.) The challenge of disciplinary assessment is often to move from curriculum mapping for a multitude of competencies to a sufficiently simple and sustainable program assessment system.

A department that is responsible for disciplinary accreditation should concentrate on the disciplinary procedures, because they usually include and often exceed the requirements of the regional accreditors. Then, when the institution needs a report for its regional accreditor, the discipline-accredited programs can download or summarize their disciplinary assessment documents (more on reporting appears later in this chapter).

Case Studies and Examples

This section presents three case studies of departmental assessment drawn from different departments with which I have worked. None of these departments has a perfect system; all of them are developing and changing their practices, as good departments always do. The first case study illustrates the most basic, minimal assessment system; the next two cases show how departments may move in different directions to address various concerns. Shorter examples follow the case studies.

Three Case Studies of Departmental Assessment

<table>
<thead>
<tr>
<th>Case 1: The Most Basic, Minimal System, Based on Oral Faculty Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>A department of political science was very successful, very busy, with growing numbers of majors and among the highest teaching evaluations at the university. Most of the department members hated assessment and thought it was a waste of time and a plot to destroy faculty autonomy. But they had to do it.</td>
</tr>
</tbody>
</table>

(continued)
So, being the smart and efficient people that they were, they set about to conduct assessment in ways that would benefit their students. They decided to begin with the undergraduate major, because they did recognize that, in all the busyness, and in the struggle to build national research recognition and to attract top-quality faculty and graduate students, there was a danger that the undergraduate major would not get enough attention. They decided to institute the two-hour annual meeting on their undergraduate major.

At the first meeting, not everyone came, but those present were dedicated to ensuring that the department served its undergraduate majors effectively. No preparation had been done, and there were no rubrics (most faculty hated them or did not know what they were). But many of the faculty present were spending many hours evaluating student work, and they had ideas about what was strong and weak in the work of their students; the department could build on that faculty work. They decided to concentrate on the work of seniors, especially the research papers. So at the meeting, they went around the table systematically. Each faculty member who supervised or taught seniors named two strengths and two weaknesses that he or she observed in senior student research papers. One member kept a list on a flip chart. After everyone had named strengths and weaknesses, they discussed the list. Then they took a vote to decide on one action item. The item they chose had come up a number of times in the faculty reports: faculty were very frustrated by the inability of senior students, as they began their senior research projects, to construct a question for inquiry in the discipline. The faculty asked the curriculum committee and the department’s director of undergraduate studies (DUS) to follow up.

The DUS and the undergraduate curriculum committee decided first to examine the major’s curriculum prior to the senior year, to see where the curriculum offered instruction, practice, and feedback in constructing questions for inquiry. They also administered a short, three-question survey to senior students, during one class day in the senior year, to ask seniors how well they thought they were prepared to construct questions for inquiry, what pedagogical strategies in their past courses had been most helpful, and what changes they would suggest.

Based on this information, the committee mapped those points in the present curriculum at which students received instruction, practice, and feedback in constructing questions for inquiry. The committee prepared recommendations for the department. The department acted on these recommendations, making changes to the curriculum, so as to give more instruction, practice, and feedback on constructing questions for inquiry. The following year, the department continued to implement the changes and to observe whether student skills improved. Meanwhile, they took up one of their other degree programs and began a similar assessment process. They kept minutes and records of their actions.

In this system, the reports from faculty are oral, but they are not groundless. They arise from faculty members’ day-in/day-out careful examination of student work as they grade and respond to student papers. This is intensive, criterion-driven work. It results in a faculty member’s sense of where students most commonly succeed or go astray. Faculty then give oral reports to the department. In the meeting, these reports are captured on a flip chart, thus creating written data or artifacts. The written lists then become the basis of departmental deliberation and action. This method of oral reporting places high trust in the accuracy of faculty grading and faculty members’ ongoing knowledge of students’ strengths and weaknesses, based on that grading. Methodologically, this measure has weaknesses, but
there are no perfect measures available in real situations with real constraints. In most institutions, if every department were to implement this system carefully, and if the department strongly followed up with action based on faculty reports, the institution would be way ahead of where it is at present. The most important thing is that this department acted. This puts them ahead of a department that had better data but did not act.

A department that begins with oral reports, as this one did, may in time decide that they would benefit from a formal list of criteria or a rubric by which individual faculty, or a group of faculty readers, could more systematically evaluate senior research projects. The next example demonstrates a department that conducted its examination of student work with a rubric.

Case Study 2: A Rubric-Based Faculty Evaluation of Student Work

At a teaching institution with no graduate degrees in biology, the department had a capstone course called "Biological Research," in which students completed a major scientific research project and wrote up their work in scientific report format. To evaluate student research reports, the instructor developed a rubric (Example 2 in Appendix D). The department instituted the annual meeting. At the meeting, the capstone teacher reported students' strengths and weaknesses, using rubric scores (Table 3.1).

<table>
<thead>
<tr>
<th>Trait</th>
<th>Average Scores for Class in Year 1</th>
<th>Average Scores for Class in Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>2.95</td>
<td>3.22</td>
</tr>
<tr>
<td>Introduction</td>
<td>3.18</td>
<td>3.64</td>
</tr>
<tr>
<td>Scientific Format</td>
<td>3.09</td>
<td>3.32</td>
</tr>
<tr>
<td>Methods and Materials</td>
<td>3.00</td>
<td>3.55</td>
</tr>
<tr>
<td>Non experimental information</td>
<td>3.18</td>
<td>3.50</td>
</tr>
<tr>
<td>Designing the Experiment</td>
<td>2.68</td>
<td>3.32</td>
</tr>
<tr>
<td>Defining Operationally</td>
<td>2.68</td>
<td>3.50</td>
</tr>
<tr>
<td>Controlling Variables</td>
<td>2.73</td>
<td>3.18</td>
</tr>
<tr>
<td>Collecting Data</td>
<td>2.86</td>
<td>3.36</td>
</tr>
<tr>
<td>Interpreting Data</td>
<td>2.90</td>
<td>3.59</td>
</tr>
<tr>
<td>Overall</td>
<td>2.93</td>
<td>3.42</td>
</tr>
</tbody>
</table>

The table allowed the department to see that, in both years, the lowest-scoring items were "Designing the Experiment" and "Controlling Variables." The department decided to focus on students' ability to design experiments, which would include the ability to control variables. A couple of faculty members formed an ad hoc committee to follow up. The committee examined the curriculum and

(continued)
talked with students in focus groups. They saw that
students spent many hours in labs and read many
scientific articles that represented good experimen-
tal design. But the students were not transferring
those experiences into the ability to design their
own experiments. Students too often approached
the labs as an exercise in following the recipe and
getting the right answer; they read scientific reports to
find the answers to teacher-generated questions,
not necessarily to learn how to design experiments
themselves. The committee recommended a series of
faculty brown bag lunches to discuss how to use the
current labs and scientific article assignments to help
students learn to design experiments.

So far, the case studies have assumed a departmental meeting where
everyone gathers face-to-face. But what if the department has many
adjuncts? What if its faculty live and work in different locations? The next
case study illustrates one way of addressing such problems.

Case Study 3: Variations of the Department Meeting

A department of English at a community college
wanted to assess their literature courses, which
students took as part of their associate’s degree.
The department had generated a list of learning
goals for these courses. The course instructors were
mostly adjuncts, teaching at all times of the day
and night, in several different locations; any sin-
gle meeting could gather only a few of them. The
department had to figure out how to gather assess-
ment information and hold a discussion among
these varied faculty. So they decided to hold small,
dispersed meetings, and then to bring together the
results of those meetings. The department assigned
its adjuncts and full-time faculty to small groups
of three to four people, according to the time they
could meet (for example, the Wednesday, October
12, 5 P.M. group). They asked the group to meet at a
location of their own choosing for one hour. In the
hour, the small group was to generate a list of two
strengths and two weaknesses they saw in student
work, evaluated against the written goals for the lit-
erature course. The group’s “recorder” then sent in
the list. A committee compiled these lists and made
recommendations for departmental action.

These three case studies show how the basic no-frills plan can be
adapted to many circumstances. The most important thing is to collect
some reasonable data and then to take action to improve student learning.
Here are more short case studies, showing the variety of measures and
actions that departments and programs may employ.

Six Examples of Departmental Assessment
Several shorter examples illustrate variations for a range of situations.

1. In a department of history, faculty members examined a sample of
senior student papers, and identified several common weaknesses in the
students’ ability to conduct historical inquiry and argument. They decided