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0. Introduction.

The results in this paper were motivated by work of Serre [19] where
semisimplicity results for representations of arbitrary groups in positive char-
acteristic were established. A key ingredient in the arguments was the no-
tion of saturation where one embeds a unipotent element of prime order of
a simple algebraic group in a 1-dimensional unipotent subgroup. One of our
goals here is to show that saturation can be achieved rather generally and
to establish a uniqueness result for the resulting unipotent subgroups.

As a by product we show for a simple algebraic group in good charac-
teristic a unipotent element of prime order is contained in a particularly
nice subgroup of type A1 and that the Lie algebra of the ambient algebraic
group usually affords a tilting module for this subgroup. The tilting decom-
positions are applied to show that the centralizers of the unipotent element,
a corresponding 1-dimensional unipotent group, and its Lie algebra all co-
incide and are closely related to the centralizer of the A1 subgroup. We
also establish a convenient factorization of the centralizer of the unipotent
element. Results for finite groups of Lie type are also obtained.

Let G be a simple algebraic group over an algebraically closed field K
of finite characteristic p. Assume p is a good prime for G and let u ∈ G
be a unipotent element of order p. By a group of type A1 we mean a
closed subgroup of G isomorphic to SL2(K) or PSL2(K). Throughout A
will denote a group of type A1 and TA a maximal torus of A. We say that
A is good if the weights of TA on L(G) are at most 2p − 2. If A is chosen
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to contain u, then U < A will denote the unique 1-dimensional unipotent
subgroup of A containing u, and TA < A is chosen to normalize U .

We recall the following notion introduced by Serre. A subgroup X < G
is said to be G-completely reducible, G-cr for short, if for every parabolic
subgroup P of G containing X, there is a Levi subgroup of P containing X.

Our first result establishes existence and conjugacy of good A′
1s con-

taining unipotent elements of prime order. It further relates these to tilting
decompositions of the Lie algebra and the above notion of complete re-
ducibility.

Theorem 1. Let G be a simple algebraic group over an algebraically
closed field K of characteristic p, a good prime. Let u ∈ G be a unipotent
element of order p.

(i). There exists a good A1 containing u.
(ii). Any two good A′

1s containing u are conjugate by an element of
Ru(CG(u)).

(iii). If A is a good A1, then L(G)|A is a tilting module, unless G has type
An with p|n + 1. In the exceptional case, if G = SLn+1, then L(GLn+1)|A
is a tilting module.

(iv). If A is a good A1 containing u, then A is G-cr.

The construction of the good A′
1s yields further information for which

we refer the reader to Propositions 3.1 and 3.2. In particular, information is
obtained on labelled diagrams which link these subgroups to corresponding
groups in characteristic 0.

The next result is our main result on centralizers.

Theorem 2. Assume u ∈ G has order p and u ∈ A, a good A1. Let
U < A be a 1-dimensional unipotent group containing u.

(i). CG(u) = CG(U) = CG(L(U)).
(ii). CG(u) = QCG(A), a semidirect product, where Q = Ru(CG(u))

and CG(A) is reductive.
(iii). Q/U acts regularly on the family of good A′

1s containing u.

We note that (iii) is a generalization of a well known result for long root
elements.

One consequence of Theorems 1 and 2 is the following result on satura-
tion.

Theorem 3. Let u ∈ G have order p. There is a unique 1-dimensional
unipotent group U containing u such that U is contained in a good A1.
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Theorem 3 implies that there is a unique monomorphism φu : Ga → G
with image contained in a good A1 and satisfying φu(1) = u. It is convenient
to introduce the suggestive notation ut = φu(t). We note that if G is of
classical type and u = 1 + e in the action on the natural module, then it
follows from our results that ut = 1 + te + (t(t − 1)/2)e2 + · · · = (1 + e)t.
This also holds for arbitrary G in the adjoint action, provided p is sufficiently
large so that good A′

1s containing u have each composition factor restricted.

Finally, we consider the situation for finite groups of Lie type. Let σ be
a Frobenius morphism of G, so that Gσ = G(q) is a finite group of Lie type
over a field of size q, a power of p. If A is a σ invariant group of type A1,
then we set A(q) = Aσ.

Theorem 4. Let u ∈ G(q) have order p.
(i). There exists a good A1 containing u which is σ-stable.
(ii). Two σ-stable good A′

1s containing u are conjugate by an element
of G(q); in fact by an element of Op(CG(q)(u)).

(iii). Assume A = Aσ is a good A1. Then CG(A) = CG(A(q)) and
CG(q)(u) = QCG(q)(A(q)), a semidirect product, where Q = Op(CG(q)(u)).

(iv). Assume A is a σ-stable good A1, containing u and that q > 7 in
case G is of exceptional type. Then Aσ is Gσ-cr.

The organization of the paper is as follows. The first two sections are
preliminary covering material on tilting modules and unipotent classes, re-
spectively. The existence of good A′

1s preserving tilting decompositions of
L(G) is established in Section 3. Section 4 is concerned with a theory of
exponentiation in positive characteristic and Section 5 is a key section on
centralizers. Conjugacy results for good A′

1s are established in Section 6.
Theorems 1-3 are then established in Section 7, while Section 8 establishes
results on finite groups. In Section 9 we present examples showing that the
hypothesis of a good prime is necessary and the last section is devoted to
some directions for future work.

Acknowledgement. This paper grew out of a series of discussions
during fall 1998, while J-P. Serre was visiting the University of Oregon. The
author would like to thank Professor Serre for bringing to his attention issues
surrounding the saturation problem and for contributing Section 4 of this
paper.

1. Tilting Modules

Let X be a simple algebraic group over an algebraically closed field
K of positive characteristic p. A rational X-module V is a tilting module
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provided V has a filtration by Weyl modules and also a filtration by dual
Weyl modules.

General properties of tilting modules are given in the following lemma.

Lemma 1.1. (a). For each dominant weight λ there is an indecompos-
able tilting module TX(λ), unique up to isomorphism, with highest weight
λ.

(b). Any tilting module is the direct sum of modules of form TX(λ).
(c). A direct summand of a tilting module is again a tilting module.
(d). The tensor product of tilting modules is a tilting module.

Proof. (a) and (b) are in Theorem 1.1 of [9]. (d) is Proposition 1.2 of [9]
and (c) is Corollary 1.3 of [8].

We will be particularly interested in tilting modules for groups of type
A1, where high weights are represented by nonnegative integers. The mod-
ules of importance here have high weights at most 2p− 2.

We record the following notation. For c an integer let L(c) denote the
irreducible module for SL2(K) of highest weight c and W (c) the correspond-
ing Weyl module.

The following is a well-known result on extensions of simple modules for
SL2(K).

Lemma 1.2. ([1]) Let c, d ≤ 2p− 2.
(i). W (c) = L(c) if 0 ≤ c < p.
(ii). If c ≥ p, write c = r + p. Then W (c) has a unique maximal

submodule, M , such that M ∼= L(p− r − 2) and W (c)/M ∼= L(c).
(iii). Ext1(L(c), L(d)) = 0 unless c 	= d with c + d = 2p − 2, in which

case the dimension is 1.

The next result describes the tilting modules T (c) for 0 ≤ c ≤ 2p − 2,
for SL2(K). They are particularly simple and behave well with respect to
fixed points of unipotent elements.

Lemma 1.3. Assume c ≤ 2p − 2 and let T (c) be the tilting module of
high weight c. Then T (c) satisfies the following conditions:

(a). If 0 ≤ c < p, then T (c) = L(c) is irreducible and restricted.
(b). If p ≤ c ≤ 2p − 2, write c = r + p, where r ≤ p − 2. Then

T (c) = L(p− r−2)/L(r+p)/L(p− r−2), a uniserial, self-dual module with
simple factors as indicated.

(c). If p ≤ c ≤ 2p − 2, then dim(T (c)) = 2p and T (c) is projective for
A1(p).
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(d). CT (c)(u) = CT (c)(U) = CT (c)(L(U)). This space has dimension 1 or
2, according to whether or not c < p. In the latter case the fixed points lie
in the unique maximal submodule of T (c).

Proof. If c < p, then L(c) = W (c) ∼= W (c)∗ satisfies the definition of
a tilting module, so by uniqueness of the tilting module of high weight c,
T (c) = L(c). So (a) holds and (d) is clear.

Suppose c ≥ p and write c = r + p. We claim that T (c) is projective
for A1(p) < A1. Start with L(r + 1) ⊗ L(p − 1). This is projective for
A1(p) as L(p − 1) affords the Steinberg module. Viewed as a module for
A1 it is the tensor product of two restricted irreducible tilting modules. So
(1.1)(d) implies this is also a tilting module and, by (1.1)(c), the direct sum
of indecomposable tilting modules corresponding to certain high weights.
The highest weight is c, so T (c) must be a direct summand and is hence
projective for A1(p). Note that the high weight c occurs with multiplicity 1.

It follows from 1.2 that W (c) has socle L(p− r − 2) with quotient L(c).
Further, Ext1(L(c), L(p− r− 2)) has dimension 1 while Ext1(L(d), L(c)) =
Ext1(L(d), L(p−r−2)) = 0 for d < 2p−2, d 	∈ {c, p−r−2}. Hence, T (c) =
E⊕F , where E has all composition factors with high weights in {c, p−r−2}
and F has no such composition factor. As T (c) is indecomposable having
both a Weyl filtration and a dual Weyl filtration, we conclude that T (c) = E
with the structure indicated in (b). A dimension count yields (c).

As dim(T (c)) = 2p, A1(p)-projectivity implies dim(CT (c)(u)) = 2. Now
consider the fixed points of U on T (c). Clearly U fixes a weight vector
of weight c (the high weight), but also one of weight p − r − 2, as this
is the high weight of the socle. Since u also fixes these vectors we have
CT (c)(u) = CT (c)(U), a 2-space. Note that this 2-space lies in the unique
maximal submodule of T (c).

Finally, set L(U) = 〈e〉 and note that e acts on L(r + 1) ⊗ L(p − 1) as
the sum of Jordan blocks of length p, so this also holds for T (c). Of course,
e is trivial on CT (c)(U), which gives (d).

Lemma 1.4. Assume X = A1 and 0 ≤ r ≤ p − 2. Set c = r + p, d =
p− r − 2 and let V be a module with all composition factors isomorphic to
either L(c) or L(d). Then

V = T (c)r ⊕W (c)s ⊕ (W (c)∗)t ⊕ L(c)u ⊕ L(d)v.

Moreover, V is self-dual if and only if s = t.

Proof. First note that by 1.2

(i). Ext1(L(c), L(c)) = Ext1(L(d), L(d)) = 0 and
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(ii). Ext1(L(c), L(d)) has dimension 1,

where a nontrivial extension is realized by the Weyl module W (c). So from
(i) and the existence of T (c) we have

(iii). Ext1(W (c)∗, L(d)) has dimension 1,

a nontrivial extension realized by T (c). Further, (i) and (ii) imply

(iv). Ext1(L(d), T (c)) = 0.

Also, W (c) is universal among cyclic modules generated by weight vec-
tors of weight c. That is, if v ∈ V is a weight vector of weight c, then Xv is
an image of W (c), so that Xv ∼= W (c) or L(c). This and (ii) imply

(v). Ext1(L(c), T (c)) = 0.

The irreducible modules for X are self dual, so the hypothesis also applies
to V ∗. Let S be the sum of all spaces Xv ≤ V ∗ where v is a weight vector
of weight c. As above each of these cyclic modules is isomorphic to either
W (c) or to L(c) and hence S ∼= W (c)e⊕L(c)f . Also, V ∗/S ∼= L(d)l. Taking
duals there is a submodule R of V such that

V/R ∼= (W (c)∗)e ⊕ L(c)f

R ∼= L(d)l.

Let J be the preimage over R of the summand (W (c)∗)e. It follows from
(iii) and the unicity of T (c) that

J ∼= T (c)r ⊕ (W (c)∗)e−r ⊕ L(d)l−r.

Now (v) and the above implies that we can write

V ∼= T (c)r ⊕D,

where
D/J ∩D ∼= L(c)f

and
J ∩D ∼= (W (c)∗)e−r ⊕ L(d)l−r.

Now D is the sum of J ∩ D and all cyclic modules Xv for weight vectors
v ∈ D− (J ∩D) of weight c. The first assertion now follows using (ii). The
second statement is an easy consequence.

2. Unipotent Classes and Labelled Diagrams.
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In this section we present information on unipotent classes in simple
algebraic groups and labelled Dynkin diagrams. We begin with general
results, in particular results which link characteristic 0 and characteristic
p. Later we separate the discussions of unipotent elements in classical and
exceptional groups.

Let G be a simple algebraic group over an algebraically closed field K,
where charK = p, a good prime for G.

Conjugacy Classes

Let P = QL be a parabolic subgroup of G, with Q = Ru(P ) and L a
Levi subgroup. It is well known P has a dense orbit on Ru(P ) (see 5.2.3 of
[5]), called the Richardson orbit. We say that P is distinguished if dimL =
dim(Q/Q′). A complete list of distinguished parabolic subgroups of G is
recorded in Carter [5], 174-177.

If L is a Levi subgroup of G and PL′ a distinguished parabolic subgroup
of L′ we call the pair (L,PL′) a distinguished pair. To each distinguished
pair (L,PL′) we associate the unipotent class of G containing the Richardson
orbit of Ru(PL′). Conjugating the pair by an element of G does not alter
the resulting class, so the above map induces a map φ : D → U , where D is
the set of G-classes of distinguished pairs and U is the set of the unipotent
classes of G. Both D and U are finite sets.

Proposition 2.1 (Bala-Carter [4], Pommerening [17]). φ : D → U is a
bijection.

It follows from 2.1 that the classification of unipotent elements for groups
of good characteristic is the same as that in characteristic 0. This is because
the set of Levi subgroups and the distinguished parabolic subgroups within
these Levi subgroups is the same in either characteristic.

In fact, more is true. Using results of Mizuno and others, Lawther [10]
shows that one may choose representatives of the conjugacy classes of unipo-
tent elements as explicit products of root elements and these representatives
are the same in characteristic p and 0.

Special cases of 2.1 occur when (L,PL′) = (G,P ), with P a distinguished
parabolic subgroup of G. It is easily seen that the unipotent elements corre-
sponding to such pairs are precisely those for which CG(u) does not contain
a nontrivial torus. Such unipotent classes are called distinguished. That is,
u is distinguished if and only if CG(u)o is unipotent.

If u is an arbitrary unipotent element of G, let T be a maximal torus
of CG(u). Then L = CG(T ) is a Levi subgroup and u is a distinguished
unipotent element of L′. So u is in the Richardson orbit of a distinguished

7



parabolic subgroup of L′ and it follows from 2.1 that (L,PL′)G and uG

correspond under φ.

Another special case occurs when (L,PL′) = (G,B), where B is a Borel
subgroup. The resulting unipotent class is the class of regular unipotent
elements.

On occasion we will require one further piece of terminology. A unipotent
element is called semiregular if CG(u) contains no noncentral semisimple
element. These unipotent elements cannot be embedded in proper maximal
rank subgroups, hence form the base case of inductive arguments.

Labelled Diagrams

We next discuss labelled Dynkin diagrams, starting with the situation
in characteristic 0.

Let Ĝ be a simple algebraic group over a closed field of characteristic 0
of the same type as G and û ∈ Ĝ a unipotent element. Then û arises by
exponentiation from a nilpotent element ê of L(Ĝ) which can be embedded
in a subalgebra of type sl2, using the Jacobson-Morozov theorem. Exponen-
tiation yields a group Â ≤ Ĝ of type A1 containing û. Choose a maximal
torus TÂ of Â and embed this in a maximal torus TĜ of Ĝ. Each TĜ root
element of L(Ĝ) affords an integral weight for TÂ. A fundamental system of
root groups can be chosen such that the corresponding weights are all non-
negative. A result due to Dynkin (see 5.6.6 of [5]) shows these weights are
0, 1, 2 and when û is distinguished only the weights 0, 2 occur. The labelled
diagram is then the Dynkin diagram with corresponding labels, 0, 1, 2.

The labelled diagram described above is an invariant which determines
the unipotent class. To see why this might be true consider the fact that
by linearity the labelled diagram determines all weights of TÂ on L(Ĝ) and
hence determines the composition factors of Â on L(Ĝ). As the action is
completely reducible this, in turn, determines the Jordan decomposition of
û on L(Ĝ), which turns out to determine the class.

Now consider the situation for p a good prime. Testerman [20] shows
that a unipotent element u of order p can be embedded in a group A of
type A1 and constructs it explicitly for semiregular elements. Other types
of unipotent elements are contained in maximal rank subgroups so that in-
duction can be applied. In particular, if T is a maximal torus of CG(U), then
A < CG(T ), so that the construction respects the Bala-Carter classification
of 2.1. These turn out to be good A′

1s.
Given u and A, as in the preceding paragraph, we can obtain another la-

belled diagram following the procedure mentioned above, where we consider
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the weights of a maximal torus of A, choose an appropriate positive system,
etc. For exceptional groups it is shown in 6.3 of [12] that the nonnegative
labelled diagram is uniquely determined (up to a graph automorphism) by
the collection of weights. For classical groups the same holds. Indeed, here A
acts on the natural module as a direct sum of restricted irreducible modules.
Thus the weights of a maximal torus of A on this module are determined
by the Jordan form of u. At this point it is easy to argue as in 6.3 of [12] to
see that the labeling is uniquely determined, up to a graph automorphism.

Now let u ∈ G of order p and û ∈ Ĝ correspond via the Bala Carter
classification. From each of these elements we obtain a labelled Dynkin
diagram, using groups A, Â of type A1, where these labelled diagrams depend
only on the conjugacy class of the unipotent elements.

Proposition 2.2. ([11], Theorem 4.2 ). Let u ∈ G have order p and û
a corresponding element of Ĝ. The labelled Dynkin diagrams associated to
u and û are equal. Consequently, the weights of A on L(G) and those of Â
on L(Ĝ) coincide.

Centralizers

We will require information on centralizers of unipotent elements, start-
ing with information on component groups of centralizers. For classical re-
sults we refer to Springer-Steinberg [21], IV, 2.26 and for exceptional groups
we rely on work of Mizuno ([15], [16]), Shoji ([20]), and Chang ([6]).

Proposition 2.3. Assume G is of adjoint type. Then CG(u)/CG(u)o ∼=
CĜ(û)/CĜ(û)o ∼= (Z2)r, S3, S4, S5. If G is of exceptional type, then r = 1.

We next record a result on dimensions of centralizers. Of course, CG(u)
and L(CG(u)) have the same dimension. For good primes L(CG(u)) =
CL(G)(u) (Carter [5], 1.15), although the case G = An−1 with p|n must be ex-
cluded. In the exceptional case we can assert L(CGLn(K)(u)) = CL(GLn(K))(u).
This follows as in the proof of [21], III, 3.22, noting that GLn(K) is the set
of invertible elements in Mn(K) = L(GLn(K)).

For exceptional groups Lawther [10] gives the precise Jordan block struc-
ture for the action of u on L(G) and û on L(Ĝ). The number of Jordan blocks
is of course the dimension of the fixed point space. For classical groups the
reader is referred to [21], IV, 1.8, 2.25, and 2.28 for centralizer dimensions.
Combining these results with the observations of the previous paragraph we
have

Proposition 2.4. Assume that either G is simple but G 	= An with
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p|n+ 1 or that G = GLn. Let u ∈ G and û ∈ Ĝ correspond as above. Then

dim(CG(u)) = dim(CL(G)(u)) = dim(CL(Ĝ)(û)) = dim(CĜ(û)).

Elements of order p

It will be important to know when unipotent elements have order p. We
record the following result of Testerman covering the case of distinguished
elements. If P is a parabolic subgroup let cl(Ru(P )) denote the nilpotence
class of Ru(P ). Lemma 4 of [3] shows that cl(Ru(P )) can be expressed in
terms of heights of certain roots. Indeed, let Π = {α1, ..., αr} be a fundamen-
tal set of roots and write P = PJ , where J ⊂ Π. Notation is chosen such that
a Levi subgroup of P has J as fundamental set of roots. If δ =

∑
α∈Π mαα is

a root, write htJ(δ) =
∑

α∈Π−J mα. If αo denotes the root of highest height,
then htJ(αo) = cl(Ru(P )).

Proposition 2.5 Let P = PJ be a distinguished parabolic subgroup
of G and u a unipotent element in the dense orbit of P on Ru(P ). Then
|u| = min{pa : pa > htJ(αo) = cl(Ru(P ))}.

In the following we give separate discussions of unipotent elements for
the classical and exceptional groups. For classical groups we link the above
discussion with the Jordan decomposition of the underlying classical module.

Classical groups

Let V be a finite dimensional space over K, equipped with either the
0 form or a nondegenerate symmetric or skew-symmetric form. It will be
convenient to work with the full classical group of V , hence G = I(V ) =
GL(V ), Sp(V ), or O(V ).

If V is a space of dimension i, then GL(V ) contains a (regular) unipotent
element acting on V as a single Jordan block. Now suppose that i is even
and V has a nondegenerate symplectic form or that i is odd and V has
a nondegenerate orthogonal form. Then the corresponding classical group
Sp(V ) or O(V ) has such a unipotent element. Indeed, in a given system of
root subgroups, choose a nontrivial root element from each root group for
fundamental roots. The product will induce a single Jordan block on V in
a suitable basis.

Conjugacy classes of unipotent elements in GL(V ) are, of course, de-
termined by their Jordan decompositions. The same holds for orthogonal
and symplectic groups although there are restrictions on the types of Jordan
decompositions that can occur. Let Ji denote a Jordan block of size i, with
1’s on the diagonal.
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If u is a unipotent element of GL(V ), decompose V under the action of
u into Jordan blocks

V =
⊕

i

Vi =
⊕

i

(Ji)ri ,

so that each Vi is the sum of ri Jordan blocks of size i.

Proposition 2.6. ([21], IV, 2.19) (i) A conjugate of u is contained in
Sp(V ) if and only if ri is even whenever i is odd.

(ii). A conjugate of u is contained in O(V ) if and only if ri is even
whenever i is even.

(iii). Two unipotent elements of Sp(V ) or O(V ) are conjugate if and
only if they are conjugate in GL(V ).

We next discuss a method for constructing unipotent elements of Sp(V )
and SO(V ) which also provides information on centralizers. In the above
notation, write

V =
⊕

i

Vi

and for each i
Vi = Wi ⊗ Zri ,

a tensor product of spaces of dimensions i and ri, respectively.
Consider embeddings of classical groups of the form

I(Wi) ◦ I(Zri) < I(Vi),

where the product is a central product. When working in GL(V ) the con-
tainment is just GL(Wi) ◦ GL(Zri) < GL(Vi). When working in Sp(V ) or
O(V ) the groups I(Wi) and I(Zri) are always taken as orthogonal groups in
odd dimension and symplectic groups in even dimension. The embeddings
are obtained via the product form. For instance SO(Wi) ◦Sp(Zri) < Sp(Vi)
when i is odd and ri is even, and Sp(Wi) ◦ Sp(Zri) < SO(Vi) when i and ri
are both even. Notice that these embeddings are consistent with the parity
requirements of 2.6.

Choose a unipotent element vi ∈ I(Wi) acting on Wi as a single Jordan
block. Then vi acts homogeneously on Vi as the sum of ri copies of Ji.
Given a decomposition V =

⊕
i Vi as above for which i odd (resp. even) in

the symplectic (resp. orthogonal) case implies ri even, set u =
∏

ui, and
obtain a unipotent element in I(V ), where the form is chosen such that the
spaces Vi are pairwise orthogonal. It is clear from the construction that
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CI(V )(u) >
∏
i I(Zri). It follows from [21], IV, 2.26 that this product is the

reductive part of CI(V )(u).

Proposition 2.7. Let u =
∏

ui be as above.
(i). |u| = p if and only if p ≥ i for each i.
(ii). CI(V )(u) = QR, a semidirect product, where Q = Ru(CI(V )(u)) and

R =
∏
i I(Zri) is as follows:
GL(V ) : R =

∏
iGLri(K).

Sp(V ) : R =
∏
i odd Spri(K) ×

∏
i evenOri(K).

O(V ) : R =
∏
i even Spri(K) ×

∏
i oddOri(K).

The component group of CI(V )(u) is clear from 2.7. It is trivial for
G = GL(V ). For G = Sp(V ) or O(V ) it is the just the product of groups of
type Z2, one for each even i in Sp(V ) and each odd i in SO(V ).

It is easy to connect the analysis here with the earlier discussion of
distinguished unipotent elements in simple algebraic groups. We now take
G simple, G = SL(V ), Sp(V ), or SO(V ).

For SL(V ) only the regular class is distinguished. The distinguished
unipotent elements are described in G = Sp(V ) or G = SO(V ) as follows.
Write V = V1 ⊥ ... ⊥ Vr as a direct sum of nondegenerate spaces of different
dimensions, all of which have odd dimension in case V is an orthogonal group
and even dimension for G symplectic. Choose a regular unipotent element
in each of the corresponding classical groups. The product is a distinguished
unipotent element of G. Notice that this element has order p if and only if
p ≥ dim(Vi) for each i.

We can also determine the semiregular unipotents, where CG(u) contains
no nonidentity semisimple elements. It follows from 2.7 that in SL(V ), Sp(V ),
and SO(V ) for dim(V ) odd, there is only one semiregular class, the class
of regular elements (having a single Jordan block). However, for even di-
mensional orthogonal groups there are several semiregular classes and we
record standard notation for these. Write dim(V ) = 2n so that G = Dn

and for 0 ≤ r ≤ (n − 2)/2 consider a unipotent element u = Dn(ar) with
Jordan decomposition V = J2r+1 ⊥ J2n−2r−1. Then u ∈ Br×Bn−r−1 < Dn.
So Dn(a0) (notation usually just Dn) is a regular unipotent element of Dn,
lying in Bn−1. Notice that for each of the elements u = Dn(ar) there is a
noncentral involution in O(V ) centralizing u (inducing −1 on precisely one
of the Jordan blocks). But this element does not lie in SO(V ), so that u is
indeed semiregular in SO(V ).

Exceptional groups
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Assume G is a simple algebraic group of exceptional type and u a unipo-
tent element of G taken as in Lawther [10]. Let û ∈ Ĝ be the corresponding
unipotent element in characteristic 0. Carter [5], 401-407 has useful tables
which list the unipotent classes in Ĝ, and these tables include labelled di-
agrams, centralizer dimensions, and component groups of centralizers. In
view of of 2.1-2.4 this information applies equally to unipotent classes in G.

Proposition 2.2 was established for a particular choice of A. For unipo-
tent elements that are not semiregular, this subgroup was constructed within
certain maximal rank subgroups. We will require extra information regard-
ing maximal rank subgroups containing A.

We may take G to be adjoint. Fix a unipotent element, u ∈ G of order
p. If u is not distinguished let T be a maximal torus of CG(u). The group
A used for 2.2 was constructed in L = CG(T ), a Levi subgroup as in the
Bala-Carter classification of 2.1.

Now assume u is distinguished. Then 2.3 implies CG(u)/CG(u)o ∼=
1, Z2, S3, S4, or S5 (the last two cases occur for just one class in F4, E8, re-
spectively). The assumption that p is a good prime implies that p is greater
than any prime divisor of the component group and hence CG(u) = QS, a
semi-direct product, where Q = Ru(CG(u)) is unipotent and S is finite of
the indicated type.

If s ∈ S is any nonidentity semisimple element, then CG(s) is reductive
of maximal rank and contains u. The verification of 2.2 involved a particular
choice of s.

Let E < S with E ∼= 1, Z2, Z3, Z2 × Z2, (the Klein four group) or Z5,
respectively. Note that E corresponds to a normal subgroup of the com-
ponent group, unless the component group is S5. We will have occasion to
work with CG(E), a maximal rank subgroup containing u and for which u
is semiregular.

Proposition 2.8. If u is distinguished, then u ∈ A, where A is a good
A1 satisfying 2.2 and contained in CG(E).

Proof. In the regular case the result is obvious, so assume u is distin-
guished but not semiregular. The component group of CG(u) is typically Z2,
so CG(E) agrees with the maximal rank subgroup CG(s) used to establish
2.2. And in some of the cases where S = S3, s was taken as an element of
order 3, hence generating E. However, there are 4 cases where the maximal
rank group CG(s) used to establish 2.2 differs from CG(E). These are the
semiregular classes of types F4(a3), E7(a5), E8(b5), E8(b6), where notation is
in the tables of Carter [5].

For these cases the result can be easily verified by direct check and we
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will do so for the case of E7(a5). In the other cases, to conserve space we
refer to the tables of [11], which describe all A′

1s containing u and their
labelled diagrams, up to conjugacy, assuming that p is suitably large. The
required characteristic restriction is a consequence of 2.4.

So consider the case where u has type E7(a5) (the characteristic restric-
tion of [11] may fail to hold here), where E = Z3. Set D = CG(E). Since
u centralizes no nontrivial torus, D must be semisimple of maximal rank,
centralizing an element of order 3. A consideration of subsystems shows
that D = A2A5. Then u projects to a regular element in each factor and
we embed u in a group A of type A1 which induces an irreducible restricted
representation on the natural module for each factor. It is shown in 2.1 of
[12] that

L(G)|D = L(D) ⊕ (LA2(λ1) ⊗ LA5(λ2)) ⊕ (LA2(λ2) ⊗ LA5(λ4)).

From here it is easy to compute the weights of a maximal torus of A. Com-
paring with the weights obtained from the labelled diagram of the class, we
obtain equality.

3. Existence of good A′
1s and tilting decompositions

In this section we show that if G is a simple algebraic group with p a
good prime, then each unipotent element of order p is contained in a good
A1 and that the Lie algebra of G restricts to this A1 as a tilting module,
provided the Lie algebra is self-dual.

We first consider classical types. The isogeny type of G is unimportant
for the result to be established, so in the classical types it will be convenient
to take G = SL(V ), Sp(V ), or SO(V ). We also consider G = GL(V ), even
though this is not a simple group.

Proposition 3.1. Let u be a unipotent element of order p in G =
GL(V ), SL(V ), Sp(V ), or SO(V ). There is a closed connected subgroup A
containing u such that the following conditions hold

(i). A is a good A1 and, in the notation preceding 2.6, A ≤
∏
i I(Wi)

with irreducible restricted projection to each factor.
(ii). V |A is completely reducible with each composition factor restricted.
(iii). L(G)|A is a tilting module unless G = SLn, u has a Jordan block

on V of size p, and p|n.
(iv). The weights of A on L(G) determine the same labelled diagram as

u, so that A can be taken as the group of type A1 described in 2.2.

Proof. For the moment we will work within the full classical group
GL(V ), Sp(V ), or O(V ). Decompose V into Jordan blocks for u as in the
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discussion following 2.6 and for each i consider the corresponding embedding
of classical groups I(Wi)◦I(Zri) ≤ I(Vi). Then I(Wi) is one of the following
groups: GLi(K), Spi(K) (i even), or Oi(K) (i odd). As in the discussion
we may take u ∈

∏
i I(Wi), such that each projection is a regular unipotent

element.
The group SL2(K) has irreducible restricted representations of degrees

1, ..., p. For 0 ≤ c ≤ p − 1, the irreducible restricted representation, L(c)
has degree c + 1. This representation is self dual, symplectic for c odd and
orthogonal for c even.

It follows that for each i we may embed the projection of u to I(Wi) in
a subgroup of type A1 which acts irreducibly on Wi as L(i− 1). In this way
we have embedded u in a group A ≤

∏
i I(Wi) of type A1 which respects

the Jordan decomposition V |u and such that A ≤ G.
The argument for 2.2 in [11] was based on the Bala-Carter classification

of unipotent elements. It follows from (i) and 2.7 that A < CG(T ) where T is
a maximal torus of CG(u), so verification of (iv) reduces to the distinguished
case. For u distinguished, then the group used in [11] to establish 2.2 in the
classical cases is exactly as above.

Write V |A =
⊕

L(ci), a direct sum of restricted irreducible representa-
tions. Hence L(GL(V ))|A = (V ⊗ V ∗)|A =

∑
(L(ci) ⊗ L(cj)). For each i

and j, L(ci) and L(cj) are tilting modules, hence by Lemma (1.1)(d) so is
their tensor product. Moreover, ci + cj ≤ 2p − 2. This establishes (i)-(iii)
for G = GL(V ).

Now consider SL(V ). If L(SL(V )) is an A - direct summand of L(GL(V )),
then by Lemma (1.1)(c) it is also a tilting module for A. Otherwise, p|n, and
as L(SL(V )) has codimension 1 in L(GL(V )), (1.3)(b) implies that T (2p−2)
must be a direct summand of L(GL(V )). This forces ci = p− 1 for some i.
Thus (iii) holds, while (i) and (ii) are inherited from GL(V ).

Next consider symplectic and orthogonal groups. Here we are assuming
that p > 2, so V ⊗ V ∗ = ∧2(V ) ⊕ S2(V ). Therefore, the Lie algebras of
Sp(V ) and O(V ) are each a direct summand of V ⊗ V ∗ = L(GL(V )), hence
by Lemma 1.1(c) they are also tilting modules for A.

Remark. Let A be a good A1 containing u as in 3.1 and view A as the
image of SL2(K) with natural module having basis {x, y}. Let U be the
root group of A containing u and write u = U(1), corresponding to the 2×2
matrix with 1’s below the main diagonal and 0 above the main diagonal.
Now consider a restricted irreducible module for A, say of high weight c
which we can identify with the homogeneous polynomials of degree c. If we
write u = 1+e, it follows that U(t) acts as 1+te+(t(t−1)/2)e2+· · · = (1+e)t,
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thereby justifying the exponential notation U(t) = ut mentioned in the
introduction.

We now consider exceptional groups.

Proposition 3.2. Assume G is an exceptional group and u ∈ G is
a unipotent element of order p. There is a closed connected subgroup A
containing u such that the following conditions hold

(i). A is a good A1 with labelled diagram satisfying 2.2.
(ii). L(G)|A is a tilting module.

Proof. The first step is to establish the existence of A, a good A1 con-
taining u.

Choose u in one of the conjugacy classes given by 2.1. By 2.2 there is
a group A of type A1 affording the same labelled diagram as indicated in
p.401 - 407 in [5]. The labelled diagram determines the weights of a maximal
torus TA of A afforded by root vectors for fundamental roots. By linearity
this determines the weight on the root of highest height, which affords the
largest weight. It remains to verify that this weight is at most 2p− 2.

This is easy in the distinguished case. For if u is distinguished with
P = PJ the corresponding distinguished parabolic subgroup, then 2.5 gives
p > htJ(αo). The labelling of the Dynkin diagram is such that the label is
0 for elements of J and 2 for elements of Π − J . Hence, the highest weight
of TA on L(G) is precisely 2htJ(αo) ≤ 2(p− 1), as required.

Now suppose u is not distinguished, so that u ∈ A < L′, where L is a Levi
subgroup and L′ is specified in the tables of [5]. Moreover, u is distinguished
in L′. At this point a routine check yields the result. One simply computes
the largest weight on L(G) (afforded by αo) using the labelled diagram and
bounds on |u| as indicated in 2.5 and 2.7. The result also follows from
Theorem 1 of [10] (the proof of which involves a similar check) which gives
the largest Jordan block of û on L(Ĝ), thus the largest weight of Â on L(Ĝ).

It remains to show that L(G)|A is a tilting module. As usual we let Ĝ be
the corresponding exceptional group in characteristic 0 and û a unipotent
element in Ĝ corresponding to u. By 2.2 we can embed û in Â ∼= A1 so that
A and Â determine the same labelled diagram. Consequently they have
precisely the same weights on L(G), L(Ĝ), respectively.

Compare the restrictions L(G)|A and L(Ĝ)|Â. All weights are at most
2p − 2. Let c ≤ 2p − 2 be a nonnegative weight. Then LÂ(c) and WA(c)
have the precisely the same weights. If c ≤ p, then WA(c) = LA(c), so that
LÂ(c) and LA(c) have the same weights. On the other hand, if c > p, write
c = r + p. Then WA(c) = L(p− r − 2)/L(r + p).
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The weights determine the composition factors of L(Ĝ)|Â and L(G)|A.
So from the above remarks it is clear that each composition factor LÂ(c) in
the first restriction corresponds to either one composition factor LA(c) (if
c < p) or two composition factors LA(r+ p), LA(p− r− 2), (if c = r+ p), in
the second restriction.

For nonnegative integers c, d ≤ 2p− 2, 1.2(iii) shows Ext1(L(c), L(d)) =
0, unless {c, d} = {r + p, p − r − 2} for some 0 ≤ r ≤ p − 2. It follows
that there is a corresponding block decomposition of L(G)|A. Indeed, for
0 ≤ r ≤ p−2, there is a submodule V (r+p) < L(G) having all composition
factors of the form L(r+p), L(p−r−2) and having a complement involving
neither of these composition factors. Similarly if d < p is a nonnegative
integer not of the form p − r − 2 for some weight c = r + p, there is a
submodule V (d) which is completely reducible, homogeneous of type L(d),
and having a complement with no composition factors of this type. We then
have

L(G) =
⊕

0≤r≤p−2

V (r + p) ⊕
⊕

d

V (d).

There is a similar decomposition for L(Ĝ) under the action of Â. For 0 ≤
r ≤ p − 2, let V̂ (r + p) be the sum of all irreducible modules of L(Ĝ)|Â of
high weights r + p or p − r − 2. And if 0 ≤ d < p but d is not of the form
p− r − 2, let V̂ (d) be the sum of all submodules LÂ(d). We then have

L(Ĝ) =
⊕

0≤r≤p−2

V̂ (r + p) ⊕
⊕

d

V̂ (d).

The weights in corresponding summands of each expression coincide. In
particular, for fixed 0 ≤ r ≤ p − 2, the weights appearing in V (r + p) and
V̂ (r + p) are the same.

As p is a good prime, L(G) is self-dual, hence so is V (r + p). Therefore,
Lemma 1.4 implies

V (r+ p) = L(r+ p)i⊕L(p− r− 2)j ⊕W (r+ p)k⊕ (W (r+ p)∗)k⊕T (r+ p)l.

We also have
V̂ (r + p) = L(r + p)s ⊕ L(p− r − 2)t.

Comparing multiplicities of the weight p−r−2 in V̂ (r+p) and V (r+p) we
have s+t = j+k+k+2l. Now dimCV̂ (r+p)(û) = s+t, while dimCV (r+p)(u) =
2i+ j + 2k + 2k + 2l (see (1.3)(d) and its proof). The latter number is thus
greater than or equal to the former, with equality only if i = k = 0.
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Notice also that the summands V (d) and V̂ (d) for 0 ≤ d < p are each
homogenous of the same dimension, so that dimCV̂ (d)(û) = dimCV (d)(u).

By 2.4, the fixed point space of u on L(G) must have the same dimension
as that of û on L(Ĝ). Hence, equality must hold summand by summand
in the displayed decompositions. In the case of V (r + p), this shows that
V (r+p) = L(p−r−2)j⊕T (r+p)l, a tilting module. This gives the required
tilting decomposition for L(G).

4. Exponentiation

In this section we establish exponentiation results linking the unipotent
radical of a parabolic subgroup with its Lie algebra. This will be useful in
obtaining information on centralizers of distinguished unipotent elements.

Let X be a split semisimple group over Z, T its standard maximal torus
and Σ its root system.

Let Γ be a subset of Σ which is closed and for which Γ∩−Γ = ∅. Such a
set defines a subgroup scheme XΓ of X, which is a solvable group, containing
T , and of the form UΓT where UΓ is unipotent and generatd by the root
subgroups corresponding to Γ (see [7], p. 212).

Let uΓ denote the Lie algebra of UΓ. Then uΓ has a Z-basis of root
elements eα, for α ∈ Γ. On the other hand, UΓ can be written as the
product of the root subgroups Uα, α ∈ Γ, in any fixed order.

Now consider the same groups over Q, instead of over Z. We have
the exponential map exp : uΓ → UΓ, which is an isomorphism, viewing
uΓ as an algebraic group, via the Hausdorff formula. Define an integer
h(Γ) = cl(UΓ) + 1, where cl(Γ) denotes the nilpotence class of UΓ, over Q.

The argument in 2.2 of [19] yields the following result.

Proposition 4.1. Assume p ≥ h(Γ). The exponential isomorphism
uΓ → UΓ is defined over the local ring Z(p), and so is its inverse (the “loga-
rithm”).

A corollary of the proposition is that the power map morphism

UΓ ×Aff1 → UΓ, (x, t) → xt

is also defined over Z(p). We note that these maps and isomorphisms are
compatible with the action of XΓ on UΓ by conjugation:

exp(Ad(g)l) = g(exp(l))g−1,

where l and g are points of uΓ and XΓ. Similarly, gxtg−1 = (gxg−1)t, for
x ∈ U . This follows from the fact that such formulae are true over Q, hence
also over Z(p).
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Now pass to characteristic p > 0. Let k be a field of characteristic p
and X a semisimple group over k (not necessarily split), and R a connected
solvable subgroup of X containing a maximal torus T of X. Over suitable
extension of k, one may split T and R is then given by a subset Γ of the
corresponding root system as above. Moreover, Γ is essentially independent
of the choice of T , hence it makes sense to speak of h(Γ). Indeed if one splits
R as a semidirect product UT , then the nilpotence class of U is h(Γ) − 1,
except when the Dynkin diagram involves double bonds with p = 2 or triple
bonds with p ≤ 3. Let u be the Lie algebra of U , which is also of nilpotence
class h(Γ) − 1.

Proposition 4.2. Assume p ≥ h(Γ). There exists one and only one iso-
morphism of k-algebraic groups exp : u → U with the following properties:

(i). Its tangent map is the identity.
(ii). It is compatible with the action of R by conjugation.

Proof. (a). Existence, assuming k separably closed. Here, T is split and
the pair (X,R) comes from the pair (X,XΓ) in characteristic 0 by the base
change Z(p) → Fp → k. Proposition 4.1 yields the assertion here.

(b). Unicity, assuming k separably closed. Choose T , which is split. Let
eα, Uα be as before and let Tα be the connected component of the kernel
of α : T → Gm, a subtorus of T of codimension 1. If φ : u → U is any
isomorphism with properties (i) and (ii), then Tα centralizes keα, hence its
image under φ. This implies that φ(keα) = Uα. But there is only one
automorphism of Ga with tangent map the identity, namely the identity.
Hence φ maps teα to Uα(t). Thus φ and exp coincide on each line keα. As
these lines generate u, we see that φ and exp coincide.

(c). General case. Unicity follows from (b), while existence follows from
(a) and (b) by Galois descent.

As a corollary we again get a power map

U ×Aff1 → U, (x, t) → xt,

defined by exp(l)t = exp(tl)

We now consider unipotent radicals of parabolic subgroups. Let P be a
parabolic subgroup of X, and U = Ru(P ). It is well-known that NX(U) =
P , so that P is determined by U . If T is a maximal torus, then R = UT is
of the type considered in 4.2. There is a set Γ of roots as considered earlier
and we set h(P ) = h(Γ).

Proposition 4.3.. Assume p > cl(U). Then there is one and only one
isomorphism exp : u → U whose tangent map is the identity and which is
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compatible with P -conjugation and with conjugation by any automorphism
of X normalizing P .

Proof. Unicity. Choose a maximal torus T of P and put R = UT . Since
R is contained in P , any isomorphism φ : u → U satifying the conclusion of
the proposition also satisfies the conditions of Proposition 4.2 and hence is
unique.

Existence. As in the proof of Proposition 4.2 we may assume that k is
separably closed, hence that X is split and P is standard. The map exp
then comes by reduction mod p from characteristic 0, and its compatibility
with P -conjugation follows from the corresponding fact in characteristic 0,
where it is obvious.

The next result describes one parameter unipotent groups in U and
resembles the Steinberg tensor product theorem for irreducible representa-
tions.

Proposition 4.4. Assume p > cl(U) and let f : Ga → U be a one
parameter subgroup of U . Then there are commuting elements e0, e1, e2...
of L(U) with en = 0 for large n such that

f(t) = exp(e0t) · exp(e1t
p) · exp(e2t

p2) · · ·

Proof. Set u = L(U) as before. We proceed in a series of steps.
(i). If x, y ∈ L(U), then x, y commute in the group structure of u (given

by the Hausdorff formula) if and only they commute in the Lie algebra
structure.

To see this note that the group commutator has the form [x, y]+ higher
terms, and that [x, y] = 0 implies all the higher terms are 0. The converse
may be proved via an “inverse Hausdorff formula”, expressing [x, y] as the
group commutator times higher terms, where the higher terms are in the
descending central series of the group generated by x, y. The terms are all
0 if x, y commute.

(ii). Let f, f ′ be two polynomial maps of the affine line into u. Write
f(t) = Σaiti, f ′(t) = Σa′it

i, with ai, a
′
i ∈ u. Then f(t) and f ′(t′) commute for

every t, t′ (in every extension of k in case k is finite) if and only if [ai, a′j ] = 0
for every i, j.

To see this fix x ∈ U . Use (i) to see that x commutes with f(t) for all
t if and only if [x, ai] = 0 for all i. Now take x = f ′(t′), letting t′ vary, and
repeat the argument.

(iii). Let f(t) = Σaiti. Then f(t+ t′) = f(t)f(t′) for all t, t′, if and only
if [ai, aj ] = 0 for all i, j and ai = 0 except when i is a power of p.
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If f(t + t′) = f(t)f(t′), then f(t), f(t′) commute for all t, t′, so (ii) gives
[ai, aj ] = 0 for all i, j. Hence f takes values in an abelian subalgebra.
Choosing a basis we see that the coordinates of f are additive polynomials.
It is well known that such a polynomial is a linear combination of t, tp, tp

2
, · · ·.

The converse is clear.
The result follows from (iii), using exp : u → U .

We now apply the above to obtain information on centralizers. Let u be
a distinguished unipotent element of order p and A a good A1 containing
u, as given by 3.1 or 3.2. Let u ∈ UTA < A, where U is a 1-dimensional
unipotent group and TA a 1-dimensional torus normalizing U .

Then TA determines a labelling of the Dynkin diagram satisfying 2.2.
It follows from 2.2 that the corresponding parabolic subgroup P is distin-
guished (in characteristic 0 this follows from 5.7.4 of [5]). Moreover, u is in
the Richardson orbit of Q = Ru(P ), while L = CX(TA) is a Levi subgroup
of P .

It follows from 2.5 that Q has nilpotent class at most p − 1, hence p ≥
h(P ) and 4.3 applies.

Corollary 4.5. With notation as above, CP (u) = CP (U) = CP (L(U)).

Proof. Let f : Ga → U as in 4.4, so U(t) = exp(a0t)exp(a1t
p) · · · . Let

t(γ) ∈ TA. From the equation U(t)t(γ) = U(γ2t) and the P -equivariance of
exp, a computation shows each ai is a weight vector of TA of weight 2pi.
However, the high weight of TA on L(G) is at most 2p − 2. Hence, ai = 0
for all i > 0, showing that U = exp(〈a0〉).

So if 1 	= u′ ∈ U , then log(u′) = ca0 for some nonzero scalar c. Hence, the
P -equivariance of 4.3 yields CP (u′) = CP (ca0) = CP (a0) = CP (u), showing
CP (u) = CP (U).

Set L(U) = 〈e〉. Then

CP (u) = CP (U) ≤ CP (L(U)) = CP (e). (∗)

First assume X 	= An. Then 3.1 and 3.2 show that L(X)|A is a tilt-
ing module, so by 1.3(d) CL(X)(u) = CL(X)(e). Hence, dim(CX(u)) =
dim(CX(e)). By 5.2.2 of [5], CX(u)o = CP (u)o, so (∗) implies CX(u)o =
CX(e)o. Hence u and e are in the Richardson orbits of P on Q and L(Q),
respectively. As the Richardson orbits correspond under exp, we conclude
CP (u) = CP (e), completing the argument.

Finally, assume X = An. Here the only distinguished unipotents are reg-
ular. Now u (respectively e) lies in a unique Borel subgroup (respectively,
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subalgebra), namely P (respectively, L(P )). So the centralizer in X is con-
tained in P and is Z(X) times a unipotent group of dimension n. Hence the
result follows from (∗).

Remark: The proof of (4.5) also shows that the group P in the statement
can be replaced by NAut(X)(P ).

5. Centralizers.

Let G be a simple algebraic group over K, an algebraically closed field
of characteristic p, a good prime. Let u be a unipotent element of order p, a
good prime for G, and let A be a good A1 containing u, as indicated in 3.1
or 3.2. Embed u in a Borel subgroup UTA < A. The results in this section
compare the centralizers in G of u, U, L(U), and A.

On occasion it will be convenient to replace G by its simply connected
cover, G̃. The following lemma will be useful in this regard.

Lemma 5.1. Let φ : G̃ → G be the natural surjection.
(i). dφ(Ad(g̃)(ẽ)) = Ad(φ(g̃))(dφ(ẽ)), for all g̃ ∈ G̃.
(ii). If ẽ ∈ L(G̃) is nilpotent and dφ(ẽ) = e, then CG(e) = φ(CG̃(ẽ)).

Proof. (i). Fix f ∈ K[G]. Regarding L(G) as the tangent space at the
identity we have

dφ(Ad(g̃)(ẽ))(f) = Ad(g̃)(ẽ))(f ◦ φ) = ẽ(f ◦ φ ◦ int(g̃)).

On the other hand,

Ad(φ(g̃)(dφ(ẽ))(f) = dφ(ẽ))(f ◦ int(φ(g̃))) = ẽ(f ◦ int(φ(g̃)) ◦ φ).

So it suffices to show φ ◦ int(g̃) = int(φ(g̃)) ◦ φ, which is clear.
(ii). As φ is surjective we have CG(e) = {φ(g̃) : Ad(φ(g̃))(e) = e}. So (i)

and the equality e = dφ(ẽ) yield

CG(e) = {φ(g̃) : dφ(Ad(g̃)(ẽ)) = dφ(ẽ)} = {φ(g̃) : Ad(g̃)(ẽ) = ẽ},

the last equality holding as dφ is an isomorphism when restricted to the
nilpotent variety. It follows that CG(e) = φ(CG̃(ẽ)).

Lemma 5.2. Assume G is not of type An with p|n + 1. If T is a
maximal torus of CG(u), then CG(T )′ = CG(L(T ))′. The same result holds
for GLn(K).

Proof. We first establish the result for G. If T = 1, then the assertion
is clear, so assume T > 1. The centralizer of a torus is a Levi subgroup so
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D = CG(T )′ is the semisimple part of a Levi subgroup. As u ∈ D and T is
a maximal torus of CG(u), T is also a maximal torus of CG(D).

Let TG denote a maximal torus of DT . By the above, TG is a maximal
torus of G. Certainly CG(T ) ≤ CG(L(T )), so if the assertion is false there
is a root β ∈ Σ(G)−Σ(D) such that L(T ) centralizes the TG-root subgroup
corresponding to β. Let Π(G) − Π(D) = {β1, ..., βr}, so that dim(T ) = r.
Write β = α + Σciβi, where α is in the linear span of Σ(D). Choose i such
that ci 	= 0.

Since p is a good prime and since we have excluded the case of An with
p|n+1, we have Z(L(G)) = 0. Hence, the annihilator in L(T ) of any subset
of {β1, ..., βr} has codimension equal to the size of the subset. In particular
there is an element l ∈ L(T ) such that βj(l) = 0 for each j 	= i and βi(l) = 1.
But then β(l) = ci. As p is good this is nonzero, contradicting the choice of
β.

Finally, assume G = GLn. Letting Z denote the group of scalars, we
have T ≥ Z. The same argument works, although here Z(L(G)) = L(Z)
and dim(T ) = r + 1.

Lemma 5.3. CG(u)o = CG(U)o = CG(L(U))o.

Proof. By 5.1 we may assume G is simply connected. Also, replace G =
SLn with GLn, noting that CSLn(u)o = (SLn ∩ CGLn(u)o)o, and similarly
for the other centralizers.

Then 3.1 and 3.2 show that L(G)|A is a tilting module, so that 1.3(d)
implies

CL(G)(u) = CL(G)(U) = CL(G)(e), (∗)
where L(U) = 〈e〉.

We have L(CG(u)) ≤ CL(G)(u) and L(CG(e)) ≤ CL(G)(e). Since p is a
good prime, 2.4 (and a version of this for e) imply L(CG(u)) = CL(G)(u) and
CL(G)(e) = L(CG(e)), so we conclude from (∗) that CG(u) and CG(e) have
the same dimension. As CG(U) ≤ CG(e), it will suffice to show CG(u)o =
CG(U)o.

If u is distinguished, then 5.2.2 of [5] gives CG(U)o ≤ CG(u)o ≤ P , where
P is the corresponding distinguished parabolic subgroup. Here the result
follows from 4.5.

Suppose u is not distinguished and fix a maximal torus T of CG(u). We
may choose A ≤ CG(T ) (see the comments preceding 2.2). Let g ∈ CG(u),
so that u ∈ Ug. From the above and (∗) applied to Ug we have L(CG(u)) =
CL(G)(u) = CL(G)(Ug), so that

Ug ≤ CG(L(CG(u)) ≤ CG(L(T )) (∗∗)
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Let D = CG(T )′. Lemma 5.2 implies CG(T )′ = CG(L(T ))′, hence (∗∗)
gives Ug ≤ CG(L(T ))′ = CG(T )′ for all g ∈ CG(u). Thus U ≤ CG(T x) for
all x ∈ CG(u). Set R = 〈TCG(u)〉, the normal closure of T in CG(u). Then
U centralizes R. A Frattini argument shows that CG(u)o = RCCG(u)o(T ) =
RCD(u)o. Now u is distinguished in D, so from the distinguished case we
have CD(u)o = CD(U)o. Hence CG(u)o = CG(U)o, completing the proof of
the lemma.

We will require the following lemma for distinguished unipotent ele-
ments.

Lemma 5.4. Assume u ∈ G is a distinguished unipotent element of
order p and let A be the good A1 containing u as described in 3.1 and 3.2.
Then CG(u) = CG(u)oCG(A).

Proof. First assume G is of classical type, where we may assume G =
SL(V ), Sp(V ), or SO(V ). Then G ≤ I(V ) = GL(V ), Sp(V ), O(V ), respec-
tively. By 2.7 we have CI(V )(u) = QR, where Q = Ru(CI(V )(u)) ≤ CG(u)o

and R =
∏
i I(Zri). By 3.1(i), A ≤

∏
i I(Wi). The groups I(Wi) and I(Zrj )

commute pairwise, so CI(V )(u) = QCI(V )(A). Intersect with G to get the
assertion.

Next suppose G is an exceptional group. Here we assume G is of ad-
joint type. By 2.3 CG(u) = QS, where Q = Ru(CG(u)) = CG(u)o and
S = Z2, S3, S4, or S5. Also, by 2.8 we may take A < CG(E), where
E = 1, Z2, Z3,K4, or Z5, respectively.

If S = 1 or Z2, the assertion is obvious as E = S. Suppose S = S3 so that
E = Z3. Involutions of S inverting E induce graph automorphisms of CG(E)
and it will suffice to show that A can be constructed within the centralizer of
some graph automorphism. First note that as u centralizes no torus, CG(E)
is semisimple with center of order 3. A check of subsystems shows that with
the exception of the case G = E8 and CG(E) = A2E6, CG(E) is a product of
groups of type Ar with 3|r+1. In these cases A projects to an irreducible A1

in each simple factor and hence the projection is contained in an appropriate
symplectic or orthogonal group and so centralizes a graph automorphism.
In the exceptional case A < B1F4 or B1C4, depending on the class of u,
(this follows from Testerman’s construction in [22]. Alternatively one can
use Table 3 of [11]). Since F4 and C4 each centralize a graph automorphism
of E6, the result holds in this case as well.

Next assume S = S4, which occurs only in F4. We have CG(E) semisim-
ple of maximal rank and it admits the action of S3 = S/E. It follows that
CG(E) = D4 (simply connected) with S/E inducing the full group of graph
automorphisms. The discussion of section 2 shows that D4 has two classes
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of distinguished unipotent elements contained in subgroups B3 and B2B1.
But in F4, B3 < B4, so that the corresponding unipotent element centralizes
a torus. Hence, u ∈ B2B1 and a direct check shows that the corresponding
good A1 has the correct weights on L(G) and hence the correct labelled dia-
gram (alternatively use Table 2 of [11]). There exists a triality morphism of
D4 = CG(E) with centralizer A2 (irreducible action in 8-dimensions). The
SO3 subgroup of this A2 has the proper embedding in a B2B1 subgroup.
Thus we may choose A in such an A2 centralized by an involutory graph
automorphism of A2 and hence CG(A) ≥ S4, as required.

Finally assume S ∼= S5. This occurs only in E8 where CG(E) = A4A4.
Here A projects to an irreducible A1 in each factor. It is shown on p.365 of
[13] that A centralizes S5, so this completes the proof.

We are now in position to establish

Proposition 5.5. Let u be a unipotent element of order p and set
Q = Ru(CG(u)). There exists a good A1, say A, containing u such that A
satisfies the conditions of 3.1 and 3.2 and satisfying

CG(u) = CG(U) = CG(L(U)) = QCG(A).

Proof. By 5.1 we may take G simply connected. Lemma 5.3 gives CG(u)o =
CG(U)o = CG(L(U))o. Also Q = Ru(CG(u)) ≤ CG(u)o = CG(U)o.

We first settle the case where u is distinguished, where Q = CG(u)o.
Lemma 5.4 gives CG(u) = QCG(A), so that CG(u) = CG(U). To complete
the distinguished case we must show CG(u) = CG(e), where L(U) = 〈e〉.
From what has been established so far we have CG(u) = CG(U) ≤ CG(e)
and CG(u)o = CG(e)o.

By using a Springer map (see [21], III, 3.12) we see that CG(e) = CG(v)
for some unipotent element v ∈ G. Then CG(u)o = CG(v)o. Now 5.2.2 of [5]
shows that CG(u)o < P , where P is a distinguished parabolic corresponding
to u. So a dimension argument shows that both u, v are in the dense orbit
of P on Ru(P ), (note that III, 3.15 of [21] gives v ∈ CG(v)o < P ). Then u, v
are conjugate in P , so that the component groups of their centralizers have
the same order. But then CG(u) = CG(e), as required.

Now consider unipotent elements of order p which are not distinguished.
For this part of the argument it will be convenient to replace G = SLn by
GLn. We do this so as to apply 5.2 at some point.

As CG(u)o = CG(U)o, this group is TA-invariant. We will show that TA
centralizes CG(u)o/Q = R.

Fix a maximal torus, T , of CG(u). It follows from 3.1, 3.2 and the
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discussion prior to 2.2, that we may take A ≤ CG(T ). Also, CG(T ) = DT ,
with D semisimple, so A ≤ D. Now CG(u) ∩NG(T ) acts on D.

We will apply 6.1, to follow, the proof of which uses only results from
sections 2 and 3. This result establishes conjugacy of good A′

1s containing
a given unipotent element for groups of classical type. Note that D has at
most one simple factor of exceptional type and only exceptional factors of
type E6 admit outer automorphisms. Further, the proof of 5.4 showed that
good A′

1s in E6 containing distinguished unipotent elements can be chosen
to centralize a graph automorphism.

It follows from the above paragraph that CG(u) ∩NG(T ) ≤ D(NG(T ) ∩
NG(A)) = D(NG(T ) ∩ CG(A)). Hence,

CG(u) ∩NG(T ) ≤ D(NG(T ) ∩ CG(A)). (1)

(1) immediately implies

CG(u) ∩NG(T ) ≤ D(NG(T ) ∩ CG(TA)) (2)

and intersecting the right side of (1) with CG(u) gives

CG(u) ∩NG(T ) ≤ CD(u)CNG(T )(A). (3)

Set E = [NG(T ) ∩ CG(u)o, TA]. Then (2) implies E ≤ D ∩ CG(u)o.
However, E is connected and u is distinguished in D, so E ≤CD(u)o, a
unipotent group. But CD(u)o ≤ CG(u)o ∩ CG(T ) ≤ QT , so

[NG(T ) ∩ CG(u)o, TA] ≤ Q. (4)

Now TA acts on R = CG(u)o/Q and by (4) it centralizes a maximal torus
and corresponding Weyl group. This is only possible if [TA, R] = 1, so that
QTA = CG(u)oTA. A Frattini argument implies

CG(u)o = Q(CG(TA) ∩ CG(u)o). (5)

Fix a maximal torus T̃ of CG(TA) ∩ CG(u)o. Then L(T̃ ) ≤ CL(G)(TA) ∩
CL(G)(u). However, from the tilting decomposition of L(G)|A it is clear that
CL(G)(TA) ∩ CL(G)(u) = CL(G)(A). Hence, A centralizes L(T̃ ). However,
T̃ is a conjugate of T and so 5.2 gives CG(L(T̃ ))′ = CG(T̃ )′. Therefore,
T̃ ≤ CG(A). It follows from (5) that

CG(u)o = QCG(A)o. (6)

26



A Frattini argument gives CG(u) = CG(u)o(CG(u)∩NG(T )), so from (3)
we have CG(u) = CG(u)oCD(u)CNG(T )(A). Also, u is distinguished in D,
so from the distinguished case, CD(u) = CD(u)oCD(A). Hence, CG(u) =
CG(u)oCG(A) and so (6) gives CG(u) = QCG(A). At the start of the proof
we showed Q ≤ CG(U), so

CG(u) = CG(U) = QCG(A). (7)

It remains to show CG(u) = CG(e), when u is not distinguished. By 5.3,
CG(e)o = CG(u)o, so a Frattini argument gives

CG(e) = CG(u)o(CG(e) ∩NG(T )). (8)

Now u is distinguished in D = NG(T ). We will apply 4.5, allowing for auto-
morphisms (see the remark following 4.5), to obtain CNG(T )(e) = CNG(T )(u),
which together with (8) yields the result. However, in order to apply 4.5
it is first necessary to show that CNG(T )(e) normalizes the distinguished
parabolic P of D described prior to 4.5.

Let s ∈ CNG(T )(e). Then e is in the Richardson orbit of L(Ru(P s)). The
classes of distinguished parabolics of D are preserved under conjugation by
s (see [5], pp.174-177), so P s = P d for some d ∈ D and we may adjust
d if necessary so that d ∈ CD(e). However, from the distinguished case,
CD(e) = CD(u) = Ru(CG(u))CD(A). Now, Ru(CD(u)) = CD(u)o ≤ Ru(P )
(see 5.2.2 of [5]), while CD(A) ≤ CD(TA), which is a Levi subgroup of P .
Hence, d ∈ CD(e) ≤ P , so P s = P d = P , as required.

This completes the proof of 5.5.

6. Conjugacy of good A′
1s

In this section we show that there is just one conjugacy class of good
A′

1s containing a given unipotent element of order p. We also verify that
good A′

1s are G-cr.
We begin with the groups of classical type, where it is convenient to

work in G = SL(V ), Sp(V ), or SO(V ).

Proposition 6.1. Assume G is one of the above classical groups and
u ∈ G has order p.

(i). Any two good A′
1s containing u are conjugate by an element of

CG(u).
(ii). If A is a good A1 containing u, then A is G-cr.

Proof. Let A be the good A1 as described in the proof of 3.1.
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(i). It will suffice to show G-conjugacy, since we can then adjust by an
element of a good A1 to get conjugacy within CG(u). Let J be another good
A1 containing u

First assume G = SL(V ) and let c be the highest weight among compo-
sition factors of J on V . Then 2c is a weight of L(G). Thus 2c ≤ 2p − 2,
showing that c ≤ p − 1. Hence all composition factors of J on V are re-
stricted and V |J is completely reducible. The composition factors of J on
V correspond to Jordan blocks of u, so V |A and V |J have the same decom-
position into irreducibles, and thus A and J are conjugate under the action
of G.

From now on assume G = SO(V ) or Sp(V ). We first claim that all com-
position factors of J on V are restricted. As above, this is clear for Sp(V ),
since L(G) = S2(V ). But for SO(V ), where L(G) =

∧2(V ), it is conceivable
that J has a composition factor on V of high weight p. The corresponding
irreducible module, L(p) = L(1)p, is symplectic, not orthogonal, so if this
occurs, then there must be two such composition factors and hence 2p will
be a weight of L(G), violating the weight hypothesis. So the claim holds
and as before, A and J have similar actions on V .

In the remainder of the proof we will show (this requires p > 2) that
any two A1 subgroups in G are conjugate, provided they have the same,
restricted, composition factors. In the orthogonal case we work at first in
the full orthogonal group, O(V ).

Decompose V into homogeneous components under the action of both
A and J . All composition factors are self dual, so this is an orthogonal
decomposition. By Witt’s theorem we can reduce to the case where V
is homogeneous under the action of both groups, with irreducibles of the
same high weight. Say the dimension of the irreducible summands is n and
dim(V ) = sn. Write s = 2t or 2t + 1.

If the action is irreducible, the assertion is quite easy. The groups are
conjugate within GL(V ) and stabilize a unique (up to scalars) nondegenerate
form, so the conjugating element preserves the form.

In the reducible case decompose the space for each A1 into an orthogonal
sum, of t spaces of dimension 2n (each the sum of two irreducibles) and, if
s is odd, one irreducible of dimension n. Then from Witt’s theorem and
induction one reduces to the case where dim(V ) = 2n.

So both A and J stabilize a pair of n-spaces, with irreducible action on
each. Moreover, one can assume the n-spaces are either both nondegenerate
or both totally isotropic. In the nondegenerate case n must be odd for the
orthogonal case and even for the symplectic case.

For n odd, SO2n > SOn ◦ SO2 and for n even Sp2n > Spn ◦ SO2, as in
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the discussion preceding 2.7. This yields the existence of A′
1s of the correct

type preserving both singular and nondegenerate decompositions. It follows
from Witt’s theorem that both A and J preserve a singular decomposition.
Given any A1 preserving such a singular decomposition, one can define a
torus inducing scalars on each summand. The A1 is then contained in the
centralizer of this torus, which is a group of type GLn. Still another ap-
plication of Witt’s theorem shows that any two such tori are conjugate in
O(V ) or Sp(V ), respectively. Conjugacy now follows from the conjugacy of
GLn’s and the unicity within GLn.

However, in the orthogonal case, conjugacy has so far been established
only within the full orthogonal group and we now correct this. Assume
G = SO(V ) and Ag = J with g ∈ O(V ). Adjusting by an element of A we
may assume g ∈ C(u). As in the remarks following 2.6 write V |A =

⊕
Vi,

where each Vi is a sum of irreducible modules of dimension i and for each i
and write Vi = Wi⊗Zri , with dim(Wi) = i. There are containments O(Vi) ≥
I(Wi) ◦ I(Zri) and 3.1(i) shows that A <

∏
i I(Wi). Hence, CO(V )(A) ≥

R =
∏
i I(Zri). Therefore, 2.7 implies g = rq, where r ∈ R and q ∈ Q =

Ru(CI(V )(u)). Then J = Arq = Aq. As O(V )/SO(V ) ∼= Z2, Q ≤ SO(V ),
establishing G-conjugacy.

(ii). By (i) we may assume the good A1 is A, as described in 3.1. In
particular, V |A is completely reducible. Suppose A < P , a parabolic sub-
group. Then P is the stabilizer of a flag of singular spaces and by refinement
we may assume that A is irreducible on successive quotients. Inductively,
it will suffice to establish the result when P is the stabilizer of a singular
space, E, irreducible under the action of A.

At this point a description of Levi factors implies that we need only
verify that there is a decomposition of V into A-invariant subspaces of the
form V = E ⊕W (if G = SL(V )) or V = E ⊕ F ⊥ W , with F singular (if
G = Sp(V ) or SO(V )).

For G = SL(V ) the requirement is immediate from complete reducibility.
For the other types, first write E⊥ = E ⊕ W for some subspace W and
then choose an irreducible F such that V = (E ⊕ F ) ⊕ W . At this point
the conjugacy from (i) applied to I(E ⊕ F ), shows that A leaves invariant
precisely two maximal singular spaces, E and a complement and that A is
contained in the appropriate Levi subgroup.

The following result establishes conjugacy for exceptional groups.

Proposition 6.2. Let G be a simple exceptional group and u ∈ G of
order p.

(i). Any two good A′
1s containing u are conjugate by an element of
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CG(u).
(ii). If A is a good A1 containing u, then A is G-cr.

Proof. Assume G is of exceptional type. Let A be the good A1 as
indicated in Proposition 3.2 and suppose J is another good A1 containing
u. To establish (i) it will suffice to show that A and J are conjugate in G.
In the course of the proof we will also establish (ii).

First suppose J < CG(s), where s is a noncentral semisimple element
of G. Then s ∈ CG(u). By 5.5, replacing s by a CG(u) conjugate we may
assume A, J ≤ CG(s). The result now follows by induction, since both A
and J are good within the reductive group CG(s).

Next assume that J is contained in a parabolic subgroup P of G. Write
P = QL, with Q = Ru(P ) and L a Levi factor. Then QJ = QR where R
is a good A1 of L, with respect to some unipotent element, say v, of order
p. As R centralizes the central torus of L, the preceding paragraph shows
that, R is uniquely determined, up to CG(v) conjugacy. Indeed, we can take
R to be the good A1 as given in 3.1 or 3.2. In particular, R has a tilting
decomposition on L(G).

It follows from [3] that Q has a filtration by normal subgroups of P ,
such that successive quotients afford modules for L. Indeed, these quotients
are each isomorphic to weight spaces of Z(L)o. Therefore R has a tilting
decomposition on successive quotients in the filtration. Hence, the same
holds for J . It follows (see (1.2)(iii) and (iv) in the proof of 1.4) that if V
is any one of the quotients, then H1(J, V ) = 0. Using this repeatedly we
conclude that J is conjugate to R. But then J centralizes a conjugate of
the central torus of L, so the assertion follows from the previous paragraph.
Note that we have also established (ii).

Now assume that J is contained in no proper parabolic subgroup and
does not centralize a noncentral semisimple element. In particular, CG(J) =
Z(G) and J induces an adjoint group on L(G). It follows from 1.3 of [18]
that CL(G)(J) = 0. As J is a good A1 this implies that CL(G)(L(J)) = 0,
which of course implies that CG(L(J)) is finite. Hence, NG(L(J))o = J.

In the previous paragraph we verified the hypotheses of Theorem 2 of
[18], except that the theorem requires a characteristic restriction slightly
stronger than p a good prime.

Assume for the moment that this characteristic requirement also holds.
Then Theorem 2 of [18] shows that either J is one of the maximal A′

1s
described in [18] or is in the list on pp.65-66 of [18]. In the first case the
A′

1s are unique up to conjugacy in G and are just those constructed by
Testerman, containing semiregular unipotent elements. In the latter situa-
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tion, with three exceptions J is shown to be in a maximal rank subgroup,
hence centralizes a semisimple element, contradicting the above. In the
exceptional cases, J is contained in a maximal subgroup M of G, where
(M,G) = (F4, E6), (C4, E6), or (A1F4, E7), and u is a regular unipotent in
M . There are several ways to complete the proof, the fastest being to apply
the results of [11], where all classes of A′

1s containing a given unipotent el-
ement are determined. In all but the (A1F4, E7) case, it is immediate from
the tables in [11] that there is a unique class of A′

1s containing u. In the lat-
ter case there are several (corresponding to field twists on one of the simple
factors of M), but only one class of good A′

1s. Hence A and J are conjugate
in G.

What remains are those situations where the prime restriction of Theo-
rem 2 of [11] does not hold. These cases are as follows: (G, p) = (E8, 7), (E7, 5
or 7), (E6, 5). Using what has already been established, we can argue exactly
as in the proof of Lemma 2.3 of [18] to show that J determines a labelling
of the Dynkin diagram by 0’s and 2’s.

We now argue that J has a fixed point on L(G), thereby obtaining
a contradiction. The computer program described in [11] calculates the
composition factors of J on L(G), given the labelled diagram. This is quite
easy, since the labelling determines all weights and it is just necessary to
sort them into weights of irreducibles. The program determines that in
each case there are more composition factors of high weight 0 then weight
2p − 2. Now 1.2(c) shows that for 0 ≤ c < 2p − 2, Ext1(L(0), L(c)) = 0,
while Ext1(L(0), L(2p− 2)) has dimension 1. Using the fact that L(G) is a
self-dual module we obtain a fixed point. This completes the proof.

7. Theorems 1-3

We can now establish the main results stated in the introduction. To a
large extent this is just a matter of combining results established in previous
sections.

As before, G is a simple algebraic group over an algebraically closed field
of characteristic p, a good prime for G. Let u ∈ G be a unipotent element
of order p.

Proof of Theorem 1. The existence of good A′
1s containing u and

the tilting decompositions are established in 3.1 and 3.2. Then 6.1(i) and
6.2(i) show that any two good A′

1s containing u are conjugate within CG(u).
Therefore, if A is any good A1 containing u, then 5.5 shows that CG(u) =
QCG(A), where Q = Ru(CG(u)). It follows that Q is transitive on the class
of good A′

1s containing u. It remains to show that good A′
1s containing u
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are G-cr. This was established in 6.1(ii) for classical groups and 6.2(ii) for
exceptional groups.

Proof of Theorem 2. Fix A a good A1 containing u and set Q =
Ru(CG(u)). Proposition 5.5 settles most of Theorem 2. It remains to show
CG(u) = QCG(A), a semidirect product of algebraic groups and that CG(A)
is reductive.

We first show that CG(A) is reductive, using the argument prior to
Lemma 4.2 in [14]. Suppose Qo = Ru(CG(A)) > 1 and embed QoA in a
parabolic subgroup P with Qo ≤ Ru(P ). Take P minimal for this. By
Theorem 1, A is G-cr, so A ≤ L, a Levi subgroup of P . By minimality, A is
contained in no proper parabolic of L.

Let w̄o denote either the long word of the Weyl group of G or the long
word adjusted by a graph automorphism, so that w̄o induces -1 on the root
system. We may assume w̄o normalizes each simple factor of L.

We claim that A is normalized by w̄ol, for some l ∈ L. Consider the
action of w̄o on simple factors of L. As A is contained in no proper parabolic
of L, it can centralize no torus of L′, so 5.5 implies that u is distinguished
in L. Now the classes of distinguished parabolic subgroups of a simple
factor of L′ are invariant under outer automorphisms (see pp. 174-177 of
[5]). Hence the classes of distinguished unipotents are also invariant and the
claim follows from conjugacy of good A′

1s containing a given unipotent.
With l as above, w̄ol normalizes CG(A) and hence Qo. But, this is

impossible, as w̄ol conjugates P into its opposite parabolic. This shows that
Q ∩ CG(A) = 1.

To have a semidirect product the Lie algebras of Q and CG(A) must
intersect trivially, as well. However if this is not the case, then by the above
p = 2 and CG(A) has factors of type B or C. As p is good, this forces
G = SL(V ). But 3.1(i) shows that CGL(V )(A) is a product of groups of type
GL. Hence L(Q) ∩ L(CG(A)) = 0, completing the proof of Theorem 2.

Proof of Theorem 3. To establish this result we must show that
there is a unique 1-dimensional unipotent group U , such that u ∈ U and
U is contained in a good A1. Existence of U follows from Theorem 1(i),
taking U to be the 1-dimensional unipotent group containing u in a good
A1. Theorem 1(ii), shows that good A′

1s containing u are conjugate within
CG(u), while Theorem 2(i) gives CG(u) = CG(U). It follows that U is a
maximal unipotent subgroup in each good A1 containing u.

8. Finite Groups

In this section we use previous results for algebraic groups to establish
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results for finite groups, including Theorem 4. Fix notation as above, with
G a simple algebraic group over an algebraically closed field of characteristic
p, a good prime. Let σ be a Frobenius morphism of G such that Gσ = G(q),
a finite group of Lie type.

Proposition 8.1. Let u ∈ G(q) have order p.
(i). There exists a good A1 containing u which is σ-stable.
(ii). Two σ-stable good A′

1s containing u are conjugate by an element
of G(q); in fact by an element of Op(CG(q)(u)).

(iii). Assume A = Aσ is a good A1. Then CG(A) = CG(A(q)) and
CG(q)(u) = Op(CG(q)(u))CG(q)(A(q)), a semidirect product.

Proof. (i). Let A be a good A1 containing u. Then Aσ is also a good A1

containing u. Let E denote the family of good A′
1s containing u. Theorem

1(ii) shows that Q = Ru(CG(u)) is transitive on E . An application of Lang’s
theorem (see [21], I, 2.7) shows that σ fixes an element of E .

(ii). We claim that Qσ is transitive on Eσ. It follows from [20], I, 2.7 that
Eσ decomposes into conjugacy classes under the action of Qσ and the number
of classes equals the the number of conjugacy classes in the coset Cσ, where
C = NQ(A)/NQ(A)o. Hence it will suffice to show that NQ(A) is connected.
Now NG(A) = ACG(A) so that NG(A) ∩ CG(u) = CG(A)(A ∩ CG(u)) =
CG(A) × U . By Theorem 2(ii), CG(u) = QCG(A), a semidirect product, so
it follows that NQ(A) = U , a connected group. This proves the claim, which
establishes (ii).

(iii). Let A = Aσ be a good A1. Let u, u′ be noncommuting unipotent
elements in Aσ = A(q) and let U,U ′ be the corresponding 1-dimensional
unipotent groups of A. Then A = 〈U,U ′〉 and we have CG(Aσ) ≥ CG(A) =
CG(U) ∩ CG(U ′) = CG(u) ∩ CG(u′) ≥ CG(Aσ) (the second equality from
Theorem 2(i) ). Hence, CG(A) = CG(A(q)).

It remains to establish the factorization of CG(q)(u). By the last para-
graph CG(A) = CG(A(q)). Moreover, CG(A) is σ-invariant, since A is, and
reductive by Theorem 2(ii). As CG(u)/Q is naturally isomorphic to CG(A),
it follows that (CG(u)/Q)σ has no nontrivial normal p-subgroups (for this
we note that since p is a good prime all p-elements lie in CG(u)o). Therefore,
Op(CG(q)(u)) < Q.

Assume x = qc ∈ CG(q)(u) with q ∈ Q and c ∈ CG(A). Then xQ =
cQ = (cQ)σ and since CG(A) is σ-stable, this yields c ∈ G(q). Then x = xσ

implies q = qσ which establishes (iii).

Proposition 8.2. Let A be a σ-stable, good A1. Assume q > 7 in case
G is an exceptional group. Then

33



(i). For each parabolic subgroup P of G, Aσ < P if and only if A < P .
(ii). Aσ is Gσ-cr.

Proof. We will separate the arguments for classical and exceptional
groups, taking advantage of the natural module in the former case. First
assume that G is of classical type. We may work with G = I(V ), with V
the natural module.

In view of the conjugacy assertion of Theorem 1 we may take A as in
the proof of 3.1. Hence, V |A is completely reducible and each irreducible
summand is restricted. It follows that A and Aσ stabilize precisely the
same subspaces of V . So (i) is immediate, since parabolic subgroups are the
stabilizers of certain flags of V . Theorem 1(iv) shows that A is G-cr, so the
same holds for Aσ as Levi subgroups are stabilizers of certain decompositions
of V .

To establish (ii) we must show that it is possible to pick a σ-invariant
Levi subgroup of P containing Aσ, whenever P is a σ-invariant parabolic.
An argument for this is given at the end of the proof of Theorem 7 of [14].

Now assume G is of exceptional type and let P < G be a parabolic
subgroup. If A < P , then certainly Aσ < P . Conversely, suppose Aσ < P .

We first establish the result when q > p. Then all weights of A on
L(G) are less than q, so Proposition 1.4 of [14] shows that Aσ and A leave
invariant precisely the same subspaces of L(G). At this point the rest of
the argument (assuming q > p) is precisely as for the classical groups, since
P = NG(L(P )) and similarly for a Levi subgroup of P (see Lemma 5.1).

It remains to consider the case G exceptional and q = p. Recall that we
are assuming q > 7 here, so that Aσ is G-cr by Theorem 7 of [14]. As above
the argument at the end of the proof of Theorem 7 of [14] gives (ii).

Finally, we establish (i). Suppose Aσ < P . Then by the previous para-
graph Aσ ≤ L, a Levi subgroup of P . Let Z be the connected center of L,
a nontrivial torus. Theorem 1(iii) shows that L(G)|A is a tilting module,
so from 1.2(d) we conclude CL(G)(Aσ) = CL(G)(A). Therefore, A central-
izes L(Z) and the argument of 6.1 shows that A < CG(Z) = L ≤ P . This
establishes (i), completing the proof.

Theorem 4 is immediate from Propositions 8.1 and 8.2.

9. Bad primes

In this section we show by way of examples that our assumption that p
is a good prime is essential. In all cases G will be an exceptional group and
u ∈ G an element of order p.
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For G2 and p = 3 we will provide an example where u is not contained in
any A1. For G = E6 and p = 3 we give an example where u is contained in
A′

1s, but not good A′
1s. Similarly, for E8 with p = 5 we produce an example

where u is contained in an A1 but not a good A1 for which L(G) affords a
tilting module.

G = G2. Assume p = 3. We show that there is a an element of order 3
which is contained in no group of type A1. In the notation of Lawther [10],
let u have type Ã

(3)
1 . Let V be the usual 7-dimensional orthogonal module

for G. Then by [10],
V |u = J3 ⊕ J2

2 (∗).
Suppose u ∈ A, with A = A1 and consider the action of A on V . If A =
SL2, then decompose V under the action of the central involution, say z,
noting that this element must have determinant 1. It follows from (∗) that
V |A = V4 ⊥ V3 an orthogonal sum of spaces of the indicated dimensions.
Also, V4|A must be the sum of 2 singular spaces of dimension 2.

Now G2 has just one class of involutions, so A ≤ CG2(z) = X ◦Y , where
X is a long A1 and Y is a short A1. Also, X ◦ Y induces SO4 on V4 and
SO3 on V3. Given the action of u, we see that this is only possible if A = Y .
But then u has class Ã1, a contradiction.

Therefore, A = PSL2 and A has composition factors on V of dimensions
among 1, 3, 4, where in the last case the module is a tensor product of
twists of the natural 2-dimensional module. If there exists a submodule of
dimension 4, then it must be nondegenerate and u acts on this module as
J3 ⊕ J0, contradicting (∗). Hence, there is no such submodule.

It follows from 1.2 that 3-dimensional irreducibles for A cannot extend
the trivial module. From this, the fact that V is self-dual, and the above
paragraph we conclulde that A leaves invariant a nondegenerate 1-space of
V . This contradicts (∗).

G = E6. Here we take p = 3 and u of type A2A2A1. We will show
that u is not contained in a good A1. By way of contradiction, assume that
u ∈ A, a good A1. From [10] we have

L(G)|u = J24
3 ⊕ J3

2 . (∗)

First suppose A = SL2 and let 〈z〉 = Z(A). Then D = CG(z) = A1A5

or T1D5 as these are the involution centralizers in E6. In either case p is a
good prime for D so Theorem 1 implies that A is determined up to conjugacy
within D by the D class of u. Since u has order 3, it is not distinguished in
D (see the discussion following 2.7) and so it is distinguished within a proper

35



Levi subgroup of D. Using Lawther [10] to compare Jordan blocks we see
that this Levi must have type A2A2A1. However, such a Levi subgroup has a
composition factor which is the tensor product of natural representations for
the factors. Restricting to A, the highest weight is at least 5, contradicting
the assumption that A is a good A1.

Now suppose A = PSL2. Using 1.3(iii) together with 1.4 we can write

L(G)|A = L(4)a ⊕W (4)b ⊕ (W (4)∗)c ⊕ T (4)d ⊕ L(2)e ⊕ L(0)f .

Now L(4)|u = J3 ⊕ J1,W (4)|u = W (4)∗|u = J3 ⊕ J2, and T (4)|u = J2
3 (use

1.3(iii) for the latter cases). So from (∗) we have a = f = 0. A count of the
number of Jordan blocks of size 3 yields the equation b + c + 2d + e = 24.
Also, we find that the 0-weight space of TA has the same dimension. But
then CG(TA) is a Levi factor of dimension 24 which is easily checked to be
impossible.

G = E8. Assume p = 5 with u ∈ G of type A4A3. We will show that u
is not contained in a good A1 for which L(G) affords a tilting module. By
way of contradiction, suppose such a group, say A, exists.

According to [10],

L(G)|u = J48
5 ⊕ J2

4 . (∗)

Write L(G)|A =
⊕

T (c), a tilting decomposition with 0 ≤ c ≤ 2p − 2 for
each c. From (∗) and 1.2 we see that the possibilities for c are 8, 7, 6, 4, and
3 and that T (3) = L(3) occurs with multiplicity 2.

Write

L(G)|A = T (8)a ⊕ T (7)b ⊕ T (6)c ⊕ L(4)d ⊕ L(3)2.

The existence of the last summand implies that A ∼= SL2. Set 〈z〉 = Z(A).
Then D = CG(z) = D8 or A1E7 and L(D) = CL(G)(z). Hence

L(D)|A = T (8)a ⊕ T (6)c ⊕ L(4)d. (∗∗)

Each summand has dimension a multiple of 5, so CG(z) = D = D8.
Consider A < D8. Then A is also good in D8. Let V denote the usual

16 dimensional orthogonal module for a cover, D̂, of D and let Â denote the
derived group of the preimage of A. Then 3.1 and 6.1 imply V |Â is a direct
sum of restricted modules so we write

V |Â = L(4)r ⊕ L(3)s ⊕ L(2)t ⊕ L(1)u ⊕ L(0)v

36



On the other hand, (∗∗) is a decomposition of
∧2(V )|Â.

If L(i), L(j) are distinct direct summands of V |Â, then L(i) ⊗ L(j) is a
summand of

∧2(V )|Â. Consequently i and j must have the same parity.
Assume V |Â = L(3)s⊕L(1)u. We have L(1)⊗L(1) = L(2)⊕L(0), L(1)⊗

L(3) = L(4)⊕L(2), and L(3)⊗L(3) = T (6)⊕L(4)⊕L(0). Hence (∗∗) implies
s = u = 0, a contradiction.

Hence, V |Â = L(4)r ⊕ L(2)t ⊕ L(0)v. Now L(i) ⊗ L(0) = L(i) and
L(2)⊗ L(2) = L(4)⊕ L(2)⊕ L(0), so we conclude from (∗∗) that t+ v ≤ 1.
The only possibility is that

V |Â = L(4)3 ⊕ L(0).

By 3.1 and 6.1, A < B2×B2×B2 < B7 < D. Now L(G)|D = L(D)⊕E,
where E is a an irreducible spin module. It follows that E|A = (L(3) ⊗
L(3)⊗L(3))2, so that A has high weight 9 = 2p− 1 on L(G), contradicting
the assumption that A is good.

10. Open problems.

In this section we discuss some directions for future work. Let G be a
simple algebraic group defined over an algebraically closed field K of char-
acteristic p > 0.

Saturation. As mentioned in the introduction, the saturation problem
motivated the results of this paper and remains an important issue. The
problem is to associate to each unipotent element of order p a 1-dimensional
unipotent group that is in some sense canonical. Theorem 3 is such a result
for p a good prime.

Serre has carried out preliminary investigations for p = 2. It appears that
satisfactory results may be available in many cases, although the arguments
are based on case by case analysis using detailed information of centralizers
of involutions. In particular, for exceptional groups G other than F4 the
results in [2] show that Z(CG(u)) is a 1-dimensional unipotent group.

Tensor product theorems. The results of this paper and those of [12]
suggest the possiblity of establishing a tensor product theorem for groups of
type A1, based on good A′

1s.
Assume φ : SL2(K) → G is a homomorphism of algebraic groups such

that the image is G-cr. One would like to show that under suitable hypothe-
ses there are unique homomorphisms φi : SL2(K) → G for 1 ≤ i ≤ r and
distinct powers qi of p satisfying the following conditions

(i). φj(SL2(K)) is a good A1 for each j.
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(ii). [φj(SL2(K)), φk(SL2(K))] = 1 for j 	= k.
(iii). φ(x) =

∏
j φj(x)(qj), for each x ∈ SL2(K) .

It may also be worthwhile to investigate analogs of this for homomor-
phisms φ : Ga → G, generalizing Proposition 4.4. Here one would need a
suitable notion of “good” for a 1-dimensional unipotent group.

Subgroups other than A1. It is natural to ask if there is an analog of
the notion of good A1 for simple closed subgroups of G of rank greater than
one and if tilting modules play a role. The simple subgroups of exceptional
groups are determined in [12], subject to mild characteristic restrictions.
Using these results one could also hope to establish tensor product theorems
as above.

Elements of order larger than p. It would be useful to establish results
for unipotent elements u of order greater than p. In particular, is it possible
to establish a factorization of CG(u) similar to Theorem 2(ii)? What group
would take the place of CG(A)?
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