Time Value of Money

Definitions:

- Future Value: value of an amount at a particular time in the future.
- Example: If a customer owes me $\$ 10,000$ to be paid at the end of 5 years, the future value of the amount is $\$ 10,000$.
- Present Value: value of that amount today.

Given an interest rate (r), and the number of periods to the payment (N), the following expression links the two values:

Future Value $=(1+r)^{\mathrm{N}} \times$ Present Value

Or

Present Value $=$ Future Value $\div(1+r)^{N}$
Or
Present Value $=$ Future Value $\times 1 /(1+r)^{N}$

If we use a 10% interest rate, then the $\$ 10,000$ to be received after 5 years would be worth:

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{FV} \times 1 /(1+\mathrm{r})^{\mathrm{N}} \\
& \mathrm{PV}=10,000 \times 1 /(1.10)^{5} \\
& \mathrm{PV}=\$ 10,000 \times 0.62092 \\
& \mathrm{PV}=\$ 6,209
\end{aligned}
$$

This means that using a 10% rate, the right to receive $\$ 10,000$ after 5 years is worth $\$ 6,209$ today. Alternatively, if you invest $\$ 6,209$ today at a 10% interest rate, you would have $\$ 10,000$ after 5 years.

Note that $1.10^{5}=1.61051$ is the future value factor for $\mathrm{n}=5$ and $r=10 \%$ from Table 1 on the inside of the front cover of the text.
$1 /(1.10)^{5}=1 / 1.61051=0.62092$ is the present value factor for $\mathrm{n}=5$ and $\mathrm{r}=10 \%$ from Table 3 on the inside of the back cover of the text.

Annuity

An annuity is a special case of a present value problem. An annuity occurs if there are equal payments to be made over equal intervals.

For example, assume that you have the right to receive payments of $\$ 2,000$ per year over the next 5 years. This is an annuity because the amount of each payment $(\$ 2,000)$ is equal and the period of time between each payment (one year) is equal.

Assume that we make this contract on January 1, 2001. The first payment will be made on December 31, 2001, the second on December 31, 2002, etc.

Therefore, we could form the following table:

\# of					
Payment					
periods				\quad FV	Payment Future
:---					

Note that 6.1051 is the future value factor for an annuity with $\mathrm{n}=5$ periods and a 10% interest rate. This factor can be found in Table 2 inside the front cover. Therefore, instead of forming the table, we can simply multiply the factor, 6.1051 times the payment $\$ 2,000$ to get the future value $\$ 12,210$.

We can do something similar with present value.

Payment Date	\# of periods until received	PV Factor	Payment Amount	Present Value
31-Dec-01	1	0.9091	2,000	1,818
31-Dec-02	2	0.8264	2,000	1,653
31-Dec-03	3	0.7513	2,000	1,503
31-Dec-04	4	0.6830	2,000	1,366
31-Dec-05	5	$\underline{0.6209}$	2,000	1,242
Total		$\underline{\underline{3.79079}}$		$\underline{\underline{7,582}}$

The present value factor for an annuity with $\mathrm{n}=5$ periods, and a 10% interest rate can be found in Table 4 inside the back cover. You can use the factor to find the present value by multiplying the factor, 3.79079 times the payment, $\$ 2,000$ to get the present value $\$ 7,582$.

Interpretation

If I deposited $\$ 2,000$ a year into an account at the end of each of the next 5 years and earned 10% interest on the deposits, at the end of 5 years I would have $\$ 12,210$.

Using a discount rate of 10%, I would pay $\$ 7,582$ for the right to receive payments of $\$ 2,000$ at the end of each of the next five years.

Present value concepts are very important in accounting because amounts are often recorded at present value.

Let's say that we made a sale to a customer and in exchange the customer agreed to pay us $\$ 10,000$ at the end of five years. Using the 10% interest rate, we would record the following entry:

Dr. Note receivable \$6,209
Cr. Sales Revenue \$6,209
The difference between the $\$ 10,000$ future value and the $\$ 6,209$ present value ($\$ 3,791$) is future interest we will collect on the note.

Therefore, at the end of the first year we would record: Dr. Note receivable $\$ 621$

Cr. Interest revenue $\$ 621$

Example

Mike Hampton is a pitcher for the Colorado Rockies who signed a six-year contract that includes a signing bonus of $\$ 19$ million. The $\$ 19$ million is not paid until the six-years of the contract expire. In addition, the $\$ 19$ million is spread one million a year over 19 years.
Present Value Factors for \$1

N	7%	8%	9%	10%	11%
1	0.93458	0.92593	0.91743	0.90909	0.90090
2	0.87344	0.85734	0.84168	0.82645	0.81162
3	0.81630	0.79383	0.77218	0.75131	0.73119
4	0.76290	0.73503	0.70843	0.68301	0.65873
5	0.71299	0.68058	0.64993	0.62092	0.59345
6	0.66634	0.63017	0.59627	0.56447	0.53464
7	0.62275	0.58349	0.54703	0.51316	0.48166
8	0.58201	0.54027	0.50187	0.46651	0.43393

Present Value Factors for an Annuity

N	7%	8%	9%	10%	11%
16	9.44665	8.85137	8.31256	7.82371	7.37916
17	9.76322	9.12164	8.54363	8.02155	7.54879
18	10.05909	9.37189	8.75563	8.20141	7.70162
19	10.33560	9.60360	8.95011	8.36492	7.83929
20	10.59401	9.81815	9.12855	8.51356	7.96333

Questions:

- Using a 10% discount rate what is the "value" of the bonus?
- If he were to negotiate the bonus to $\$ 1.5$ million per year, what would be the increase in the value of the bonus?
- If he were given a choice of receiving the current contract or receiving a bonus of $\$ 7$ million after 3 years, which contract should he take?
- Would his decision change if he used a lower interest rate, like 7% ?

