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Abstract. We prove that finite quotients of the multiplicative group of a finite dimensional
division algebra are solvable. Let D be a finite dimensional division algebra having center
K and let N ⊆ D× be a normal subgroup of finite index. Suppose D×/N is not solvable.
Then we may assume that H := D×/N is a minimal nonsolvable group (MNS group for
short), i.e., a nonsolvable group all of whose proper quotients are solvable. Our proof
now has two main ingredients. One ingredient is to show that the commuting graph of a
finite MNS group satisfies a certain property which we denote property (3 1

2 ). This property
includes the requirement that the diameter of the commuting graph should be ≥ 3, but is,
in fact, stronger. Another ingredient is to show that if the commuting graph of D×/N has
the property (31

2 ), then N is open with respect to a nontrivial height one valuation of D
(assuming without loss, as we may, that K is finitely generated). After establishing the
openness of N (when D×/N is an MNS group) we apply the Nonexistence Theorem whose
proof uses induction on the transcendence degree of K over its prime subfield, to eliminate
H as a possible quotient of D×, thereby obtaining a contradiction and proving our main
result.

1. Introduction

The purpose of this paper is to prove the following.

Main Theorem. Let D be a finite dimensional division algebra. Then any finite quotient
of the multiplicative group D× is solvable.

This result is a culmination of research done in the last several years trying to restrict the
structure of finite quotients of D×. One of the principal motivations for this research was
the work done on the Margulis-Platonov conjecture (MP) for anisotropic algebraic groups of
inner type An over global fields; these are precisely the groups of the form SL1,D associated
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with the group SL(1, D) of elements having reduced norm 1 in some finite dimensional
division algebra D. Referring the reader to Ch. IX in [?] and Appendix A in [?] for a
discussion of (MP), we only point out here that (MP) for SL1,D was reduced in [?] to the
following statement which is meaningful for division algebras over arbitrary fields: D× does
not have quotients that are nonabelian finite simple groups. This fact was verified in [?]
for division algebras of degree 2 and 3, and stated for arbitrary finite dimensional division
algebras as a conjecture. The affirmative resolution of this conjecture was obtained in [?]
and [?]. In [?] techniques were developed for analyzing finite quotients D×/N using the
commuting graph1 of D×/N , and some of the constructions in [?] were basically equivalent
to proving the openness of N with respect to a nontrivial valuation of D under the assumption
that the commuting graph of D×/N either has diameter ≥ 5 or is “balanced”. Valuations
were explicitly used for the first time in [?] where the following “openness theorem” was
obtained: if the diameter of the commuting graph of D×/N is ≥ 4, then N is open in D×

with respect to a nontrivial valuation of D (Theorem 1 in [?]).
Let us see now how can the openness of N be used to restrict the structure of the finite

quotient D×/N (and eventually to eliminate nonsolvable finite groups as quotients of D×).
First, since D is finite dimensional, Wedderburns’ theorem allows us to assume that K is infi-
nite (else D is finite and hence commutative). Now in §8 of [?], the following “nonexistence”
result was actually established (it was however stated in a slightly less general form).

Nonexistence Theorem. Let G be a class of finite groups. Call a member G ∈ G minimal
if no proper quotient of G belongs to G. Assume that

(1) the members of G are not solvable;

(2) if G ∈ G and M � G with G/M solvable, then M ∈ G;

(3) if G ∈ G and M � G is a solvable normal subgroup, then G/M ∈ G;

(4) if G ∈ G is a minimal member, then given a finite dimensional division algebra D
over a finitely generated field and a surjective homomorphism φ : D× → G, the kernel
Ker φ must be open in D× with respect to a nontrivial height one valuation of D.

Then no member of G can be a quotient of the multiplicative group of any finite dimensional
division algebra.

We refer the reader to the beginning of §2 for the definition of a (height one) valuation and
for the notion of openness. We note that a sketch of the proof of the Nonexistence Theorem
is given at the beginning of §6.

In view of the Nonexistence Theorem, the above mentioned “openness theorem” (Theorem
1 in [?]) implies that if G is a class of finite groups satisfying (1)-(3) of the Nonexistence
Theorem, and whose minimal members G have the property that diam(∆G) ≥ 4, then no
member of G is a quotient of any D× (cf. “Nonexistence Theorem at Diameter ≥ 4” in [?]).
This theorem applies to some important classes. For example, since by [?] the commuting

1We recall that the commuting graph ∆H of a finite group H is the graph whose vertex set is H � {1}
and whose edges are pairs of commuting elements; of course, ∆H has a natural distance function dH which,
in particular, allows one to talk about the diameter of ∆H , denoted diam(∆H).
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graph of nonabelian finite simple groups has diameter ≥ 4, it applies to the class G of
nonabelian finite simple groups, eliminating them as possible quotients of D×. However,
Theorem 1 of [?] falls short of extending the Nonexistence Theorem to the class G = NS
of all finite nonsolvable groups. This is because the diameter of the commuting graph of
minimal nonsolvable groups (i.e., nonsolvable finite groups all of whose proper quotients are
solvable) may be equal to 3 (and is always ≥ 3, cf. [?]). Thus our goal in this paper is to
formulate a condition which holds in minimal nonsolvable groups and that allows us to prove
an “openness theorem” which guarantees that condition (4) of the Nonexistence Theorem
holds for minimal nonsolvable finite groups.

Before we proceed we mention that the Main Theorem was conjectured by Segev in [?].
This conjecture was formulated in view of the results in [?], [?] and also the results with
L. Rowen [?] and [?] that finite quotients of D×, where D is a division algebra of degree 3 or 5,
are solvable (the last two results were obtained using very different tools, e.g., “Wedderburns’
factorization theorem”).

By Example 8.4 in [?], there are finite quotients D×/N such that diam(∆D×/N) = 3, but
N is not open with respect to any nontrivial height one valuation of D. Thus to apply the
Nonexistence Theorem, we need to work with a property of ∆D×/N which is stronger than
diam(∆D×/N) ≥ 3, but weaker than diam(∆D×/N) ≥ 4. Here it is,

Property (31
2
) There are two elements x, y ∈ H � {1} such that for all a, b ∈ H � {1}

satisfying [x, a] = [y, b] = 1, there exists h ∈ H with the property dH(xh, y) ≥ 3
and [ah, b] �= 1, where as usual xh = h−1xh and [x, a] = x−1a−1xa.

Theorem 1. Let D be a finite dimensional division algebra over a finitely generated infinite
field, N ⊆ D× be a normal subgroup of finite index. If H = D×/N satisfies property (31

2
),

then N is open in D× with respect to a nontrivial height one valuation of D.

We observe that if ∆H has diameter ≥ 4, i.e. there are elements x, y ∈ H � {1} with
dH(x, y) ≥ 4, then property (31

2
) is automatically satisfied (indeed, one can take h = 1), so

our Theorem 1 contains the openness Theorem 1 of [?] (proved in [?] under the diameter
≥ 4 condition).

As we indicated Theorem 1 can be applied in the case when D×/N is a minimal nonsolvable
group because of the following

Theorem 2. Let H be a minimal finite nonsolvable group (i.e. any proper quotient of H is
solvable). Then H has the property (31

2
).

The proof of Theorem 2 is carried out in §7; it depends on the classification of finite
simple groups and uses detailed information about their structure. As we explained above,
Theorems 1 and 2, in conjunction with the Nonexistence Theorem yield the Main Theorem.

As an application of our Main Theorem, we mention that when the center of D, K, is a
global field, our Main Theorem together with a theorem due to Margulis and Prasad (see
[?], [?] and §6) implies that finite quotients of SL(1, D) are solvable (Corollary ?? in §6).
Now the Margulis-Platonov conjecture for the groups SL1,D says that any noncentral normal
subgroup M of SL(1, D) is open (with respect to the T -adic topology, where T is a finite set
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of valuations of D). Indeed, the above mentioned theorem of Margulis and Prasad implies
that M has finite index in SL(1, D), hence SL(1, D)/M is solvable and it follows that M
contains some term of the derived series of SL(1, D). Since by a theorem of Raghunathan
[?] all the terms of the derived series of SL(1, D) are open (again when K is a global field),
we conclude that M is open. Hence our Main Theorem implies that the Margulis-Platonov
conjecture holds true for the groups SL1,D (see Theorem ?? in §??). The proof of (MP) in
this case was carried out in [?] and [?] using the reduction given in [?] which the above proof
does not require.

We now briefly describe the methods employed in the proof of Theorem 1. First, we show
in §§??-?? that a required valuation can be constructed given a homomorphism ϕ : N → Γ
to a partially ordered group Γ with some special properties. A result of this kind was proved
in [?] assuming that Γ is totally ordered and ϕ is a valuation-like map, i.e. there exists a
nonnegative α ∈ Γ, called a level of ϕ, such that

N<−α + 1 ⊆ N<−α,(VL)

where for γ ∈ Γ we let N<γ := {n ∈ N | ϕ(n) < γ}. In order to prove Theorem 1 we need to
deal with the situation where ϕ still has a level, but the group Γ is no longer guaranteed to
be totally ordered (in this case we call ϕ a leveled maps). In §§??-?? we define the notion of
a valuation associated with a leveled map. We then single out a set of conditions on a given
leveled map that ensure the existence of a valuation associated with it and the openness of N
with respect to this valuation. Having done that, we show in §?? how to construct a leveled
map ϕ : N → Γ with these conditions given that D×/N satisfies property (31

2
) (without

getting into technical details, we point out that the conditions include the requirements that
ΓK := ϕ(K×) be a nontrivial totally ordered subgroup of Γ and that ϕ has a level in ΓK ;
note that since diam(∆D×/N) ≥ 3, we have K× ⊆ N). The argument in §?? involves a new
concept of strongly leveled maps, some properties of which are analyzed in §??. We note
that both the notion of a leveled map and of a strongly leveled map are closely related to
condition (U3) of the U-hypothesis in §3 of [?].

We conclude the introduction with two questions that naturally arise in the context of the
investigation of the normal subgroup structure of algebraic groups over arbitrary fields. In
the first question we ask whether the hypothesis of Theorem 1 can be replaced by the mere
hypothesis that the diameter of ∆D×/N is ≥ 3.

Question 1: Let D be a finite dimensional division algebra over a finitely generated infinite
field, and N ⊆ D× be a normal subgroup of finite index. Does the fact that the commuting
graph of D×/N has diameter ≥ 3 imply that N is open in D× with respect to a finite set T
of nontrivial height one valuations of D?

This question was first raised in [?], but still remains unresolved. We remark that

Remark. The Nonexistence Theorem holds true even when in (4), Kerφ is required to be
open with respect to a finite set T of nontrivial height one valuations of D, but this more
general version of the Nonexistence Theorem is not used in this paper (cf. Remark 8.3 in
[?]).
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By the above remark, a positive answer to Question 1 would give an alternative proof of the
Main Theorem which requires less information about minimal nonsolvable groups, viz. in-
stead of the technically complicated Theorem 2 the fact, proved in [?], that the diameter of
the commuting graph of any minimal nonsolvable group is ≥ 3 would be sufficient. Other
applications would include detailed information about possible finite quotients of D× which
may eventually lead to some form of their classification (we recall that finite subgroups of
D× were classified by Amitsur [?]).

The second question that came up in discussions of G. Prasad with Rapinchuk deals with
extending our Main Theorem to other types of algebraic groups.

Question 2 (Prasad, Rapinchuk): Let G be an absolutely simple algebraic group over an
infinite field K. Is it true that all finite quotients of G(K) are solvable?

We recall that if G is K-isotropic, then the subgroup G(K)+ generated by the K-rational
points of the unipotent radicals of K-defined parabolics does not have proper noncen-
tral normal subgroups (Tits [?]), so any finite quotient of G(K) is in fact a quotient of
W (G,K) = G(K)/G(K)+ which was termed the Whitehead group of G by Tits [?]; further-
more, W (G,K) is known to be abelian at least for most classical types. For K-anisotropic
groups the situation is different as very little is known about them when K is a general field.
However, Some optimism regarding Question 2 can be based on the fact that at least over
global fields simplicity problems reduce to the groups of type An (cf. [?] Ch. IX), and the
Main Theorem strongly suggests the affirmative answer to Question 2 for anisotropic inner
forms of type An.

We are grateful to Gopal Prasad for the inspiring interest he had shown in this work, for
reading and listening to portions of this manuscript very carefully and for his helpful detailed
remarks.

2. The existence of a valuation associated with a leveled map

Throughout this paper, D is a finite dimensional central division algebra over an infinite
field K, and N ⊆ D× is a finite index subgroup such that −1 ∈ N . Recall that a valuation
of D is a group homomorphism v : D× → Γ̃, from D× onto a linearly ordered group Γ̃
satisfying v(x + y) ≥ min{v(x), v(y)}, whenever x + y �= 0. The group Γ̃ and the valuation
v are said to have height one if Γ̃ is isomorphic to a subgroup of the additive group (R,+)
of the reals. Throughout Γ denotes a partially ordered group1, such that Γ>0 �= ∅, where
Γ>0 = {γ ∈ Γ | γ > 0}. We will consider surjective homomorphisms ϕ : N → Γ.

Definitions 2.1. Let Γ be a partially ordered group such that the set of positive elements
of Γ is nonempty. Let ϕ : N → Γ be a surjective homomorphism. Then

1The following conventions will be kept throughout the paper: the operation on Γ will be denoted ad-
ditively, though Γ is not assumed to be commutative; the order relation will be denoted ≤ (so, for any
α, β, γ, δ ∈ Γ with α ≤ γ and β ≤ δ we have α + β ≤ γ + δ).
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(1) We say that ϕ is a leveled map if there exists a nonegative α ∈ Γ (called a level of ϕ)
such that

N<−α + 1 ⊆ N<−α,(i)

where N<−α = {x ∈ N | ϕ(x) < −α}. Note that we automatically have N<−α �= ∅.
(2) A valuation v : D× → Γ̃ is associated with ϕ if there exists a nontrivial homomorphism

θ : Γ → Γ̃ of (partially) ordered groups such that the diagram

N
ϕ−→ Γ

ι ↓ ↓ θ

D× v−→ Γ̃,

(ii)

in which ι is the inclusion map, commutes.

We note that the notion of a leveled map extends the notion of a valuation-like map from
[?] and will eventually lead to valuations. We fix the following notation.

Notation 2.2. Let Γ be a nontrivial partially ordered group (not necessarily abelian but
written additively!), and let ϕ : N → Γ be a (surjective) homomorphism (which will always
be clear from the context).
(1) For β ∈ Γ, we let Γ<β (resp., Γ≤β,Γ>β, etc.) denote the set of γ ∈ Γ satisfying γ < β

(resp., γ ≤ β, γ > β, etc.).
(2) For a subset M ⊆ N , M<β (resp., M≤β,M>β, etc.) denote the set of m ∈ M satisfying

ϕ(m) < β (resp., ϕ(m) ≤ β, ϕ(m) > β, etc.).
(3) For a subfield L of D, write NL := N ∩L, ϕL := ϕ |NL

: NL → ΓL, where ΓL := ϕ(NL).

(4) Given a (surjective) valuation v : D× → Γ̃ (note that Γ̃ is necessarily abelian, cf. Re-
mark 2.2 in [?]), we let OD,v = {x ∈ D× | v(x) ≥ 0} ∪ {0} denote the valuation ring of

v. For any δ ∈ (Γ̃)≥0, mD,v(δ) = {x ∈ D× | v(x) > δ}∪{0} will denote the correspond-
ing ideal of OD,v. These ideals form a fundamental system of open neighborhoods of
zero for the natural topology on D associated with v which is sometimes referred to
as the v-adic topology. We will write Ov, or simply O, instead of OD,v if this will not
lead to a confusion.

Theorem 5.1 in [?] asserts that given a nontrivial valuation-like map ϕ : N → Γ to a totally
ordered group Γ, then (for a finitely generated field K) there exists a height one valuation
v of D associated with ϕ, and N is open in the v-adic topology. In §§??-?? we extend this
result and prove

Theorem 2.3. Suppose K is finitely generated and that ϕ : N → Γ is a surjective homo-
morphism onto a nontrivial partially ordered group Γ. Let R be the subring of D generated
by N≥0. Assume that

(1) N≥0 � K;
(2) ΓK := ϕ(N ∩K×) is a nontrivial totally ordered group;
(3) ϕ is a leveled map having a level α ∈ (ΓK)≥0;
(4) R is a proper subring of D.
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Then there exists a height one valuation v : D× → Γ̃ associated with ϕ. Suppose in addition
that

(4′) There exists γ ∈ Γ≥0 such that R∩N ⊆ N>−γ.
(which in particular implies (4)) Then N is open with respect to the corresponding v-adic
topology.

In this section we show that under the hypotheses (1) – (4) of Theorem ??, there exists
a height one valuation v associated with ϕ. The next section focuses on proving that if
in addition we assume hypothesis (4′) of Theorem ??, then N is open with respect to any
valuation associated with ϕ (Theorem ??).

The assumptions that the group ΓK is totally ordered and the homomorphism ϕK : NK →
ΓK admits a level α ∈ ΓK mean that ϕK is a valuation-like map in the sense of [?]. By
Theorem 4.1.1 and Proposition 2.6 in [?], there exists a nontrivial valuation v0 : K× → Γ̃0

associated with ϕK , and NK is open in K× with respect to the topology defined by this
valuation, i.e. there exists δ ∈ (Γ̃0)≥0 such that

1 + mK,v0(δ) ⊆ NK ,(iii)

where mK,v0(δ) = {x ∈ K× | v0(x) > δ}∪{0}. Furthermore, by Theorem 4.1.2 in [?], since K
is finitely generated, we may (and we will) assume that the height of v0 is one. We will show
that v0 (uniquely) extends to a valuation v : D× → Γ̃, and that this valuation is associated
with ϕ.

We pick a basis a1, . . . , an2 of D over K (where n2 = dimK D), and we define a norm || ||v0

on D by

|| α1a1 + · · ·+ αn2an2 ||v0= max
i=1,n2

| αi |v0(iv)

where | |v0 is the absolute value associated with v0. (One easily shows that the topological
notion of boundedness associated with norms of the form (??) constructed using different
bases, coincide). The existence of an extension of v0 will be derived from the following result
analogous to Theorem 5.2 in [?].

Theorem 2.4. Let D be a central division algebra of degree n over an arbitrary field K, v0

be a valuation of K having height one. Assume there exists a subring B � D such that

(a) B is open in D with respect to the topology defined by the norm || ||v0 ;

(b) there exists a positive integer k such that dBd−1 ⊆ B for all d ∈
(D×)k = {xk | x ∈ D×}.

Then v0 extends to a height one valuation v of D such that B is contained in the corresponding
valuation ring Ov.

Proof. Let A = D ⊗K Kv0 , where Kv0 is the completion of K with respect to v0. Then
A � Md(D) for some integer d ≥ 1 and some central division algebra D over Kv0 . The
valuation v0 extends from Kv0 to a valuation u on D by the formula

u(x) =
1

l
v0(NrdD/Kv0

(x)) for any x ∈ D×,
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where l is the degree ofD (cf., for example, [?]), so it suffices to establish that our assumptions
force d = 1, since then the restriction u |D of u to D provides a height one extension of v0.
Note that since the height of v0 is one, the definition of u makes sense and the height of u
is one; in particular, u admits an associated absolute value | |u.

The norm || ||v0 extends from D to A by means of equation (??) (just think of α1, . . . , αn2

as elements of Kv0), and we saw in the proof of Theorem 5.2 in [?] that the closure B̄ of B in
A is a proper open subring. Then according to Lemma 5.3 in [?], B̄ is bounded. To obtain
a contradiction if d > 1, we will use a different norm on A � Md(D) :

|| (aij) ||u= max
i,j=1,d

| aij |u .

Since both || ||v0 and || ||u are norms on A as a vector space over Kv0 , they are equivalent
because dimKv0

A < ∞ and Kv0 is complete (cf. [?]); in particular, they give rise to the same
notion of boundedness on A.

It follows from assumption (b) in the statement of the theorem that dB̄d−1 ⊆ B̄ for
any d ∈ (A×)k. Now, suppose d > 1. Since the subring B̄ ⊆ Md(D) is open, it contains
Md(mD,u(δ)), for some nonnegative δ in the value group of u, in particular there exists
b = (bij) ∈ B̄ with b12 �= 0 (as mD,u(δ) �= 0). Pick also s ∈ D× so that | s |u> 1, and let
t = diag(s, s−1, 1, . . . 1) ∈ A×. Now consider the sequence

dl := tlk ∈ A×, l = 1, 2, . . . .

Then for bl = dlbd
−1
l ∈ B̄, the (12)-entry is (bl)12 = slkb12s

lk, so | (bl)12 |u→ ∞ as l → ∞,
contradicting the boundedness of B̄. Thus, d = 1, i.e. A = D, and the restriction v = u |D
provides a height one extension of v0. Since B̄ is bounded, it is contained in the valuation
ring of u, (because for an element x ∈ D× which is not in the valuation ring of u one has
| xl |u→∞ as l →∞) implying the inclusion B ⊆ Ov.

To prove the existence of v asserted in Theorem ??, we will apply Theorem ?? to the
subring R ⊆ D generated by N≥0. The following proposition establishes the properties
required for its application.

Proposition 2.5. Let ϕ : N → Γ be a (nontrivial surjective) leveled map having a level
α ∈ (ΓK)≥0. Assume that the group ΓK is nontrivial and totally ordered, and let v0 : K× → Γ̃0

be a valuation associated with ϕK . Then

(1) there exists ε ∈ (Γ̃0)≥0, such that the subring RK ⊆ K generated by (NK)≥0

contains mK,v0(ε).

Suppose in addition that N≥0 � K. Then

(2) N≥0 contains a basis of D over K;
(3) if v0 has height one, then the subring R ⊆ D generated by N≥0 is open with

respect to the topology defined by the norm || ||v0 (see (??)).

Proof. First note that as we already remarked, the existence of v0 is guaranteed by the
hypotheses of the proposition.
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(1): Let δ ∈ (Γ̃0)≥0, be as in (??). We pick c ∈ NK such that v0(c) > 0 (which exists since

NK has finite index in K×). Then c(1 + mK,v0(δ)) ⊆ NK and v0(c(1 + mK,v0(δ))) ⊆ (Γ̃0)>0.
Since ΓK is totally ordered and v0 is associated with ϕK , this implies that

c(1 + mK,v0(δ)) ⊆ (NK)>0 ⊆ RK ,

i.e. cmK,v0(δ) ⊆ RK . Then ε := δ + v0(c) is as required.
(2): Let V be the K-linear span of N≥0; since N≥0 is closed under multiplication, V is a

subring of D. Moreover, V is invariant under conjugation by N. Let Ω be an algebraically
closed field containing K. Since N has finite index in D×, it is Zariski dense in (D⊗K Ω)× �
GLn(Ω). Thus, V ⊗K Ω is a subalgebra of D ⊗K Ω � Mn(Ω) invariant under conjugation
by GLn(Ω). However, there are no proper noncentral conjugation invariant subalgebras R ⊆
Mn(Ω). (For the sake of completeness, we recall a proof of this well-known fact. Let T be
the diagonal torus in GLn(Ω). Then R is not centralized by T as otherwise it would be
centralized by all semi-simple elements in GLn(Ω), and therefore by GLn(Ω) itself. Thus,
R contains an eigenvector for T for some nontrivial character, i.e. an off-diagonal matrix
unit eij, i �= j. But all off-diagonal matrix units are conjugate under GLn(Ω), so R contains
all of them. Finally, eijeji = eii, which puts diagonal matrix units inside R as well.) Since
N≥0 � K, we conclude that V ⊗K Ω = Mn(Ω), and therefore V = D, as required.

(3): According to (2), N≥0 contains a basis ω1, . . . , ωn2 of D over K. Let ε be as in (1).
Then

mK,v0(ε)ω1 + · · ·mK,v0(ε)ωn2 ⊆ R,

giving the openness of R in D.

Proof of the existence of the valuation v asserted in Theorem ??. Accord-
ing to condition (4) in the statement of Theorem ??, the subring B = R is proper. By
Proposition ??(3), it is also open with respect to the topology defined by the norm || ||v0 ,
i.e. satisfies condition (a) in Theorem ??. Furthermore, since Γ is an ordered group, Γ≥0

is a normal subset of Γ, implying that N≥0 is a normal subset of N, so R is normalized by
N. Since N ⊇ (D×)k for k = (|D× : N |)!, condition (b) holds as well. Thus, according to
Theorem ??, v0 extends to a height one valuation v : D× → Γ̃ and, moreover, R is contained
in its valuation ring Ov. The latter means that N≥0 ⊆ Ov, i.e. for x ∈ N, ϕ(x) ≥ 0 implies

v(x) ≥ 0. We conclude that v(Ker ϕ) = {0}, and the arising homomorphism θ : Γ → Γ̃ is, in
fact, a homomorphism of ordered groups, so v is associated with ϕ.

3. The openness theorem

To conclude the proof of Theorem ??, it remains to establish the openness of N. In ([?],
Prop. 2.6) we showed that if N admits a valuation-like map ϕ : N → Γ with Γ totally ordered,
then N will be open in D× with respect to any valuation v of D associated with ϕ. In this
section we will prove a similar result which, in particular, completes the proof of Theorem
??.
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Theorem 3.1. Let ϕ : N → Γ be a surjective homomorphism onto a partially ordered
group satisfying conditions (1)–(3) and (4′) in the statement of Theorem ??. If a valua-
tion v : D× → Γ̃ is associated with ϕ, then N is open in D× with respect to the v-adic
topology.

(We note that the assumption, made in Theorem ??, that K be finitely generated is not
necessary for the validity of Theorem ??). One of the ingredients of the proof is the following
elaboration on Proposition 2.6 in [?].

Proposition 3.2. Let ϕ : N → Γ be a leveled map admitting an associated valuation v : D× →
Γ̃. Assume that for the valuation ring Ov of v there exists β ∈ Γ≥0 such that

Ov ∩N ⊆ N>−β.(i)

Then N is open in D× with respect to the v-adic topology.

Proof. Let α ∈ Γ≥0 be a level of ϕ. We need to show that there exists a δ ∈ Γ̃≥0, such that

1 + m(δ) ⊆ N,(ii)

where m(δ) = {x ∈ D× | v(x) > δ} ∪ {0}. For that we will show that for each coset Na of
N in D×, there exists γ(Na) = γ ∈ Γ̃≥0 such that

1 + (Na ∩m(γ)) ⊆ N.(iii)

Then, since N has a finite index in D×, the maximum δ = max γ(Na), taken over all cosets
of N in D×, exists (recall that Γ̃ is totally ordered!) and obviously satisfies (??). Since v is
associated with ϕ, there exists a nontrivial homomorphism of ordered groups θ : Γ → Γ̃ for
which the diagram (ii) of §2 is commutative. To establish the existence of γ(Na), we need
the following.

Lemma 3.3. (1) For m,n ∈ N such that v(m) < v(n) − θ(α + β), the element c = m + n
belongs to N.

(2) For any d ∈ D×, there exists βd ∈ Γ̃ such that

d + {n ∈ N | v(n) < βd} ⊆ N.

Proof. (1): Recall that α ∈ Γ≥0 is a level of ϕ and β ∈ Γ≥0 is as in Proposition ??.
Pick a, b ∈ N so that ϕ(a) = α and ϕ(b) = β; then v(a) = θ(α) and v(b) = θ(β).
We have v(m−1na−1b−1) > 0 (note that Γ̃ is commutative!), so m−1na−1b−1 ∈ Ov, hence
ϕ(m−1na−1b−1) > −β = ϕ(b−1) according to (??). It follows that ϕ(m−1na−1) > 0, and
therefore ϕ(n−1m) < ϕ(a−1) = −α, i.e. n−1m ∈ N<−α. Now,

n−1m + 1 ∈ N<−α + 1 ⊆ N<−α ⊆ N,

yielding c = n(n−1 + m) ∈ N.
(2): Since D is infinite, D = N−N (cf. [?], [?]), so there exists s ∈ N such that d+s ∈ N.

Set

βd = min(v(s), v(d + s))− θ(α + β).
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Suppose now that t ∈ N satisfies v(t) < βd. Then, in particular, v(t) < v(s) − θ(α + β), so
it follows from (1) that t− s ∈ N (observe that v(−s) = v(s)). Moreover, since α, β ∈ Γ≥0,
we have v(t) < v(s), and therefore v(t − s) = v(t) as v is a valuation. Thus, v(t − s) <
v(d + s)− θ(α + β), and

d + t = (d + s) + (t− s) ∈ N

again according to (1). The proof of the lemma is complete.

Now, fix a representative a of a given coset Na and let

γ = γ(Na) :=| v(a) | + | βa |,
where βa is as in Lemma ??(2) (here, as usual, for γ ∈ Γ̃, we denote | γ |= max{γ,−γ}).
Suppose na ∈ Na ∩m(γ). Then

v(n) = v(na)− v(a) > (| v(a) | + | βa |)− v(a) ≥| βa |,
implying that

1 + na = n(n−1 + a) ∈ N

as v(n−1) < − | βa |≤ βa, and therefore by Lemma ??(2), n−1 + a ∈ N. This proves (??)
and completes the proof of Proposition ??.

Remark 3.4. Proposition ?? immediately generalizes to the situation when there is a finite
set T = {v1, . . . , vr} of valuations associated with a given leveled map ϕ : N → Γ : if Ovi

is
the valuation ring of vi and OT = ∩r

i=1Ovi
, then the condition

N ∩OT ⊆ N>−β

for some β ∈ Γ≥0, implies that N is open in D× with respect to the topology defined by T.

Proof of Theorem ??. By the definition of an associated valuation, v is nontrivial. In
view of Proposition ??, all we have to show is that under assumptions made in the statement
of the theorem there exists β ∈ Γ≥0, satisfying (??). We will need the following.

Lemma 3.5. Let O ⊆ K be an integrally closed ring, Õ ⊆ D be a subring which is integral
over O and contains a basis ω1, . . . , ωn2 of D/K. Then there exists t ∈ O, t �= 0, such that

Õ ⊆ 1

t
(Oω1 + · · ·+Oωn2) .

Proof. The equation h(x, y) := TrdD/K(xy) defines a nondegenerate symmetric bilinear form

on D. Since O is integrally closed, TrdD/K(Õ) ⊆ O (indeed, suppose a ∈ Õ, and let L ⊆ D
be a maximal subfield containing a; then a belongs to OL := integral closure of O in L, so
the required inclusion follows from the following two facts: 1) TrdD/K(a) = TrL/K(a) (cf.
[?]); 2) TrL/K(OL) ⊆ O (cf. [?], Ch. V, §1, n◦ 6, cor. 2)). Let t = det (h(ωi, ωj)) ; then t ∈ O,

t �= 0. Take an arbitrary a ∈ Õ and write it as

a = α1ω1 + · · ·αn2ωn2
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with αi ∈ K. We need to show that in fact αi ∈
1

t
O for all i. However, the αi’s can be

determined from the following linear system

n2∑

i=1

αih(ωi, ωj) = Aj, j = 1, . . . , n2,

where Aj := TrdD/K(aωj) ∈ O. Since the determinant of this system is t, we obtain from

Cramer’s Rule that αi ∈
1

t
O, as required.

Let Ov0 = Ov ∩K be the valuation ring of the restriction v0 = v |K : K× → v(K×) =: Γ̃0

(note that v0 is nontrivial as v is such and [D : K] < ∞, and that v0 is associated with
ϕK). To apply Lemma ??, we observe that Ov is integral over Ov0 . Indeed, let a ∈ Ov and
L be a maximal subfield of D containing a. The existence of a valuation of D extending
v0 implies that v |L is the only extension of v0 to L (cf. [?]), with Ov ∩ L as the valuation
ring. On the other hand, it is known (cf. [?], Ch. VI, §1, n◦ 3, cor. 3) that the integral
closure of Ov0 in L coincides with the intersection of the valuation rings of all extensions of
v0 to L. Thus, Ov ∩ L is integral over Ov0 , and eventually Ov is integral over Ov0 . We also
note that Ov0 , being a valuation ring, is integrally closed (cf. [?], Ch. VI, §1, n◦ 3, cor. 1).
Since N≥0 �⊆ K, according to Proposition ??(2) there exists a basis ω1, . . . , ωn2 ∈ N≥0 ⊆ Ov.
Applying Lemma ??, we obtain that there exists a nonzero t ∈ Ov0 such that

Ov ⊆
1

t
(Ov0ω1 + · · ·+Ov0ωn2) .(iv)

In view of
1

t
=

td−1

td
, we can replace t with td in (??), where d = (| K× : NK |)!, and assume

that t ∈ NK . In fact, we may (and we will) even assume that t ∈ (NK)≥0 (indeed, if ϕ(t) < 0,
then v(t) = 0 (because t ∈ Ov0 and because v is associated with ϕ), and one can simply take
in (??) t = 1). Furthermore, let ε ∈ (Γ̃0)≥0 be as in Proposition ??(1), i.e. mK,v0(ε) ⊆ RK

(the subring generated by (NK)≥0). Since | Γ̃0 : v0(NK) |< ∞, one can pick s ∈ (NK)>0

satisfying v(s) > ε. Then sOv0 ⊆ RK . Now, set f = st. Then f ∈ (NK)>0 and

Ov ⊆
1

f
(RKω1 + · · ·+RKωn2) ⊆ 1

f
R

where R ⊆ D is the subring generated by N≥0. It follows now from condition (4′) in the
statement of Theorem ?? that

Ov ∩N ⊆ 1

f
(R∩N) ⊆ 1

f
N>−γ ⊆ N>−β

for β = γ +ϕ(f) ∈ Γ≥0, verifying the required assumption in Proposition ?? and completing
the proof of Theorem 3.1 .
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4. Strongly leveled maps

The purpose of this section and of the following §?? is to show that when N � D× and
D×/N satisfies property (31

2
), N admits a leveled map satisfying all the hypotheses (1)-(3)

and (4′) made in Theorem ??. In fact we will show in §5 that the mere assumption that
∆D×/N has diameter ≥ 3 implies the existence of a strongly leveled map ϕ : N → Γ, which
we now define.

Definition 4.1. Let ϕ : N → Γ be a surjective homomorphism onto a partially ordered
group Γ (with Γ>0 �= ∅). We say that ϕ is a strongly leveled map (or an s-leveled map for
short) if there exists α ∈ Γ≥0 (called an s-level of ϕ) such that

1±N>α ⊆ N≤0.(SL)

We note that although we keep the assumption −1 ∈ N, we are not assuming that −1 ∈
Ker ϕ, which explains the presence of ± in (SL). Now, if α ∈ Γ≥0 is an s-level of ϕ, then for
any n ∈ N<−α one has

ϕ(1 + n) = ϕ(n(1 + n−1)) ≤ ϕ(n) < −α

as 1 + n−1 ∈ 1 + N>α ⊆ N≤0, i.e. 1 + n ∈ N<−α. Thus, any s-leveled map is leveled (with
the same level). We also observe that given an s-level, say α, of ϕ, any β ∈ Γ≥α is an s-level
of ϕ as well.

We let A (resp., R) denote the subring of D generated by N>α (resp., by N≥0); obviously,
A (resp., R) coincides with the set of all elements of the form ε1a1 + · · ·+ εlal with εi = ±1
and ai ∈ N>α (resp., ai ∈ N≥0). We also set U := Ker ϕ. The arguments in §5 and the
hypotheses of Theorem ?? involve certain properties of the rings A and R and of s-leveled
maps. Some of these properties will be established in this section.

Proposition 4.2. Let ϕ : N → Γ be a strongly leveled map having an s-level α. Then,
(1) R∩N<−α = ∅; in particular R �= D.
(2) If K× ⊆ N and the subgroup ΓK := ϕ(K×) is totally ordered, then ΓK �= {0} and ϕ

possesses an s-level belonging to (ΓK)≥0.
(3) If there exists µ ∈ Γ≥0 such that A∩N ⊆ N>−µ, then there exists γ ∈ Γ≥0 such that

R∩N ⊆ N>−γ.

We begin with the following proposition which establishes some properties of the ring A.

Proposition 4.3. (1) 1±N>α ⊆ U ;
(2) U ±A ⊆ U ;
(3) 1 /∈ A;
(4) given m ∈ A ∩N≥0, the element β := ϕ(m) is an s-level for ϕ.

Proof. (1): Let n ∈ N>α and ε ∈ {1,−1}. Then 1+εn ∈ N≤0 by the definition of an s-leveled
map, so we need to show only that (1 + εn)−1 ∈ N≤0. We notice that

(1 + εn)−1 = 1− εn(1 + εn)−1.(i)
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Since 1+εn ∈ N≤0, we obtain that n(1+εn)−1 ∈ N>α, so it follows from (??) that (1+εn)−1 ∈
N≤0, as required.

(2)&(3): Since UN>α ⊆ N>α, we obtain using (1) that for u ∈ U and n ∈ N>α, one has

u± n = u(1± u−1n) ∈ U.

Thus, U ±N>α ⊆ U, and (2) follows. As 0 = 1− 1 /∈ U, (2) implies (3).

(4): If n ∈ N>β, where β = ϕ(m), then nm−1 ∈ N≥0, implying that n = (nm−1)m ∈ A.
Thus N>β ⊆ A and then by (2), 1 ± N>β ⊆ N≤0, hence, by definition, β is an s-level for
ϕ.

Proof of Proposition ??. (1): The inclusion N≥0N>α ⊆ N>α implies that RA ⊆ A.
Now, if z ∈ R ∩ N<−α, then z−1 ∈ N>α ⊆ A, so 1 = zz−1 ∈ A, contradicting Proposition
??(3).

(2): We take an arbitrary s ∈ N>α, and let p(x) = atx
t + at−1x

t−1 + · · ·+ a0 be the minimal
polynomial of s over K. Since ΓK = ϕ(K×) is totally ordered, δ = min{ϕ(ai) | ai �= 0}
is defined; we choose a j so that δ = ϕ(aj). Multiplying by a−1

j , we obtain the following
relation

bts
t + · · ·+ b0 = 0,

where bi = a−1
j ai, and bi ∈ N≥0 for all i such that bi �= 0. Of course b0 �= 0, and we have,

b0 = −(bts
t + · · ·+ b1s) ∈ A ∩N≥0,

so according to Proposition ??(4), β = ϕ(b0) ∈ (ΓK)≥0 is an s-level for ϕ. Furthermore,
b0 /∈ U, as otherwise we would have 1 = b−1

0 b0 ∈ UA ⊆ A, contradicting Proposition ??(3).
Thus, ΓK � K×/(K× ∩ U) is nontrivial.

(3): Again, take an arbitrary s ∈ N>α. Then sN≥0 ⊆ N>α, implying sR ⊆ A. Thus,
R∩N ⊆ (s−1A) ∩N = s−1(A ∩N). It follows that

R∩N ⊆ s−1(A ∩N) ⊆ s−1N>−µ ⊆ N>−γ

for γ := µ + ϕ(s).

5. Strongly leveled maps in diameter ≥ 3 and property (31
2
)

In this section −1 ∈ N ⊆ D× is a normal subgroup of finite index. The purpose of this
section is to show that the mere hypothesis that diam(∆D×/N) ≥ 3, implies the existence
of a strongly leveled map ϕ : N → Γ having an s-level α. Furthermore, A ∩N ⊆ N>−µ, for
some µ ∈ Γ≥0, where A is the subring of D generated by N>α. The additional assumption
that D×/N satisfies property (31

2
) is used only to show that in this case we can furthermore

choose ϕ so that the subgroup ϕ(K×) ⊆ Γ is totally ordered (where K is the center of D
and note that when diam(∆D×/N) ≥ 3, K× ⊆ N). Then, together with Proposition ??
this implies that ϕ satisfies all the hypotheses (1)-(3) and (4′) of Theorem ?? of §2. This is
proved in Theorem ?? at the end of this section.
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We start by recalling some notation, definitions and preliminary results from §§1-3 of [?]
and §§6-7 of [?]. For an element x ∈ D×, we let x∗ denote its image in D×/N . In addition
∆ = ∆D×/N is the commuting graph of D×/N , and d( , ) is the distance function in ∆.

Given x ∈ D×, we let N(x) = {n ∈ N | x + n ∈ N}.
Recall that ∅ � N(x) � N , for any x ∈ D× � N (Lemma 1.8 in [?]). For x ∈ D× � N we
define the relation Px∗ on N (§6 in [?]) by

mPx∗n ⇔ N(mx) ⊆ N(nx) m,n ∈ N.

The relation Px∗ is independent of the coset representative x, and is a preorder relation
compatible with the group structure (Lemma 6.4 in [?]). It follows that

Ux∗ = {n ∈ N | N(nx) = N(x)}
is a normal subgroup of N yielding the partially ordered group Γx∗ := N/Ux∗ with the order
relation ≤x∗ induced by Px∗ , and the (canonical) homomorphism ϕx∗ : N → Γx∗ . Let us
recall further the notation

Px∗ = {a ∈ xN | 1 ∈ N(a)},
and that by 1.8(5) in [?], Px∗ �= ∅, for x ∈ D× � N .

Proposition 5.1. Let x ∈ D× � N.
(1) For n ∈ N�N(x), the elements x∗ and (x+n)∗ commute in G∗, hence d(x∗, (x+n)∗) ≤ 1.
(2) Let n ∈ N and g ∈ D×, then N(nx) = nN(x), N(xn) = N(x)n and N(xg) = g−1N(x)g

(where xg = g−1xg).
(3) If n−1 ∈ N(x−1), then x + n ∈ xN ; in particular, n /∈ N(x).
(4) N≤x∗0 = {n ∈ N | n ∈ N(a), ∀a ∈ Px∗}, in particular, ϕx∗(m) ≤x∗ ϕx∗(n), iff na + m ∈

N , for all a ∈ Px∗.
(5) If a ∈ xN and n ∈ N(a), then ϕx∗(m) ≤x∗ ϕx∗(n) implies that m ∈ N(a).

Proof. Part (1) is 2.1 in [?] and part (2) comes from 1.8(1) and 1.8(2) in [?]. Part (3) is
immediate from the definitions. Parts (4) and (5) are Lemmas 6.5(1) and 6.5(3) in [?].

The next proposition gives some preliminary results when diam(∆) ≥ 3. Most of these
results were already established in [?].

Proposition 5.2. Suppose x, y ∈ D× � N are such that d(x∗, y∗) ≥ 3, and let a ∈ xN,
b ∈ yN, and ε ∈ {1,−1}. Then
(1) a + b /∈ N and N(a + b) = N(a) ∩N(b).
(2) If ε ∈ N(a), then N(b) ⊆ N(ab) ∩N(ba).
(3) If ε ∈ N(a−1), then N(ab) ∪N(ba) ⊆ N(b) ∩N(−b).
(4) If 1 ∈ N(a) then 1 + a ∈ Uy∗.
(5) If 1 ∈ N(a), then N(a−1) ⊆ N≤y∗0, but N(a−1) � Uy∗.

(6) N<y∗0 �= ∅, and N≤y∗0 � K×.
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Proof. Parts (1), (2) and (3) are respectively Lemmas 6.8(1), 6.9(2) and 6.9(3), and (4) is a
particular case of Lemma 7.2 in [?]. To prove (5) suppose 1 ∈ N(a) and let c ∈ Py∗ . By (2)
and (3) we have

N(a−1) ⊆ N(a−1c) ⊆ N(c).

As this holds for all c ∈ Py∗ , Proposition ??(4) implies that N(a−1) ⊆ N≤y∗0. Next, by (2)

N(a−1c−1) ⊆ N(a−1) ∩ N(c−1), so for n ∈ N(a−1c−1) we have n ∈ N≤y∗0, and n ∈ N(c−1).

By Proposition ??(3), n−1 /∈ N(c), so n−1 /∈ Uy∗ , and it follows that n /∈ Uy∗ . The first part
of (6) follows from (5). For the second part assume 1 ∈ N(a) ∩ N(b). As in the proof of
(5), N(a−1b−1) ⊆ N<y∗0. By [?], [?], there exists n,m ∈ N such that a−1b−1 = n−m. But

since K× ⊆ N , we can not have m,n ∈ K. Note however, that m,−n ∈ N(a−1b−1), so we
see that N(a−1b−1) � K.

Proposition 5.3. Let x, y ∈ D× � N with d(x∗, y∗) ≥ 3. Let a ∈ Px∗, b ∈ Py∗ and set
z = a−1b−1. Then
(1) For n ∈ N(a−1b−1) we have (N(a) ∩N(b))± n−1 ⊆ N(a) ∩N(b).
(2) For all n ∈ N(z) we have 1± n−1 ∈ N≤z∗ 0.
(3) N(z) ⊆ N≤z∗ 0 and for m ∈ N(z) we have that ϕz∗(m

−1) is an s-level of ϕz∗.
(4) ϕy∗ (and ϕx∗) possess an s-level.

Proof. (1): Note that by Proposition ??(3), for ν = ±1 we have N(a−1b−1) ⊆ N(νa−1) ∩
N(νb−1). Let now n ∈ N(a−1b−1), then

a + b = (a + n−1) + (b− n−1)

however, since ±n ∈ N(a−1)∩N(b−1), we have a+n−1 ∈ aN and b−n−1 ∈ bN (Proposition
??(3)). Thus using Proposition ??(1) we get N(a + b) = N(a + n−1) ∩N(b− n−1). Writing
a + b = (a − n−1) + (b + n−1) and arguing similarly we get that N(a + b) = N(a − n−1) ∩
N(b + n−1). So

N(a + b) = N(a + εn−1) ∩N(b + εn−1), ε ∈ {1,−1}.
Let now m ∈ N(a) ∩ N(b) = N(a + b). Then a + εn−1 + m ∈ N  b + εn−1 + m, so if
εn−1 + m /∈ N , then by Proposition ??(1), a∗, (εn−1 + m)∗, b∗ is a path in ∆, contradicting
d(a∗, b∗) ≥ 3. This shows that m± n−1 ∈ N(a) ∩N(b).

(2): Let n ∈ N(z); since 1 ∈ N(a)∩N(b), we see that by (1), 1±n−1 ∈ N . Let c ∈ Pz∗ . By
Proposition ??(4) (as d(x∗, z∗) ≥ 3 ≤ d(y∗, z∗)), we have c + 1 ∈ Ux∗ ∩ Uy∗ ⊆ N(a) ∩N(b).
By (1), c+1±n−1 ∈ N(a)∩N(b). As this holds for all c ∈ Pz∗ , we get that 1±n−1 ∈ N≤z∗ 0

(Proposition ??(4)).

(3): Let m ∈ N(z), then m ∈ N(a−1). Since d(x∗, z∗) ≥ 3, it follows from Proposition
??(5) that m ∈ N≤z∗ 0. Set α = ϕz∗(m

−1) and note that 0 ≤z∗ α ∈ Γz∗ . Let n ∈ N>z∗ α, then
ϕz∗(n

−1) <z∗ ϕz∗(m), so by Proposition ??(5), n−1 ∈ N(z). By part (2), 1± n ∈ N≤z∗ 0.

(4): What we saw in (3) in fact is that if d(r∗, s∗) ≥ 3, then ϕ(r−1s−1)∗ possess an s-level. So
take r = x−1 and s = y−1x and be done.
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Proposition 5.4. Let x, y ∈ D× � N with d(x∗, y∗) ≥ 3. Let 0 ≤ α ∈ Γy∗ be an s-level of
ϕy∗ and let A be the subring of D generated by N>y∗ α. Suppose a ∈ Px∗, b ∈ Py∗ and let

m ∈ N(a−1b−1). Then for µ >y∗ ϕy∗(m
−1), we have that 0 ≤ µ ∈ Γy∗ and A ∩N ⊆ N>−µ.

Proof. First we claim that

N(a−1b−1)± 1 ⊆ N(a−1b−1).(i)

Indeed set z = a−1b−1 and let n ∈ N(z). By Proposition ??(2),

n−1(n± 1) = 1± n−1 ∈ N≤z∗0,

this means that ϕz∗(n± 1) ≤z∗ ϕz∗(n). By proposition ??(5), as n ∈ N(z) also n± 1 ∈ N(z)
and (??) is proved.

Set ≤=≤y∗ , ϕ = ϕy∗ and let m ∈ N(z). As m ∈ N(a−1), Proposition ??(5) implies that
m ∈ N≤0, so µ > 0. Hence to complete the proof it suffices to show that

A ∩N ⊆ N≥ϕ(m).(ii)

Let n ∈ A∩N . We must show that ϕ(n) ≥ ϕ(m), i.e., that nt + m ∈ N , for all t ∈ Py∗ (see
Proposition ??(4)). We have

nt + m = (n + 1)t + (−t + m).(iii)

Now

−t + m = (1 + t)(−1 + (1 + t)−1(1 + m)) ∈ N(a−1b−1),(iv)

indeed t + 1 ∈ U(a−1b−1)∗ by Proposition ??(4), and by (??), 1 + m ∈ N(a−1b−1). It follows
(using also Proposition ??(2)) that (1 + t)−1(1 + m) ∈ N(a−1b−1) and then by (??) again
−1+(1+ t)−1(1+m) ∈ N(a−1b−1), so we see from (??) that −t+m ∈ N(a−1b−1) ⊆ N(a−1).
In particular, by Proposition ??(5), −t+m ∈ N≤0. On the other hand, by Proposition ??(2)
we have n + 1 ∈ Ker ϕ = Uy∗ , and therefore (n + 1)t ∈ Py∗ . Hence, by (??) and Proposition
??(4), nt + m ∈ N , completing the proof of (??) and of the proposition.

We now turn to the proof that (after perhaps interchanging x and y) the subgroup
ϕy∗(K

×) ⊆ Γy∗ is totally ordered. This does not follow from the hypothesis that d(x∗, y∗) ≥
3, because as we will see, the fact that ϕy∗(K

×) is totally ordered implies that N is open with
respect to a single valuation. This is not generally true when d(x∗, y∗) = 3 (see Example 8.4
in [?]). Hence we will need the following crucial additional hypothesis.

Property (31
2
): Given a finite group H and elements c, d in the commuting graph

∆H of H (having distance function dH( , )), we will say that (H, c, d) satisfy
property (31

2
), if for every a, b ∈ ∆H such that [c, a] = 1 = [d, b], there

exists h ∈ H satisfying dH(ch, d) ≥ 3 and [ah, b] �= 1. When the group H
is understood from the context, we will just say that c, d satisfy property
(31

2
).
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As we mentioned in the introduction (see Theorem 2), a crucial point for us in this paper
is that property (31

2
) is satisfied by minimal nonsolvable finite groups (see §??). We need

some notation.

Notation 5.5. (1) Given r ∈ D× � N we denote by Ṅ(r) = N(r) ∩K. Note that though
N(r) is always nonempty, Ṅ(r) may well be empty.

(2) For r, s ∈ D× � N , we define InK(r∗, s∗) and IncK(r∗, s∗) as we define In( , ) and
Inc( , ) in [?], pg. 228, using Ṅ( ) instead of N( ): InK(r∗, s∗) means that for all pairs
(a, b) ∈ (rN × sN), either Ṅ(a) ⊆ Ṅ(b) or Ṅ(b) ⊆ Ṅ(a) and IncK(r∗, s∗) means that
InK(r∗, s∗) holds and, in addition, given c ∈ Pr∗ , there exists d ∈ Ps∗ with Ṅ(c) ⊇ Ṅ(d).

For the sake of completeness we include here the following lemma which is actually part
of Lemma 6.12 in [?].

Lemma 5.6. Let x, y ∈ D× � N . Then
(1) If InK(x∗, y∗), then either IncK(x∗, y∗) or IncK(y∗, x∗).
(2) If IncK(y∗, x∗), then InK(y∗, y∗).

Proof. Suppose IncK(x∗, y∗) does not hold. Then there is a ∈ Px∗ such that Ṅ(a) ⊆ Ṅ(b),
for all b ∈ Py∗ , so IncK(y∗, x∗) holds, proving (1). Now, assume IncK(y∗, x∗) and let b, c ∈ yN

be such that Ṅ(b) � Ṅ(c). Pick n ∈ Ṅ(b), n /∈ Ṅ(c). Then Ṅ(n−1b)  1 /∈ Ṅ(n−1c) (we

note that n ∈ K×, so Ṅ(n−1c) = n−1Ṅ(c), for any c ∈ D× � N). By IncK(y∗, x∗), we can
pick a ∈ Px∗ with Ṅ(n−1b) ⊇ Ṅ(a). Since 1 /∈ Ṅ(n−1c), the inclusion Ṅ(a) ⊆ Ṅ(n−1c) is
impossible, so by InK(x∗, y∗) we have Ṅ(n−1c) ⊆ Ṅ(a) ⊆ Ṅ(n−1b), hence Ṅ(c) ⊆ Ṅ(b), as
required.

Proposition 5.7. Let x∗, y∗ ∈ D×/N such that d(x∗, y∗) ≥ 3 and x∗, y∗ satisfy property
(31

2
). Then

(1) InK(x∗, y∗) holds.
(2) After perhaps interchanging x∗, y∗ we have that the subgroup ϕy∗(K

×) ⊆ Γy∗ is
totally ordered.

Proof. Let c ∈ xN and d ∈ yN such that Ṅ(c) � Ṅ(d) and Ṅ(d) � Ṅ(c). Picking n ∈
Ṅ(c) � Ṅ(d) and replacing c, d with −n−1c,−n−1d, we may assume that −1 ∈ Ṅ(c) � Ṅ(d).
By our assumption, there exists k ∈ Ṅ(d) � Ṅ(c). Since by Proposition 5.1(1) we have

[c∗, (c + k)∗] = [(d− 1)∗, d∗] = 1,

and by hypothesis c∗, d∗ satisfy property (31
2
), there exists g ∈ D× such that d((cg)∗, d∗) ≥ 3

and ((c + k)g)∗ = (cg + k)∗ does not commute with (d− 1)∗. Note however that −1 ∈ N(cg)
and it follows from Proposition ??(2) that k ∈ N(d) ⊆ N(dcg). In view of Proposition ??(1)
and the fact that dcg + k ∈ N , we have

[(cg + k)∗, (d− 1)∗] = [d∗(cg + k)∗, (d− 1)∗] = [((dcg + k) + (d− 1)k)∗, ((d− 1)k)∗] = 1.

This is a contradiction.



SOLVABILITY OF FINITE QUOTIENTS 19

(2): By (1), InK(x∗, y∗) holds so by Lemma ??(1), we may assume (after perhaps in-
terchanging x∗ and y∗) that IncK(y∗, x∗) holds. By Lemma ??(2), InK(y∗, y∗) holds. Let
k ∈ K× and assume k /∈ N≤y∗0. Let b ∈ yN , with k /∈ N(b)  1. Then 1 /∈ N(k−1b)  k−1.

From InK(y∗, y∗), we see that k−1 ∈ N(s), for all s ∈ Py∗ , so k−1 ∈ N≤y∗0. This means that
the subgroup ϕy∗(K

×) ⊆ Γy∗ is totally ordered.

The following theorem summarizes the results of §§4-5.

Theorem 5.8. Let y ∈ D× � N be an element for which there exists x ∈ D× � N with
d(x∗, y∗) ≥ 3. Set ϕ = ϕy∗ and Γ = Γy∗ . Then

(1) Γ is nontrivial and N≥0 � K×.
(2) ϕ is a strongly leveled map.
(3) If R ⊆ D is the subring generated by N≥0, then R∩N ⊆ N>−γ for some γ ∈ Γ≥0.

Furthermore, if x∗, y∗ satisfy property (31
2
) then after interchanging x∗ and y∗ if necessary

we have that ΓK = ϕ(K×) is a nontrivial totally ordered subgroup of Γ and that ϕ possess
an s-level in (ΓK)≥0.

Proof. Part (1) follows from Proposition ??(6) and part (2) is Proposition ??(4). Part (3) is
a consequence of Proposition ?? and Proposition ??(3). Assume that x∗, y∗ satisfy property
(31

2
). Then by Proposition ??(2), after perhaps interchanging x∗ and y∗ we have that ΓK is

totally ordered, so Proposition ??(2) completes the proof.

6. The main theorem: proof and applications

Combining Theorem ?? and Theorem ??, we obtain the following.

Theorem 6.1. Let D be a finite dimensional division algebra over a finitely generated in-
finite field, N ⊆ D× be a normal subgroup of finite index. If D×/N satisfies property (31

2
),

then N is open in D× with respect to a nontrivial height one valuation of D.

Indeed, observe that if x∗, y∗ ∈ D×/N satisfy property (31
2
), then we may assume without loss

that dD×/N(x∗, y∗) ≥ 3, so Theorem ?? applies and yields the homomorphism ϕy∗ : N → Γy∗

satisfying all hypotheses (1)-(3) and (4′) of Theorem ??. So Theorem ?? completes the
proof.

Another ingredient in the proof of our Main Theorem is the Nonexistence Theorem stated
in the introduction. For the reader’s convenience we give here a brief summary of its proof,
referring to [?] for the details.

Sketch of the proof of The Nonexistence Theorem. Suppose the conclusion of the
theorem is false, and let H ∈ G be a member of minimal possible order which is a quotient
of the multiplicative group of some finite dimensional central division algebra. Consider
hereafter only finite dimensional division algebras D such that H is a quotient of D× and
let K denote the center of D. If there exists such a D having a positive characteristic,
we will consider only division algebras in this positive characteristic; otherwise, all algebras
considered will have characteristic zero. We show that we may choose D so that K is finitely
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generated over its prime subfield K0; in particular, the transcendence degree t = tr.degK0
K is

finite. We furthermore choose D so that t is minimal (we observe that, due to Wedderburns’
theorem, t > 0). Let N = Ker(D× → H). It follows from condition (4) in the Nonexistence
Theorem that N is open in D× with respect to a nontrivial height one valuation v of D as H
was chosen to be minimal. Let D̄ := D̄v be the residue division algebra. We show that the
openness of N implies the existence of a normal subgroup N̄ ⊆ D̄× such that the following
holds. There exists M1 � H1 � H with M1, H/H1 solvable and D̄×/N̄ ∼= H1/M1. However,
conditions (1)-(3) together with the minimality of H imply that H1 = H and M1 = {1},
i.e., H will be a quotient of D̄× as well. But, by our characteristic choices (together with
valuation theory), D̄v will have the same characteristic as D, and then a result in valuation
theory implies that the transcendence degree of the center of D̄v over its prime subfield will
be strictly less than t. This is a contradiction, and the Nonexistence Theorem follows. �

Now, the class G = NS of all nonsolvable groups obviously satisfies conditions (1)-(3) of
the Nonexistence Theorem. Furthermore, by Theorem 2 of the introduction, which will be
proved in §??, minimal members of NS satisfy property (31

2
). In conjunction with Theorem

?? this implies that condition (4) holds for NS as well. Thus we obtain

Main Theorem. Let D be a finite dimensional division algebra. Then any finite quotient
of the multiplicative group D× is solvable.

The rest of the section is devoted to applications of the Main Theorem primarily to the
normal subgroups of the group SL(1, D) of elements in D× having reduced norm one.

Corollary 6.2. Let N ⊆ SL(1, D) be a subgroup of finite index which is normal in D×.
Then the quotient SL(1, D)/N is solvable.

Proof. The group D× acts on SL(1, D)/N =: B by conjugation, and we let M denote the
kernel of this action. Then

B/Z(B) � Int B ↪→ D×/M.

But the group D×/M is finite (as a subgroup of the automorphism group of the finite group
B), hence solvable by the Main Theorem, and the solvability of B follows.

Here is one case where Corollary ?? gives the solvability of all finite quotients of SL(1, D).

Corollary 6.3. Let D be a finite dimensional division algebra over a global field K. Then
any finite quotient of SL(1, D) is solvable.

Proof. Let N ⊆ SL(1, D) be a normal subgroup of a finite index m. We denote by N0

the subgroup generated by the elements gm, g ∈ SL(1, D). Then N0 ⊆ N and N0 � D×.
Since SL(1, D) does not have finite exponent (this follows from its Zariski density in the
corresponding algebraic group SL1,D which is isomorphic to SLn over the algebraic closure
of K), N0 is noncentral and therefore, by a theorem1 due to Margulis and Prasad (see [?],
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[?]), N0 has a finite index in SL(1, D). By Corollary ??, the quotient SL(1, D)/N0 is solvable,
and then so is SL(1, D)/N.

Remark. In view of the Margulis-Prasad theorem, Corollary ?? in effect yields the
solvability of any quotient of SL(1, D) by a noncentral normal subgroup.

The question whether or not Corollary ?? extends to division algebras over arbitrary fields
remains open (we note that this is exactly Question 2 of the introduction for the algebraic
group G = SL1,D associated with SL(1, D)). Obviously, for the affirmative answer it would
be sufficient to show that any finite index normal subgroup N ⊆ SL(1, D) contains a finite
index subgroup N0 ⊆ SL(1, D) which is normal in D×. In other words, one needs to show
that

⋂
g∈D×(gNg−1) has finite index in SL(1, D), or equivalently, that among the subgroups

gNg−1, g ∈ D×, there are only finitely many distinct. In this regard, we observe that one
of the ingredients of the proof of the Margulis-Prasad theorem is the fact that if G is an
absolutely simple simply connected algebraic group over a global field K, then there exists an
S-arithmetic subgroup Γ ⊆ G(K) for a sufficiently large finite set of places S such that ΓN =
G(K) for any noncentral normal subgroup N ⊆ G(K), implying G(K)/N � Γ/(Γ ∩ N). If
char K = 0, then Γ is always finitely generated (cf. [?], Theorem 5.11), and if char K > 0
then one can enlarge S to make Γ finitely generated (cf. Behr [?]). Then Γ, and therefore
also G(K), has only finitely many homomorphisms to any given finite group. In the set-up
above, this gives the finiteness of the number of distinct conjugates gNg−1, g ∈ D×. To what
extent this kind of an argument can be generalized to arbitrary (finitely generated) fields
remains to be seen.

We now turn to Margulis-Platonov conjecture (conjecture (MP)). We refer the reader to
Ch. IX in [?] and Appendix A in [?] for a detailed discussion of (MP). The proof of (MP)
for G = SL1,D was recently completed in [?] and [?], using a reduction obtained in [?]. One
application of our Main Theorem is a short proof of (MP) for G = SL1,D which does not
require the reduction of [?].

Theorem 6.4. Let D be a division algebra over a global field K. Then the group G = SL1,D

satisfies the Margulis-Platonov conjecture.

Proof. We recall that (MP) for the group G = SL1,D is equivalent to the statement that if
T is the (finite) set of all nonarchimedean places v of K for which D ⊗K Kv is a division
algebra, then for any noncentral normal subgroup N ⊆ G(K) = SL(1, D) there should exist
an open normal subgroup W ⊆

∏
v∈T G(Kv) =: GT such that N = G(K) ∩ δ−1(W ), where

δ : G(K) → GT is the diagonal embedding if T �= ∅, and δ is the trivial map otherwise. In
other words, N is open in G(K) with respect to the topology defined by the valuations in
T (which is sometimes called the T -adic topology). It was first proved in [?] (cf. also [?],
§9.2) that if K is a number field then N = [SL(1, D), SL(1, D)] is T -adically open. This
fact was extended to arbitrary global fields by Raghunathan [?] who proved the following

1This theorem states that if G is an absolutely simple simply connected algebraic group over a global field
K, then any noncentral normal subgroup N ⊆ G(K) has finite index.
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more general result: if U ⊆ SL(1, D) is a T -adically open subgroup, then its commutator
subgroup [U,U ] is also T -adically open. In effect, this implies that any term of the derived
series for SL(1, D) is T -adically open. Now, given an arbitrary noncentral normal subgroup
N ⊆ SL(1, D), it has finite index by the Margulis-Prasad theorem, and then the quotient
SL(1, D)/N is solvable by our Corollary ??. This implies that N contains some term of the
derived series of SL(1, D), and the openness of N follows.

7. Property (31
2
) for minimal nonsolvable groups

The purpose of this section is to prove Theorem 2 of the introduction, i.e., to show that
minimal nonsolvable groups satisfy property (31

2
) of the introduction. Recall that for any

group H, the commuting graph of H is the graph whose vertex set is H � {1} and whose
edges are commuting pairs of elements. We denote by ∆H the commuting graph of H and by
dH( , ), the usual distance function on H. So for x, y ∈ ∆H , dH(x, y) is the minimal number
of edges in a path from x to y in ∆H (it is ∞ if no such path exists).

Notation 7.1. Let ∆ be a graph with distance function d( , ) and let x, y ∈ ∆.
(1) ∆(x) := {y ∈ ∆ | d(x, y) = 1}.
(2) Given an integer i ≥ 1, we denote ∆≤i = {y ∈ ∆ | d(x, y) ≤ i}. The set ∆≥i is defined

similarly.
(3) Let H be a group. For c, d ∈ H, we let cd = d−1cd, [c, d] = c−1d−1cd and cH is the
conjugacy class of c in H.

A minimal nonsolvable group is a finite group G such that G is not solvable, but G/M is
solvable for every 1 �= M � G. Throughout this section the following property of a finite
group H will be considered.

Property (31
2
): There are two elements c, d ∈ ∆H having the following property:

There exists a subgroup H1 ⊆ H such that for every a ∈ ∆H(c) and b ∈ ∆H(d),
there exists h ∈ H1 satisfying dH(ch, d) ≥ 3 and [ah, b] �= 1.

When a group H satisfies property (31
2
) with some elements c, d ∈ ∆H , where H1 = H,

we will just say that H satisfies property (31
2
); or (H, c, d) satisfy property (31

2
), when we

want to emphasis the elements c, d. When we want to emphasize the subgroup H1 and the
elements c, d, we will write (H, c, d,H1) satisfies property (31

2
) (or (H, c, d,H1) do not satisfy

property (31
2
)).

The purpose of this section is to prove the following theorem.

Theorem 7.2. Let G be a minimal nonsolvable group. Then G satisfies property (31
2
).

One may think of property (31
2
) as a property distinguishing a minimal nonsolvable group

G from a direct product (of more than one group), in terms of the commuting graph. As
the reader will notice, if G is a direct product, then G does not have the property (31

2
), and

indeed, this may be thought of as a “reason” that certain direct products can be quotients
of the multiplicative group of D while other groups (“close” to being wreath products, such
as minimal nonsolvable groups) can not.
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Notation 7.3. Throughout this section, G is a minimal nonsolvable group. Recall that
G has a unique minimal normal subgroup K such that there exists a subgroup L ≤ K
satisfying: L is a nonabelian simple group and K is the direct product of the distinct
conjugates Lg1 , . . . , Lgn of L, n ≥ 1. Furthermore, G acts transitively by conjugation on the
set {Lg1 , . . . , Lgn}, G/K is solvable and CG(K) = 1. The notation K,L and g1, . . . , gn are
fixed throughout this section. We further fix Li to denote Lgi , 1 ≤ i ≤ n and we assume
L1 = L. Given an element x ∈ K, xi ∈ Li, (1 ≤ i ≤ n), denote the elements so that
x = x1 · · ·xn. Note that when n = 1, G is an almost simple group, i.e, L ⊆ G ⊆ Aut(L).

In subsection ?? below, we will establish some further notation for G and other notation
to be used throughout this section. Then we will formulate certain conditions on L that
imply Theorem ??. These conditions are given in Proposition ??. We formulate the generic
condition separately (see (a) of Proposition ??).

Proposition 7.4. Assume that there exists six distinct nonidentity conjugacy classes B,C1,
. . . , C5 of Aut(L) contained in L, such that dAut(L)(r, s) ≥ 3, for all r ∈ B and s ∈

⋃5
i=1 Ci.

Then G satisfies Property (31
2
).

Subsection ?? is devoted to proving,

Theorem 7.5. Let L be a nonabelian finite simple group. Then L contains six distinct
nonidentity Aut(L)-conjugacy classes B,C1, . . . , C5 such that dAut(L)(r, s) ≥ 3, for all r ∈ B

and s ∈
⋃5

i=1 Ci, provided L is not isomorphic to one of the following groups:

PSL(2, q), q = 5, 7, 8, 9, 11, 16 or 27, PSL(3, 4) or PSO+(8, 2).

It follows from Theorem ?? and proposition ?? that if L is not one of the 9 exceptional
cases of Theorem ??, then G satisfies property (31

2
). The purpose of the final subsection

?? is to show that in the 9 exceptional cases G also satisfies property (31
2
) and this is done

using the results of subsection ??.

7.1. Conditions on L that guarantee property (31
2
).

Throughout §??, we let

X := {Lg1 , . . . , Lgn}.(i)

and

(ii) Σ ⊆ Sym(X) is the permutation group on X induced from the conjugation action
of G.

Of course Σ is a solvable transitive permutation group on X. We mention that in Lemmas
??, ?? and ?? and in the notation given in the next paragraph, we think of X as an arbitrary
finite set and we think of Σ ⊆ Sym(X) as an arbitrary transitive solvable permutation group.
Otherwise X and Σ are reserved to denote as in (??) and (ii).

We will use notation as in §2 of [?]. Thus given τ ∈ Sym(X) and Y ⊆ X, we let
τ(Y ) := {τ(y) | y ∈ Y }, Σ(Y ) := {σ ∈ Σ | σ(Y ) = Y } is the global stabilizer of Y in Σ,
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ΣY := {σ ∈ Σ | σ(y) = y, ∀y ∈ Y }, is the pointwise stabilizer of Y in Σ. ΣY := Σ(Y )/ΣY

is the action of Σ on Y .
We use similar notation for actions on partitions. A partition P of X is a collection

P := {V1, . . . , Vk} of nonempty subsets of X such that Vi are pairwise disjoint and their
union is X.

Given a partition P of X we write Σ(P) for the subgroup of all permutations σ ∈ Σ such
that σ(Vi) ∈ P, for all 1 ≤ i ≤ k . We write ΣP for the subgroup of all permutations σ ∈ Σ
such that σ(Vi) = Vi, for all 1 ≤ i ≤ k. Finally, write ΣP = Σ(P)/ΣP .

We fix the following notation, except in the case when n = 1,

(iii) M := {X1, . . . , Xm} (m ≥ 1), is a partition of X stabilized by Σ (i.e., Σ = Σ(M)),
such that |Xi| ≥ 2 and such that ΣXi is primitive.

When n = 1, we let M = {L}. We will consider conjugacy classes C of Aut(L) contained
in L. All such conjugacy classes are automatically assumed to be nonidentity conjugacy
classes. Given such a class C ⊆ L, Cgi ⊆ Li denotes the corresponding Aut(Li) conjugacy
class, 1 ≤ i ≤ n (recall that Li, gi are as in Notation ??).

In order to construct elements in K satisfying various properties we need some information
about actions of solvable groups on partitions. This is done in the next three lemmas.

Lemma 7.1.1. Let n ≥ 2 and let Σ be a transitive solvable permutation group on a set X
of size n. Let M = {X1, . . . , Xm} (m ≥ 1), be a partition of X stabilized by Σ, such that
|Xi| ≥ 2. Then there exists a partition Q1 = {V1, . . . , Ve} of X, with 2 ≤ e ≤ 3 such that for
all σ ∈ Σ, Σσ(Q1) ⊆ ΣM.

Proof. We’ll think of ΣM as a permutation group on {1, . . .m}. Partition the set {1, . . .m}
into f parts, 1 ≤ f ≤ 5, J = {J1, . . . , Jf}, such that ΣM

J = 1. The existence of the partition
J is guaranteed by Theorem 1.2 in [?] (see also Proposition 2.5 in [?]). If m = 1 then Q1

can be any partition of X. Otherwise write Xi = {x1
i , . . . , x

t
i} (so |Xi| = t). We define V1 as

follows

V1 =
⋃

i∈J1

{x1
i } ∪

⋃

i∈J2

{x1
i , x

2
i } ∪

⋃

i∈J3

{x1
i , x

2
i , x

3
i }

where ∪
⋃

i∈J3
{x1

i , x
2
i , x

3
i } occurs if and only if f > 2 and t > 2. If 2 ≤ f ≤ 3 we define

V2 =
⋃

i∈J1

(Xi � {x1
i }) ∪

⋃

i∈J2

(Xi � {x1
i , x

2
i }) ∪

⋃

i∈J3

Yi

where ∪
⋃

i∈J3
Yi occurs if and only if f = 3. If f = 2, we let Q1 = {V1, V2}. If f = 3 and t =

2, we let Yi = Xi and we let Q1 = {V1, V2}. If f = 3 and t > 2, we let Yi = Xi � {x1
i , x

2
i , x

3
i }

and we let Q1 = {V1, V2}.
If f = 4, or f = 5 and t = 2, we let

V2 =
⋃

i∈J3

Yi ∪
⋃

i∈J4

{x1
i , x

2
i }
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where Yi = {x1
i } if t = 2 and Yi = ∅ otherwise. Next, if f = 5 and t > 2, we let

V2 =
⋃

i∈J4

{x1
i } ∪

⋃

i∈J5

{x1
i , x

2
i }

Finally we let V3 = X � (V1 ∪ V2). The reader can easily verify that ΣM
Q1

stabilizes the
partition J and hence acts trivially on M, i.e., ΣQ1 ⊆ ΣM and hence Σσ(Q1) ⊆ ΣM, for all
σ ∈ Σ.

Lemma 7.1.2. Let n ≥ 2 and let Σ be a transitive solvable permutation group on a set
X of size n. Let M = {X1, . . . , Xm} (m ≥ 1), be a partition of X stabilized by Σ, such

that |Xi| ≥ 2 and such that ΣXi is primitive. Let Pi = {X1
i , . . . , X

f
i } be a partition of Xi,

1 ≤ i ≤ m, and define the partition Q2 = {W1, . . . ,Wf} of X by

Wt =
m⋃

j=1

X t
j 1 ≤ t ≤ f.

Then,
(1) If ΣXi � S4, then there exists partitions Pi, 1 ≤ i ≤ m, so that 2 ≤ f ≤ 3 and so that

the partition Q2 satisfies ΣM,Q2 = 1.
(2) If ΣXi ∼= S4, then the partitions Pi of Xi to singletons 1 ≤ i ≤ m, yield a partition Q2

so that f = 4 and ΣM,Q2 = 1.

(3) If ΣXi ∼= S4, then given subsets Y 1
i , Y 2

i ⊆ Xi, with |Y j
i | = 2 and Xi = Y 1

i ∪ Y 2
i ,

1 ≤ i ≤ m, the partitions Pi := {Y 1
i , Y 2

i }, 1 ≤ i ≤ m yield a partition Q2 such that
ΣM,Q2 fixes Y j

i as a set, for all 1 ≤ i ≤ m and 1 ≤ j ≤ 2.

Proof. In (1) take Pi so that ΣXi
Pi

= 1. The existence of Pi in (1) is guaranteed by Corollary
2.2 in [?], which says that given a primitive solvable permutation group H on a set Ω, there
exists a partition P of Ω to at most 3 parts so that HP = 1. Parts (2) and (3) are obvious.

Lemma 7.1.3. Let n ≥ 2 and let Σ be a transitive solvable permutation group on a set
X of size n. Let M := {X1, . . . , Xm} (m ≥ 1), be a partition of X stabilized by Σ, such
that |Xi| ≥ 2 and such that ΣXi is primitive. Let Q1 = {V1, . . . , Ve}, 2 ≤ e ≤ 3 and
Q2 = {W1, . . . ,Wf}, 2 ≤ f ≤ 4, be partitions of X as in Lemma ?? and Lemma ??
respectively. Then
(1) If Q2 is as in part (1) or (2) of Lemma ??, then for all σ ∈ Σ, we have Σσ(Q1),Q2 = 1.
(2) If Q2 is as in part (3) of Lemma ??, then for all σ ∈ Σ, we have Σσ(Q1),Q2 ⊆ ΣM, and

for all 1 ≤ i ≤ m, we have, ΣXi

σ(Q1),Q2
is contained in the subgroup of Sym(Xi) fixing

Y j
i as a set, for j = 1, 2, where Y j

i are as in part (3) of Lemma ??.

Proof. Let σ ∈ Σ. By the construction of Q1 we have Σσ(Q1),Q2 ⊆ ΣM,Q2 , so Lemma ??
completes the proof.

Notation 7.1.4. Let P = {U1, . . . , Ut} be a partition of X and let C1, . . . , Ct ⊆ L be
distinct Aut(L) conjugacy classes. We let

x(U1, . . . , Ut, C1, . . . , Ct),
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denote the set of elements x of K satisfying

xj ∈ C
gj

i if and only if Lj ∈ Ui, for 1 ≤ j ≤ n and 1 ≤ i ≤ t.

where K and g1, . . . , gn are as in Notation ??.

Lemma 7.1.5. Let Q1 = {V1, . . . , Ve} be a partition of X such that ΣQ1 ≤ ΣM. Let Q2 =
{W1, . . . ,Wf} be a partition of X as in Lemma ??. Let B1, . . . , Be ⊆ L be distinct Aut(L)
classes and C1, . . . , Cf ⊆ L be distinct Aut(L) classes. Let x ∈ x(V1, . . . Ve, B1, . . . , Be) and
y ∈ x(W1, . . .Wf , C1, . . . , Cf ). Then,
(1) If Q2 is as in part (1) or (2) of Lemma ??, then CG(xg, y) normalizes Lj, for all g ∈ G

and 1 ≤ j ≤ n.
(2) Suppose Q2 is as in part (3) of Lemma ??, and set Y j

i = {Lij1
, Lij2

}, 1 ≤ i ≤ m and

1 ≤ j ≤ 2. Then CG(xg, y) normalizes Lij1
Lij2

, 1 ≤ i ≤ m and 1 ≤ j ≤ 2, where Y j
i are

as in part (3) of Lemma ??.

Proof. Let g ∈ G and let σ ∈ Σ be the image of g in Σ. Note that by the choice of x,
the image of CG(xg) in Σ fixes the partition σ(Q1). Hence the image of CG(xg) in Σ, acts
trivially on M (of course M is as in (iii) of subsection ??). Let Θ be the image of CG(xg, y)
in Σ. Then, by the above, and by the choice of y, Θ ⊆ Σσ(Q1),Q2 , so the lemma holds by the
choice of Q2.

Lemma 7.1.6. Let B, C ⊆ L be two Aut(L) conjugacy classes. Consider the set of cyclic
subgroups {〈u〉 | u ∈ B} and let O1, . . . ,Oµ be the orbits of L (via conjugation) on this set.
Assume that for all v ∈ C and all t ∈ ∆Aut(L)(v) and every orbit O ∈ {O1, . . . ,Oµ}, there
exists 〈u′〉 ∈ O such that one of the following holds:

(a) dAut(L)(u
′, v) ≥ 4, or

(b) dAut(L)(u
′, v) ≥ 3 ≤ dAut(L)(u

′, t), or
(c) (c1) There exists a unique minimal path π(u′, t) := u′, s, t from u′ to t in ∆Aut(L)

(unique up to replacing s by a power of s).
(c2) For s as in (c1), there exists h′ ∈ L such that dAut(L)((u

′)h
′
, v) ≥ 3 and [sh

′
, t] �= 1.

Then (Aut(L), u, v, L) satisfies property (31
2
), for all u ∈ B and v ∈ C.

Proof. First notice that hypothesis (a) implies hypothesis (b) (with the same u′). Let u ∈ B
and v ∈ C and let a ∈ ∆Aut(L)(u) and b ∈ ∆Aut(L)(v). Let O be the orbit of 〈u〉 under the
action of L (via conjugation). Suppose there exists 〈u′〉 ∈ O such that dAut(L)(u

′, v) ≥ 3 ≤
dAut(L)(u

′, b). Let h ∈ L such that 〈uh〉 = 〈u′〉. If [ah, b] = 1, then since [ah, u′] = 1, we get
dAut(L)(u

′, b) ≤ 2, a contradiction. So [ah, b] �= 1 as required.
Suppose there exists 〈u′〉 ∈ O as in hypothesis (c) (where in hypothesis (c) replace t by

b). Let q ∈ L, with 〈uq〉 = 〈u′〉. Then s ∈ 〈aq〉, otherwise, [aq, b] �= 1 and we are done. Let
h′ be as in (c2) and set h = qh′. Then dAut(L)(u

h, v) ≥ 3, but [ah, b] �= 1, as required.

Lemma 7.1.7. Let x, y ∈ K such that dG(x, y) = 3. Assume that x, a, b, y is a path in ∆G

such that there exists j ∈ {1, . . . n} with a, b /∈ CG(Lj). Assume further that xj �= 1 �= yj,
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that dAut(L)(xj, yj) ≥ 3, and that [aq, b] = 1, for all q ∈ G such that dG(xq, y) ≥ 3. Then
a, b ∈ NG(Lj).

Proof. Let q ∈ Lj such that d(xq−1
, y) ≥ 3. Then [a, bq] = 1. Assume that La

j �= Lj. We
have,

wabq

= ((wa)q
−1

)bq = wabq, for all w ∈ Lj.(iv)

Case 1: Lb
j �= Lj.

In this case we have,

wbqa = wq−1ba, for all w ∈ Lj.(v)

If Lab
j �= Lj, then wabq = wab, so from (??) and (??) we get that

wab = wq−1ab, for all w ∈ Lj,(vi)

that is w = wq−1
, for all w ∈ Lj which implies that q is in the center of Lj. This is a

contradiction since we can choose q �= 1 (e.g. q = xj) and Lj is simple.

Hence we may assume that Lab
j = Lj. We get that wabq = wq−1ab, for all w ∈ Lj. It follows

that (ab)q(ab)−1 = q−1. Hence ab inverts every element q ∈ Lj such that d(xq−1
, y) ≥ 3.

Note however that for q ∈ {xj, yj, y
−1
j x−1

j }, we have d(xq−1
, y) ≥ 3, so since ab inverts them,

we conclude that [xj, yj] = 1, contradicting dAut(Lj)(xj, yj) ≥ 3.

Case 2: Lb
j = Lj.

Here Lab
j �= Lj. Let w ∈ Lj. By (??), wabq

= wab. Hence we get that wba = wbqa and it

follows that wb = wbq
, for all w ∈ Lj, and hence b = bq, for all q. In particular, b centralizes

q = xj. But then thinking of b as an element of Aut(Lj), we get that 1 �= b ∈ CAut(Lj)(xj, yj)
contradicting the hypotheses of the lemma.

It follows that a ∈ NG(Lj). Notice now that our hypotheses are symmetric with respect
to x and y, so by symmetry, b ∈ NG(Lj).

Proposition 7.1.8. Each one of the following hypotheses imply that G has the property
(31

2
):

(a) There exists six distinct conjugacy classes B,C1, . . . , C5 of Aut(L), contained in L,
such that for every u ∈ B and v ∈

⋃5
i=1 Ci, we have, dAut(L)(u, v) ≥ 3.

(b) There exists conjugacy classes B,C1, . . . , C5 of Aut(L), contained in L, such that
C1, . . . , C5 are distinct and such that for every C ∈ {C1, . . . , C5} if we set B := B,
then (Aut(L), u, v, L) has the property (31

2
), for all u ∈ B and v ∈ C.

(c) There exists distinct Aut(L) conjugacy classes B1, . . . , B3 ⊆ L and distinct Aut(L)
classes C1, . . . , Cf ⊆ L such that,

(c1) If ΣXi � S4, f = 3, while if ΣXi ∼= S4, f = 4.
(c2) For every B ∈ {B1, . . . , B3} and C ∈ {C1, . . . , Cf}, we have that (Aut(L), u, v, L)

has the property (31
2
), for all u ∈ B and v ∈ C.
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Proof. We show that there are elements x, y ∈ K such that (G, x, y) satisfy property (31
2
).

Let y be the following element. First we let Q2 := {W1, . . . ,Wf} be a partition of X
satisfying the following. In (a) and (b) we request that 2 ≤ f ≤ 5 and that ΣQ2 = 1. In (c)
we request that ΣM,Q2 = 1. We let

y ∈ x(W1, . . . ,Wf , C1, . . . Cf}
(see Notation ??). Next we pick x as follows. In the cases (a) and (b), we let x ∈ K be
an element such that xi ∈ Bgi , and dAut(L)(xi, yi) ≥ 3, for all 1 ≤ i ≤ n. The existence of
xi in (a) is guaranteed by the hypotheses and in (b) it is part of the definition of property
(31

2
). In case (c), we first pick a partition Q1 = {V1, . . . Ve}, 2 ≤ e ≤ 3 of X such that

ΣQ1 ⊆ ΣM. We let x ∈ x(V1, . . . , Ve, B1, . . . , Be) such that dAut(L)(xi, yi) ≥ 3 (again using
the definition of property (31

2
)). The existence of Q2 is guaranteed by Theorem 1.2 in [?]

(see also Proposition 2.5 of [?]) in cases (a) and (b) and by Lemma ?? (1) and (2), in case
(c). The existence of Q1 in case (c) is guaranteed by Lemma ??. It is clear that in (a)
and (b), the image of CG(y) in Σ is contained in ΣQ2 = 1, so CG(y) normalizes Li, for all
1 ≤ i ≤ n. Also in (c), by Lemma ??(1), CG(xg, y) normalizes Li, 1 ≤ i ≤ n, for all g ∈ G.
From the choice of xi, 1 ≤ i ≤ n, we get that dG(x, y) ≥ 3.

We now show that (G, x, y) satisfy property (31
2
). Notice that given g ∈ G, in all three

cases (a), (b) and (c), we can find h ∈ K, such that dG(xgh, y) ≥ 3. This is because
CG(xg, y) normalizes Li, for all i, and then our hypotheses allow us to find hi ∈ Li, such
that dAut(Li)((x

g)hi
i , yi) ≥ 3, and then for h = h1 · · ·hn, we have dG(xgh, y) ≥ 3.

Assume that (G, x, y) fail to satisfy property (31
2
). Then there exists a path x, a, b, y in ∆G

such that for all g ∈ G with dG(xg, y) ≥ 3, we have [ag, b] = 1. Let j, k ∈ {1, . . . , n} such that
a /∈ CG(Lk) and b /∈ CG(Lj). Let q ∈ G with Lq

k = Lj, and such that dAut(Li)((x
q)i, yi) ≥ 3,

for all 1 ≤ i ≤ n (and hence dG(xq, y) ≥ 3). The existence of q is guaranteed since Σ is
transitive and by the previous paragraph of the proof. Then xq, aq, b, y is a path in ∆G

and replacing x by xq and a by aq we may assume that a, b /∈ CG(Lj). By Lemma ??, a
and b normalize Lj. Notice now that for every g ∈ Lj such that dAut(Lj)(x

g
j , yj) ≥ 3, we

have dG(xg, y) ≥ 3, so [ag, b] = 1. Thinking of a, b as elements of Aut(Lj), we see that
(Aut(Lj), xj, yj, Lj) do not satisfy property (31

2
). This is a contradiction to hypothesis (b)

and (c2), in the cases (b) and (c). It is a contradiction in case (a) as well, because in
case (a), (Aut(Lj), xj, yj, Lj) has the property (31

2
) as well. To see this note that for any

two conjugacy classes B and C of L such that dAut(L)(u, v) ≥ 3, for all u ∈ B and v ∈ C,
(Aut(L), u, v, L) satisfy property (31

2
), for any u ∈ B and v ∈ C, because failure to do so

violates the simplicity of L.

In our applications of part (b) of Proposition ?? we will use the following corollary.

Corollary 7.1.9. Suppose that there are Aut(L) conjugacy classes B,C1, . . . , C5, contained
in L, such that C1, . . . , C5 are distinct and such that L is transitive via conjugation on
{〈u〉 | u ∈ B}. For 1 �= w ∈ Aut(L), let δ(w) := |{u ∈ B | dAut(L)(u,w) ≤ 2}|. Assume that
δ(w) < 1

2
|B|, for all 1 �= w ∈ Aut(L), or, more generally, that δ(v) + δ(w) < |B|, for all

1 �= w ∈ Aut(L) and v ∈
⋃5

i=1 Ci. Then G has the property (31
2
).



SOLVABILITY OF FINITE QUOTIENTS 29

Proof. We show that L satisfies hypothesis (b) of Proposition ??. For that we show that
if we set B := B, then for all C ∈ {C1, . . . , C5}, the pair B, C satisfies hypothesis (b) of
Lemma ??. By our assumptions, given v ∈

⋃5
i=1 Ci and 1 �= w ∈ Aut(L), there exists u′ ∈ B

such that dAut(L)(u
′, v) ≥ 3 ≤ dAut(L)(u

′, w). Let now C ∈ {C1, . . . , C5} and pick v ∈ C and
t ∈ ∆Aut(L)(v). Then there exists u′ ∈ B such that dAut(L)(u

′, v) ≥ 3 ≤ dAut(L)(u
′, t). Hence

u′ is the element required in part (b) of Lemma ??.

The purpose of the next three Lemmas is to handle the case when L = A5 and ΣXi ∼= S4,
in theorem ??. Though these Lemmas are formulated for general L, the reader may think
of A5. We assume that C1, C2, C3 ⊆ L are three distinct Aut(L) conjugacy classes.

Notation 7.1.10. Suppose ΣXi ∼= S4. We let Q1 = (V1, . . . Ve) be as in Lemma ?? and we
let Q2 = (W1,W2) be as in part (3) of Lemma ??, and the sets Y j

i = {Lij1
, Lij2

}, 1 ≤ i ≤ m

and 1 ≤ j ≤ 2, are as given in part (3) of Lemma ??. We let x ∈ x(V1, . . . , Ve, C1, . . . Ce)
and y ∈ x(W1,W2, C1, C2).

Lemma 7.1.11. The following two assertions hold:
(1) Let k, l ∈ {1, . . . n} be two distinct indices. Let xkxl, ykyl ∈ LkLl such that

CAut(Lk)(xk, yk) = 1. Then there exists at most one orbit Ol ⊆ x
Aut(Ll)
l ∩ ∆≥3

Aut(Ll)
(yl)

under the action of CAut(Ll)(yl) (acting by conjugation), such that for x′
l ∈ Ol, we have

CAut(LkLl)(xkx
′
l, ykyl) �= 1.

(2) Assume that ΣXi ∼= S4 and let x, y be as in Notation ??. Assume further that
dAut(Li)(xi, yi) ≥ 3, for all 1 ≤ i ≤ n, and that dG(x, y) ≥ 3. Then for each 1 ≤ l ≤ n

there exists at most one orbit Ol ⊆ x
Aut(Ll)
l ∩∆≥3

Aut(Ll)
(yl) under the action of CAut(Ll)(yl),

such that for h ∈ Ll with xh
l ∈ Ol we have dG(xh, y) ≤ 2.

Proof. (1): Suppose that x′
l, x

′′
l ∈ x

Aut(Ll)
l ∩∆≥3

Aut(Ll)
(yl) are such that there exists 1 �= q ∈

CAut(LkLl)(xkx
′
l, ykyl) and 1 �= s ∈ CAut(LkLl)(xkx

′′
l , ykyl). Now q2 normalizes each Lj, j = k, l,

so since CAut(Lk)(xk, yk) = 1 = CAut(Ll)(x
′
l, yl), q2 = 1, and q interchanges Lk and Ll. Thus

xq
k = x′

l, yq
k = yl.

Next, as above we must have xs
k = x′′

l , ys
k = yl, and s2 = 1, so s = uvq, with u ∈

CAut(Lk)(yk) and v ∈ CAut(Ll)(yl). Then

x′′
l = xs

k = (xq
k)

q−1uvq = (x′
l)

(q−1uvq) = (x′
l)
q−1uq.

but q−1uq ∈ CAut(Ll)(yl), so we see that x′
l and x′′

l are in the same orbit of x
Aut(L)
l ∩∆≥3

Aut(Ll)
(yl)

under the action of CAut(Ll)(yl).

(2): Let l ∈ {1, . . . , n}. Without loss we may assume that Ll ∈ Y 1
1 and we’ll denote

{Lk} = Y 1
1 � {Ll}. Let h, h′ ∈ Ll such that xh

l , x
h′
l ∈ ∆≥3

Aut(Ll)
(yl). Let 1 �= q ∈ CG(xh, y).

Notice that by the choice of x, y and by Lemma ??, q normalizes LkLl and if q ∈ CG(LkLl),
then q ∈ CG(x, y), contradicting dG(x, y) ≥ 3. Similarly given s ∈ CG(xh′

, y), s restricts to a
nontrivial automorphism of LkLl. It follows from part (1) that if dG(xh, y) ≤ 2 ≥ dG(xh′

, y),
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then xh
l , x

h′
l are in the same orbit under the action of CAut(Ll)(yl), so part (2) follows from

part (1).

Lemma 7.1.12. Assume ΣXi ∼= S4 and let x, y ∈ K be as in Notation ??. Suppose that for
all v ∈ C1∪C2 and 1 ≤ j ≤ 3 and each u ∈ Cj, we have that uL∩∆≥3

Aut(L)(v) is nonempty and

is not contained in an orbit of CAut(L)(v) on ∆≥3
Aut(L)(v) (acting via conjugation). Then for

all g ∈ G, there exists h ∈ K such that dG(xgh, y) ≥ 3 and such that dAut(Li)((x
gh)i, yi) ≥ 3,

for all 1 ≤ i ≤ n.

Proof. Let g ∈ G and set z := xg. By Lemma ??, CG(z, y) normalizes Lij1
Lij2

, 1 ≤ i ≤ m

and 1 ≤ j ≤ 2. For each Li ∈ {L1, . . . , Ln}, pick ri ∈ Li so that zri
i ∈ ∆≥3

Aut(Li)
(yi). This

can be done by hypothesis. Replacing z by zr (where r = r1 · · · rn), we may assume that
dAut(Li)(zi, yi) ≥ 3, for all 1 ≤ i ≤ n. Let 1 ≤ i ≤ m and 1 ≤ j ≤ 2 and set k = ij1, l = ij2.

Set hk = 1 and pick hl ∈ Ll, so that dAut(L)(z
hl
l , yl) ≥ 3 and CAut(LkLl

)(zkz
hl
l , ykyl) = 1. This

can be done using the hypotheses of the Lemma and using Lemma ??(1). By construction
h = h1 · · ·hn satisfies dG(xgh, y) ≥ 3 and dAut(Li)((x

gh)i, yi) ≥ 3, for all 1 ≤ i ≤ n, as
required.

Lemma ?? below is our tool for showing that when L ∼= A5 and ΣXi ∼= S4, G satisfies
property (31

2
). Since this Lemma is quite technical, a word of explanation is in place. Suppose

ΣXi ∼= S4 and that we found elements x, y as in Notation ?? such that dG(x, y) ≥ 3 and such
that dAut(Li)(xi, yi) ≥ 3, for all i. We wish to show that (G, x, y) satisfies property (31

2
). For

that we need enough elements h ∈ Lj (some j), such that dG(xh, y) ≥ 3. Thus we consider

the set x
Lj

j ∩∆≥3
Aut(Lj)

(yj) and we want to pick h ∈ Lj such that xh
j is in this set. The fact that

dAut(L)(x
h
j , yj) ≥ 3 “almost” guarantees dG(xh, y) ≥ 3, except perhaps when xh

j belongs to
the “bad” orbit of Lemma ??(2) (with respect to the action of CAut(Lj)(yj) via conjugation).
Since we don’t know which is the “bad” orbit, we must make sure that: (1) there is more

than one orbit, and (2) that for each orbit of CAut(Lj)(yj) on the set x
Aut(Lj)
j ∩∆≥3

Aut(Lj)
(yj),

there is an element xh
j ∈ x

Lj

j ∩∆≥3
Aut(Lj)

(yj) but not in this orbit and such that furthermore

h ∈ Lj has some additional “nice” properties. This is the content of hypothesis (b) of Lemma
??.

Lemma 7.1.13. Assume that for each v ∈ C1 ∪ C2 we have,
(a) For all 1 ≤ j ≤ 3, CAut(L)(v) has more than one orbit on Cj ∩ ∆≥3

Aut(L)(v) (acting via

conjugation).
(b) For each orbit O of CAut(L)(v) on Cj ∩ ∆≥3

Aut(L)(v), each u ∈ Cj, s ∈ ∆Aut(L)(u) and

t ∈ ∆Aut(L)(v), there exists h ∈ L such that uh ∈ ∆≥3
Aut(L)(v) �O and [sh, t] �= 1.

Assume further that,
(c) For every B, C ∈ {C1, . . . , C3}, we have that (Aut(L), u, v, L) has the property (31

2
), for

all u ∈ B and v ∈ C.
Then G satisfies property (31

2
).
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Proof. If ΣXi � S4, then by hypothesis (c) the hypotheses of part (c) of Proposition ?? hold,
so by that proposition, we are done.

Hence we may assume that ΣXi ∼= S4. Let x, y be as in Notation ??. Notice that our
hypothesis (b) implies the hypotheses of Lemma ??, hence replacing x by a conjugate of x,
we may (and we do) assume that dG(x, y) ≥ 3 and dAut(Li)(xi, yi) ≥ 3, for all 1 ≤ i ≤ n.
Assume that (G, x, y) fail to satisfy property (31

2
). Then there exists a path x, a, b, y in ∆G

such that for all g ∈ G with dG(xg, y) ≥ 3, we have [ag, b] = 1. By the transitivity of Σ and
using Lemma ??, we may replace x by a conjugate of x, so that we may assume that there
exists j ∈ {1, . . . , n} such that a, b /∈ CG(Lj). By Lemma ??, a, b ∈ NG(Lj). Identify now
Lj with L (via conjugation by g−1

j ). Let k ∈ {1, . . . , 3} be such that xj ∈ Ck. Let O be an

orbit of CAut(Lj)(yj) on Ck ∩ ∆≥3
Aut(Lj)

(yj) such that for h ∈ Lj with xh
j ∈ ∆≥3

Aut(Lj)
(yj) � O,

we have dG(xh, y) ≥ 3 (We take O to be the “bad” orbit of Lemma ??(2) if it exists and
otherwise O is any orbit). Note now that by hypothesis (b), there exists q ∈ Lj such that

xq
j ∈ ∆≥3

Aut(Lj)
(yj) � O and [aq, b] �= 1. But then also dG(xq, y) ≥ 3 and this supplies a

contradiction to the choice of the path x, a, b, y.

7.2. The generic case.

In this subsection L is a finite nonabelian simple group such that L is not isomorphic to
one of the groups PSL(2, q), q = 5, 7, 8, 9, 11, 16 or 27; PSL(3, 4) or PSO+(8, 2).

We consider the following condition,

(Gen) There exists six distinct nonidentity conjugacy classes B,C1, . . . , C5 of Aut(L) con-
tained in L, such that dAut(L)(r, s) ≥ 3, for all r ∈ B and s ∈

⋃5
i=1 Ci.

The purpose of this subsection is to prove Theorem ??, i.e., to prove,

Theorem 7.2.1. L satisfies (Gen).

We start with the Alternating groups.

Lemma 7.2.2. Let L ∼= An. Then,
(1) If n ≥ 7 is odd. Then L satisfies (Gen).
(2) If n ≥ 8 is even. Then L satisfies (Gen).

Proof. (1): Let B be the Aut(L) conjugacy class of n cycles. Note that if C ⊆ L is an Aut(L)
conjugacy class of elements of L having precisely one fixed point, or having precisely two
fixed points than dAut(L)(b, c) ≥ 3, for all b ∈ B and c ∈ C. It is clear that when n ≥ 9, there
are at least 5 distinct classes C as above. If n = 7, then for all conjugacy classes C �= B,
b ∈ B and c ∈ C, one has dAut(L)(b, c) = ∞, so clearly (Gen) holds in this case as well.

(2): Let B be the conjugacy class of n−1 cycles. Note that if C ⊆ L is an Aut(L) conjugacy
class of elements of L having no fixed points, or having precisely two fixed points then
dAut(L)(b, c) ≥ 3, for b ∈ B and c ∈ C. It is easily checked that for n ≥ 8 there are at least 5
distinct classes C as above.



32 RAPINCHUK, SEGEV, SEITZ

For the Sporadic groups we have,

Lemma 7.2.3. Assume L is a Sporadic group not isomorphic to J2 or McL. Then (Gen)
holds for L.

Proof. It is easy to check (using the ATLAS) that L contains an Aut(L) conjugacy class
B such that 〈b〉 � {1} is a connected component of ∆Aut(L). Since the number of Aut(L)
conjugacy classes contained in L is ≥ 6, we are done.

Lemma 7.2.4. Assume L ∼= J2. Then L satisfies (Gen).

Proof. Let B ⊆ L be the class of elements of order 7. Then for b ∈ B we have CAut(L)(b) =
〈b〉〈t〉, where t is an (outer) involution with CL(t) ∼= SL(3, 2) : 2. It follows that if C1, . . . , C5

are the Aut(L) conjugacy classes of elements of order 5, 5, 10, 10, 12, then B,C1, . . . , C5 satisfy
(Gen).

Lemma 7.2.5. Assume L ∼= McL. Then L satisfies (Gen).

Proof. Let B be the class of elements of order 11. Then for b ∈ B, we have, CAut(L)(b) =
〈b〉〈t〉, where t is an (outer) involution with CL(t) ∼= M11. It follows that if C1, . . . , C5

are Aut(L) conjugacy classes of elements of order 7, 9, 10, 12, 14, then B,C1, . . . , C5 satisfy
(Gen).

The groups of Lie type

The remainder of this subsection is devoted to the groups of Lie type. Let L = L(q) be
a simple group of Lie type defined over a field of order q = pa, p a prime. Let G be the
corresponding algebraic group, so that L = (Gσ)

′ for σ a Frobenius morphism of G. Until
the end of subsection ?? we let A = Aut(L). We will exhibit elements x, y1, . . . , y5 ∈ L such
that xA, yA

1 , . . . yA
5 are six distinct Aut(L) conjugacy classes satisfying condition (Gen).

We use the following notation for certain groups of Lie type. For ε = ±1 we let Aε
n, D

ε
n, E

ε
6

be groups of Lie type as follows. If ε = 1, these are just the (untwisted) Chevalley
groups, An(q), Dn(q), E6(q), respectively; while if ε = −1, we have the twisted groups
2An(q),

2Dn(q),
2E6(q).

Elements of A can be expressed as a product of inner, diagonal, field, and graph automor-
phisms (see Thms 30 and 36 of [?]). It is also known that automorphisms of L extend to
morphisms of G commuting with σ. Now Gσ is the group of inner and diagonal automor-
phisms of L, so that A/Gσ is generated by images of field and graph automorphisms of G
restricted to L. For example, if σ is a field morphism of G corresponding to q = pa, there
is a field morphism µ corresponding to p such that µa = σ and µ acts on L generating the
group of field automorphisms.

Throughout this subsection, the term “graph automorphism” of G will be used somewhat
loosely. Let τ be a standard graph automorphism of G (see p.156 of [?]). We will refer to
any element in τG of order equal to that of τ as a graph automorphism. Typically there
exist just one or two G-classes of such elements. For instance in E6 there are two classes of
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such morphisms. They have fixed points F4 and C4, except for p = 2, where the fixed points
are F4 and the centralizer in F4 of a long root element of E6 contained in F4.

When L = PSp(4, q), F4(q) or G2(q) with p = 2, 2, 3 respectively, there is an endomor-
phism δ the algebraic group G, that commutes with σ and interchanges root group corre-
sponding to long and short roots. Also δ2 generates the group of field morphisms. Here
A = L〈δL〉, where δL is the restriction of δ to L. We will call δL a ”special graph automor-
phism”. When q = pa, with a odd, the involution τ = (δL)a has fixed point group 2B2(q),
2F4(q) or 2G2(q), respectively, and τ is called an “involutory special graph automorphism”.

When there is no danger of confusion we will sometimes identify an automorphism of L
with its extension to G.

Lemma 7.2.6. Let u ∈ L be a regular unipotent element. Then CA(u) = U〈δ〉J where
U < Gσ is a unipotent group, δ generates the group of field automorphisms of L and J is
the group of graph (or special graph) automorphisms.

Proof. As u is regular we have CG(u) a unipotent group. Hence CGσ(u) is a unipotent group.
On the other hand, any unipotent element that is the product of root elements from positive
root groups with nontrivial contribution for each fundamental root is regular and all regular
unipotent elements are conjugate in G (see III, 1.8 of [?]). So it follows from the action
of standard field and graph automorphisms that each fix regular unipotent elements. The
result follows.

Lemma 7.2.7. Let a ∈ A � Gσ have prime power order re with ar ∈ Gσ. Then a is the
restriction to L of a morphism δ of G commuting with σ. Moreover, one of the following
holds:

(i) There does not exist a graph or special graph automorphism τ such that a ∈ Gστ . In
this case Gδ = G(qo) for qo < q.

(ii) a ∈ Gστ for some graph automorphism τ of G. In this case CL(a) is contained in
Dσ = D(q), where Dσ = D < G is either a parabolic subgroup (only if p = |τ |) or a reductive
group of semisimple rank strictly less than that of G.

(iii) a ∈ Gστ where τ is an involutory special graph automorphism of PSp(4, q), F4(q) or
G2(q). If |a| = 2, then CL(a) =2 B2(q),

2F4(q) or 2G2(q), respectively. Otherwise, CL(a) is
contained in a proper parabolic subgroup of PSp(4, q) or F4(q) or a subgroup SL2(q) ·SL2(q)
of G2(q), respectively.

Proof. Fix a ∈ A � Gσ and recall that a is the restriction to L of a morphism commuting
with σ. There is an element g ∈ Gσ such that a is induced by g · µ for µ a field, graph-field,
graph, or special graph automorphism of G commuting with σ.

First suppose µ can be chosen as a field or graph-field automorphism of G. Regarding g ·µ
as a member of the coset Gµ ⊆ Aut(G) (automorphisms as abstract group), we can apply
Lang’s theorem (see I, 2.2 of [?]) to see that g · µ is G-conjugate to µ. Since Gµ = G(qo) for
qo a proper divisor of q, part (i) follows.

Now suppose a ∈ Gστ for some graph automorphism τ of G commuting with σ. We have
CL(a) ≤ CG(a)σ and |τ | = r. So r = 2 except possibly for G = D4 where r = 3. If |a| = |τ |
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then a is a graph automorphism of G and the centralizers of such automorphisms are known
(for example see 1.1 of [?]). It follows that either CG(a) is reductive and we obtain the
result by setting D = CG(a), or else p = r and CG(a) has a nontrivial unipotent radical
and so by the Borel-Tits theorem it is contained in a canonical parabolic subgroup D of
G. Furthermore, since CG(a) is σ-invariant, the unipotent radical of CG(a) is σ-invariant.
Consequently, D can be chosen to be σ-invariant.

Now assume |a| > |τ | and let t = ar. If p �= r, then t is contained in a maximal torus of
G, so CG(t) is a subsystem subgroup and a induces an involutory (or order 3) semisimple
automorphism of this group (it cannot centralize CG(t) as maximal tori are selfcentralizing).
The result follows with D = CG(a). Otherwise, CG(a) is contained in a σ-invariant canonical
parabolic D, completing the proof of (ii).

Finally assume we are in the situation of (iii), so that |a| = 2e. If a is an involution,
then it is well known that CL(a) = 2B2(q),

2F4(q) or 2G2(q). Otherwise, 1 �= a2 ∈ L so
CL(a) centralizes an involution in L and the assertion follows from well-known information
on involution centralizers in these groups.

The Exceptional Groups

Let L be a finite exceptional group.

Proposition 7.2.8. Condition (Gen) holds if L = E8(q), E7(q), E
ε
6(q), F4(q).

Proof. In nearly all cases we take x to be a regular unipotent element of L, so Lemma ??
implies CA(u) = U〈δ, τ〉, where δ generates the group of field automorphisms and τ is a graph
automorphism, if such exists. We will first choose y1, y2 as certain semisimple elements. The
remaining elements will usually be taken as non-conjugate generators of 〈y1〉 or 〈y2〉.

In the following table we provide information on the order of the elements y1, y2. The
numbers indicated are orders of elements in universal covers of certain subgroups of L.
Except for the case y2 ∈ Eε

6(q), the order of a given element yi will be the number indicated
divided by a small constant, which can be deduced from comments below. In the exceptional
case the order is presented as a product, indicating that the element is the product of two
elements of the given orders. In the case of L = 2E6(q) the order of one element divides the
order of the other, so in this case the product has order less than the number given.

G y1 y2

E8(q) q9 − 1/q − 1 q9 + 1/q + 1
E7(q) q8 − 1/q − 1 q7 + 1
Eε

6(q) q9 − ε/(q3 − ε) (q5 − ε)(q + 1)
F4(q) q4 + 1 q4 − 1

The existence of the elements indicated follows immediately from the following contain-
ments, which in turn follow via Lang’s theorem from the existence of standard subsystems
of the root system.
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E8(q) ≥ Aε
8 (an image of SL(9, q), SU(9, q) with kernel of order (3, q − ε))

E7(q) ≥ Aε
7(q) (an image of SL(8, q), SU(8, q) with kernel of order (4, q − ε))

Eε
6(q) > Aε

2(q
3) and Aε

5(q)A1(q) (central product, no central 3-element).
F4(q) > B4(q) > Dε

4(q) (simply connected)
(In the last case y1 is the image of an irreducible element of SO−(8, q)′, while y2 correponds
to an element of GL4(q) < SO+(8, q)).

Lemma 7.2.9. Let yi ∈ L as above. Then either CG(yi) is a maximal torus, T , of G or
L = F4(2) and i = 2.

Proof. We have yi ∈ T for a maximal torus T < G, so it will suffice to show that CG(yi)
is connected and has dimension equal to that of T . We first consider the dimension of the
centralizer. Now dimCG(yi) = dimCL(G)(yi) (see p.28 of [?]), so it suffices to show that
dimCL(G)(yi) = dim(T ).

We determine the action of yi on L(G) by first computing the restriction of L(G) to the
subgroups indicated above. We do this at the level of algebraic groups, where the information
is given explicitly in 2.1 of [?]. The results are as follows

L(E8) ↓ A8 = L(A8)⊕ VA8(λ3)⊕ VA8(λ6)
L(E7) ↓ A7 = L(A7)⊕ VA7(λ4)
L(E6) ↓ A1A5 = L(A1A5)⊕ (VA1(λ1)⊗ VA5(λ3))
L(E6) ↓ A2A2A2 = L(A2A2A2)⊕ VA2A2A2((λ1, λ1, λ1))⊕ VA2A2A2((λ2, λ2, λ2))
L(F4) ↓ D4 = L(D4)⊕ VD4(λ1)⊕ VD4(λ3)⊕ VD4(λ4).

In the second E6 case VA2A2A2((λ1, λ1, λ1)) is just the tensor product of natural 3-dimensional
modules, one for each A2 factor. In the last case the modules VD4(λi) are the three 8-
dimensional orthogonal representations. We also note that VAk

(λi) is the i-th wedge of a
usual module.

Consider the action of an element yi on L(G). We can write down the precise eigenvalues
of yi on the natural module of the above classical group. Using this, we can determine the
precise action on L(G). In all but two cases we find that CL(G)(yi) has dimension equal to
the rank of G just using the order of yi and that the fixed points are contained in the Lie
algebra of the classical group indicated. One exception is L = F4(q) and yi = y2. Here
yi ∈ GL4(q) and on one of the orthogonal modules the SL4 factor acts as SO+(6, q), fixing a
2-space. So when q = 2, y2 has extra fixed points. This case is allowed for in the statement.
The other exception is where G = E6 > A1A5 with yi = y2 = ab, with a in the A5 factor and
b a noncentral element in the A1 factor. Let a0 ∈ 〈a〉 have prime order for a primitive divisor
of |a|. Then dim(CL(G)(ao)) = 8 and so CG(ao) = A1T5. Then CG(y2) ≤ CG(ao) ∩ CG(b), a
maximal torus, as required.

Finally, we must show that CG(yi) is connected. Let G̃ be the simply connected cover of
G, ỹi a preimage of yi, and T̃ the preimage of T . By II, 3.9 of [?] centralizers of semisimple
elements in G̃ are connected. So we are done except perhaps when G = E6 or E7 and there
is an element g̃ ∈ G̃ such that ỹg̃

i = ỹiz, where 1 �= z is a generator of Z(G̃). Here z has
order 3 (respectively 2) so g̃ centralizes t̃ = ỹ3

i (respectively ỹ2
i ). However, arguing as above
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we find that CG̃(t̃) = T̃ , which is a contradiction (A slight modification is necessary in this
argument when L = 2E6(2) with yi = y2. Here t̃ has order 11 and CG(t̃) = A1T5, which
cannot contain such an element g̃).

It will be convenient to settle the F4(2) case at this point. Here we take x = y1 of order
17. Then Lemmas ?? and ?? imply that CA(x) = 〈x〉, so we obtain the result provided there
exist sufficient number of classes of elements of different order. But there are already enough
classes of unipotent elements (e.g. unipotents of type A1, A2, F4, B2, C3 in the Bala-Carter
notation (see pp.174-177 of [?] and note that these classes exist in all characteristics).

Set Ci = 〈yi〉 and Ai = NA(Ci)/CA(Ci). In addition, write q = pa, for p a prime.

Lemma 7.2.10. (i) CA(yi) = Ti, a maximal torus of Gσ.
(ii) For i = 1, 2, |Ai| divides li , where (l1, l2) = (18a, 18a), (32a, 14a), (18a, 20a), (16a, 16a),

according to G = E8, E7, E6, F4, respectively. In the last case we can take (l1, l2) = (8a, 8a),
if p �= 2.

Proof. Lemma ?? shows that CA(yi) ⊆ T 〈δ, τ〉, where T ⊆ CA(yi) is a maximal torus of
Gσ and where δ, τ are in the coset of a field and graph (or special graph) automorphism.
The latter only occurs for G = E6 or for F4 with p = 2. Suppose a ∈ CA(yi) � T , which
we may take to have prime power order. Then by Lemma ??, a ∈ A � Gσ, and we may
apply Lemma ??. If ??(i) holds, then yi ∈ G(qo) and primitive divisor arguments rule out
all cases except for y1 ∈ E8(q) and y2 ∈ F4(q). Then yi is contained in a maximal torus
of G(qo) so 1.6 of [?] implies |yi| ≤ (qo + 1)8, (qo + 1)4, respectively. This is impossible.
If ??(ii) holds, then L = Eε

6(q). Suppose |a| = 2. Then by 1.1 of [?] either p > 2 and
CG(a) = F4, C4 or p = 2 and CG(a) = F4 or CF4(u) for u a long root element. Taking fixed
points under σ and using order considerations we see that none of these have order divisible
by |yi|. Suppose |a| > 2. If p = 2, then CL(a2) is contained in a canonical parabolic of L, say
P . Order considerations show that the Levi must be of type A5(q)

ε. But then a must induce
an involutory outer automorphism of this Levi centralizing the image of yi. But there is
no such automorphism. We have a similar contradiction if p > 2, from consideration of the
action of a on the subsystem group D = CL(a2). The arguments are similar if ??(iii) holds.
If |a| = 2, then yi is in a maximal torus of 2F4(q) and hence has order at most (q + 1)2, a
contradiction. And if |a| > 2, then yi is in a proper parabolic of 2F4(q), giving a numerical
contradiction. This proves (i).

Now consider (ii). We determine the normalizer NGσ(Ci) from Carter [?]. This normalizer
modulo Ti is the centralizer in the Weyl group of that element in the Weyl group determining
the maximal torus. We use the information in Carter [?] to find this centralizer. We then
obtain a bound for the full normalizer in A by multiplying by the order of the group of field
and graph (including special graph) automorphisms.

We are now in position to prove Proposition ??. Lemmas ?? and ?? imply d(x, yi) ≥ 3
for i = 1, 2. Obviously this will also hold for any generators of Ci. So if we can find 5 such
elements no two of which are conjugate in A, then we have the assertion.
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Consider the orbits on the generators of Ci. We have φ(|Ci|) ≥
√
|Ci|, where φ is the

Euler function. So the number of nonconjugate generators is at least
√
|C1|/|A1|+

√
|C2|/|A2|.

Suppose that this number is less than 5. One checks that if G = E8, then q = 2 and otherwise
q ≤ 4, with the one exception of F4(8).

It remains to work through these small values of q. For all cases other than L(q) = 2E6(2)
one can use the precise numerical information to check that there are indeed at least 5
A-classes of generators of the groups Ci.

Assume L = 2E6(2). Let x = y1 be an element of order 19. So x lies in a torus, T of
Gσ of order 29 + 1/23 + 1 = 19 · 3. Lemma ?? implies that CA(x) = T . Suppose t is an
element of order 3 in this torus. From the construction of y1 we see that CG(t) = A2A2A2

and CL(t) = PSU(3, 8). Consequently, if we choose elements yi not conjugate to elements
of PSU(3, 8), then d(x, yi) ≥ 3. But this is easy as there are sufficiently many unipotent
classes with this property. This completes the proof of Proposition ??.

Lemma 7.2.11. Condition (Gen) holds if L = G2(q)(q �= 2), 3D4(q), or 2F4(q)
′.

Proof. First assume L = G2(q). Then L ≥ Aε
2(q) which contains an element x of order

q2 + εq +1. We take ε = 1, unless this number is divisible by 3, in which case we set ε = −1.
The maximal subsystem subgroups of G are of type A1Ã1 and A2 (also Ã2 for p = 3). Using
this together with our choice of ε and the fact that x is in no proper parabolic subgroup of L,
we see that if 1 �= g ∈ CGσ(x), then CG(g) is a torus. Also Lemma ?? implies CA(x) = 〈x〉.

We can now take yi to be a nontrivial unipotent element multiplied by any semisimple
element in its centralizer. It is easy to find enough choices. Using the Bala-Carter notation
for unipotent elements we take y1 = G2, a regular unipotent element, y2 = G2(a1) ( a regular
unipotent element in an A2 subgroup), y3 a unipotent element of type A1, and y4 = y3z,
where z is a semisimple element in Ã1, the centralizer of the A1 subgroup containing y3. If
p �= 3 let y5 be unipotent of type Ã1. If p = 3, then root elements for long and short roots
are conjugate in A, but here there is an extra class of 3-central elements and y5 is taken as
a representative of this class.

The cases Y = 3D4(q) and 2F4(q)
′ are handled similarly. Here we take x to be a semisimple

element of order q4 + q2 + 1 or q2 + q
√

2q + q +
√

2q + 1, respectively. These numbers are
factors of q6 − 1 and q6 + 1, respectively, and we argue as above that CA(x) is a torus and
that no nonidentity element of this torus centralizes a nontrivial unipotent element. So
again we choose elements yi with nontrivial unipotent part. The existence of such elements
follows easily as in the G2 case, from the containments SL(2, q) · SL(2, q3) < 3D4(q) and
2B2(q) · 2B2(q) < 2F4(q), except when L = 2F4(2)′. Here we take x to have order 13. Then
CA(x) = 〈x〉 and we need only show that there are at least 5 A-classes within L of elements
having order not dividing 13. This can be easily checked from the ATLAS.

This leaves the rank 1 Suzuki and Ree groups.

Lemma 7.2.12. Condition (Gen) holds if L = 2G2(q)(q > 3) or 2B2(q)(q > 2).
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Proof. Let x be an element of order q +
√

3q + 1 or q ± √
2q + 1 according to L = 2G2(q)

or 2B2(q). As in other cases CA(x) = 〈x〉 = T , a torus, and CL(t) = T for each nonidentity
element t ∈ T . It only remains to exhibit appropriate elements y1, . . . , y5.

For 2G2(q) this is easy. Let y1, y2, y3 be elements of order 3, 3, 9, respectively. We choose
these elements so that CL(y1) is a Sylow 3-group, while CL(y2) contains an involution t
(recall that 2G2(q) ≥ L2(q)× 〈t〉). Now let y4 = y2t and let y5 be an element of order q − 1.

Suppose L = 2B2(q), with q > 8. We note that 5 divides q2+1 = (q+
√

2q+1)(q−√2q+1).
Choose x so that |x| is the factor not divisible by 5. Now choose elements y1, . . . , y5 such
that |y1| = 2, |y2| = 4, |y3| = q − 1, |y4| = 5, and |y5| = q ±√

2q + 1, where we choose signs
so that |x| · |y5| = q2 + 1. The result follows.

Finally, consider L = 2B2(8). Let x have order 13. Then CA(x) = 〈x〉. Then choose
y1, y2, y3, y4, y5 as elements of order 2, 4, 4, 5, 7, noting that there are two classes of elements
of order 4 in A (see ATLAS).

The Classical groups

Lemma 7.2.13. Condition (Gen) holds in each of the following situations:
(i) L = PSp(2n, q) for n ≥ 2 and L �= PSp(4, 2).
(ii) L = PSL(n, q) for n ≥ 3 and L �= PSL(3, 2), PSL(3, 4).
(iii) L = PSU(n, q) for n ≥ 3.

Proof. For L = PSp(2n, q), PSL(n, q), or PSU(n, q) for n odd, let x be a generator of the
image in L of a cyclic irreducible torus (Singer cycle) of Sp(2n, q), SL(n, q) or SU(n, q),
respectively. Then |x| = qn +1/(2, q−1), qn−1/(q−1)(n, q−1), or qn +1/(q +1)(n, q +1),
respectively. If L = PSU(n, q) with n even, take x of order qn − 1/(q + 1)(n, q + 1), except
for the cases (n, q) = (4, 3) and (6, 2), which we postpone until later in the proof.

We claim CA(x) is a maximal torus of Gσ, with 〈x〉 of index (2, q−1), (n, q−1), (n, q +1),
respectively. We first use the action on the usual module to argue that CGσ(x) = T , a
maximal torus. Some care must be taken in this as we are working in the simple group
rather than the linear group. In cases where the classical group has a nontrivial center let
y ∈ 〈x〉 be an element of prime order for a primitive divisor of |x|. The order of the center is
not divisible by this prime so CL(y) is covered by the centralizer in the corresponding linear
group. As y has distinct eigenvalues on the natural module we have CGσ(y) = T and hence
CGσ(x) = T .

If CA(x) > T , then x is centralized by an element a ∈ A�Gσ such that aGσ has prime order
and a has prime power order. Lemma ?? together with primitive divisor arguments reduce
us to the case where aGσ = τGσ for τ a graph or graph field automorphism of PSLε

n(q) or
an involutory special graph automorphism of PSp(4, q). If a is in the coset of a special graph
automorphism, then ??(iii) shows that x is contained in a parabolic subgroup of PSp(4, q)
or 2B2(q). The former is clearly impossible. In the latter case q2 + 1 divides the order of
2B2(q), but a variation of 1.6 of [?] which is proved in the reference cited for this result shows
that semisimple elements of 2B2(q) have order at most (

√
q + 1)2, a contradiction. Hence,

L = PSLε(q). Let D be as in ??(ii). If D is reductive, then Dσ cannot contain x (although
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it may contain an element of order a primitive prime divisor of |x|. For example this happens
in certain cases where D is a symplectic group or an orthogonal group. It also happens when
τ is a graph field automorphism of L = PSL(n, q) for n odd and Gδ

∼= PGU(n,
√

q)).
Suppose D is parabolic, forcing p = 2. Since x does not centralize an involution of L we

must have |a| = 2. The parabolic case arose here when D = CG(a) had nontrivial unipotent
radical. But this only occurs for n even where D is the centralizer of a root element in the
corresponding symplectic group. But then x �∈ Dσ. We have now proved the claim.

Choose elements as follows. Consider the subgroups Sp(2r, q)×Sp(2n−2r, q) ≤ Sp(2n, q)
for 1 ≤ r ≤ n; SL(r, q)×SL(n−r, q) ≤ SL(n, q) for 2 ≤ r ≤ n; and SU(r, q)×SU(n−r, q) ≤
SU(n, q) for 2 ≤ r ≤ n. Let ur be a regular unipotent element of the first factor and sn−r

any semisimple element in the second factor. Set dr = ursn−r.
We claim that CA(dr) ∩ CA(x) = 1. Suppose 1 �= g is in the intersection. First note that

CA(dr) = CA(ur) ∩ CA(sn−r). By the claim g ∈ T and so g is a semisimple element of G.
Now CG(g) is a σ-invariant reductive group containing both x and ur. Using the fact that
x ∈ CG(g) together with primitive divisor arguments, we find that there are few possibilities
for CL(g). In particular, either CG(g)σ is irreducible on the natural module so that groups
such as PSp(2a, qb) with n = ab occur, or L = PSU(n, q) with n even and CGσ(g) =
PGLn

2
(q2). In each case CG(g)′ is a commuting product of several isomorphic simple groups

with 〈σ〉 permuting the components transitively. But now consider the embedding of ur in
this centralizer. On the one hand ur is a diagonal element in the commuting product. On
the other hand ur has a single nontrivial Jordan block on the natural module. This is a
contradiction.

We have shown that d(x, dr) ≥ 3. It remains to show that there are enough such elements.
In the symplectic case this is clear if n ≥ 5, since here we can simply take yi = ui for
1 ≤ i ≤ 5. For smaller symplectic groups we take as many unipotent elements as possible
and then adjust them by semisimple factors. For example if L = PSp(4, q), q > 4, we set
y1 = u2 (a regular unipotent element), y2 = u1 and yi = u1zi for 3 ≤ i ≤ 5, where z3, z4, z5

are nonidentity semisimple elements of Sp(2, q) of different orders. If L = PSp(4, 4), then
|x| = 17. Then CA(x) = 〈x〉 so we can take y1, . . . , y5 any nonconjugate elements of order
different from 17. Suppose L = PSp(4, 3). Here |x| = 5 and CA(x) = 〈x, t〉, where t is an
involution with CL(t) = S6 (regard L as PSU(4, 2) and CL(x) as Sp(4, 2)). From ATLAS
we see that L contains 4 A-classes of elements of order 6 only two of which reside in CL(t).
Also root elements of order 3 cannot lie in CL(t). Consequently we can take y1, . . . , y5 as
elements of order 3, 6, 6, 9, 12, respectively.

Now consider the cases L = PSL(n, q), PSU(n, q). Note that PSU(4, 2) ∼= PSp(4, 3) was
handled in the previous paragraph. For n ≥ 6 we just use u2, . . . , u6. For smaller values of
n ≥ 4 multiply the ui by semisimple elements as above. The details are quite easy, except
for the case PSL(4, 3). Here we take y1 = u4, y2 = u2, y3 = u2s, y4 = u2t, y5 = z, where s, t
are elements of order 2, 4 centralizing u2 and z has order 13.

At this point we consider the previously excluded cases L = PSU(4, 3) and L = PSU(6, 2).
In these cases take x to be a semsimple element of order 7, 11 respectively. We then find
that CA(x) = 〈x〉 × Z where Z is cyclic of order q + 1 with Z ∩ L = 1. If 1 �= z ∈ Z, then
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CL(z) = SU(n− 1, q). We can now choose elements y1, . . . , y5 as follows. If L = PSU(6, 2)
let y1 be a regular unipotent element, y2 of order 15, y3 of order 7 in a subgroup SL(3, 4), y4

a regular unipotent element in SL(3, 4), and y5 an element of order 10. If L = PSU(4, 3),
let y1 be a regular unipotent element, y2 an element of order 5, y3 an element of order 6
(there are two classes, choose the one not represented in SU(3, 3)), y4 an element of order 4
in PSL(2, 9), and y5 a unipotent element of PSL(2, 9). From what has been established so
far, we obtain the result in both these cases.

We use a slightly different argument for L = PSL(3, q), PSU(3, q) as there are fewer
classes of unipotent elements. Let x be as before and set y1 = u3 (a regular unipotent
element) and y2 = u2 (a root element). We are assuming q �= 2, 4 for PSL(3, q) so we can
take y3 = u2s, for 1 �= s of order dividing q−1, q +1, respectively. There is a cyclic maximal
torus of SL(3, q) and SU(3, q) of order q2 − 1 and y4, y5 are taken as images in PSL(3, q)
(resp. PSU(3, q)) of members of this torus. We need to verify that there are two such classes
and that they have distance at least 3 from x.

The latter statement is established as above, by looking at the full centralizer of an element
centralizing both x and yi for i = 4, 5. For the former, first note that A-fusion in the torus
is controlled by the normalizer, which induces a group of order 4a, where q = pa. Hence,
in order to get two nonidentity classes it will suffice that (q2 − 2)/3 · 4a ≥ 2. This holds
provided q �= 2, 3, 4, 5, 8. If q = 3 or 5, the torus in question has an element of order 8 so we
can choose elements y4, y5 of order 4 and 8. Similarly we can choose elements of different
order when q = 8. So we have the result, except for the case PSU(3, 4). Here we note that
there are at least two classes of elements of order 5 and we take y4, y5 such elements.

Lemma 7.2.14. Let L = PSL(2, q). Condition (Gen) holds except when q = 5, 7, 8, 9, 11, 16,
or 27.

Proof. Let x be a nonidentity unipotent element, so that CA(x) = U〈δ〉 for δ a field automor-
phism. Then ??(i) implies d(x, y) ≥ 3 for any semisimple element y ∈ L such that y is not
centralized by a nontrivial field automorphism of L. In particular this will hold if y is taken
as a generator of a cyclic maximal torus of order (q − 1)/d or (q + 1)/d, for d = (2, q − 1).

Using the Euler φ-function we see that there are at least
√

(q − 1)/d,
√

(q + 1)/d such ele-
ments, respectively. Under the action of the normalizer of this torus the generators fall into
classes of length 2a. Consequently, we can find at least 5 such conjugacy classes provided

2(
√

(q − 1)/d)/2a ≥ 5.

So the assertion holds provided q − 1 ≥ 25da2. A direct check shows that this condition is
satisfied except for the following cases:

p = 2, a ≤ 11; p = 3, a ≤ 7; p = 5, a ≤ 4; p = 7, a ≤ 3;

p = 11, 13, 17, a ≤ 2 q = 19, . . . , 47.

All cases, except PSL(2, 13) and PSL(2, 25) can be checked directly, using precise infor-
mation on the number of generators of the tori. For example, if L = PSL(2, 64) there are
48 generators of a torus of order 65, falling into 4 orbits under the normalizer in A. The
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cases can all be settled in this way and details are left to the reader. Consider PSL(2, 13).
Choose y1, . . . , y5 of order 2, 3, 6, 7, 7 (note that A has 3 classes of elements of order 7). Since
CA(x) = 〈x〉, the result follows. Finally, consider PSL(2, 25). Here we take x to be an ele-
ment of order 13. Then CA(x) has order 26 and the involution in this group has L-centralizer
equal to 〈x〉. So just choose elements y1, . . . , y5 of order 3, 4, 5, 6, 12 to get the result.

The final lemma of this subsection deals with orthogonal groups. We ignore odd dimensional
orthogonal groups in even characteristic, as these were handled previously as symplectic
groups.

Lemma 7.2.15. Let L = PSOε(n, q)′ for n ≥ 7. Then (Gen) holds unless L = PSO+(8, 2).

Proof. For later reference we first note that SOε(2k, q) contains an element of order qk − ε,
which generates a maximal torus. For p > 2, this element is not contained in SOε(2k, q)′,
although the derived group does contain the square of the element.

First assume that n = 2k + 1 is odd, so that there are no graph automorphisms. Take
x to be a regular unipotent element. Then CA(x) = U〈δ〉, for δ a field automorphism. It
will suffice to find a sufficient number of semisimple elements y centralized by no element of
U〈δ〉. We note that ??(i) shows that elements of U〈δ〉 � U have fixed points on G of the
form G(qo) for qo < q (as usual we identify an automorphism of L with an extension to G).

Temporarily exclude L = PSO(7, 3)′. In the remaining cases choose elements as fol-
lows. Let y1 ∈ SO+(2k, q)′ have order (qk − 1)/2 and y2 ∈ SO−(2k, q)′ have order (qk +
1)/2. Similarly, choose elements a3, a4 of order (qk−1 + 1)/2, (qk−1 − 1)/2, respectively, in
groups SO−(2k − 2, q)′, SO+(2k − 2, q)′ and let b3, b4 be nontrivial semisimple elements of
CL(SO±(2k− 2, q)′) ∼= SO(3, q)′. Set y3 = a3b3 and y4 = a4b4. If k is odd, let y5 be a power
of y2 of order (qk + 1)/(q + 1) and if k is even, let y5 = a5b5, where a5 ∈ 〈a3〉 has order
(qk−1 + 1)/(q + 1) and b5 = b3.

We claim that CGσ(yi) is a maximal torus for 1 ≤ i ≤ 5. The claim is equivalent to
the assertion that CG(yi) is a maximal torus. If this is not the case then CG(yi) contains
a simple component which would centralize the preimage of yi in its action on the natural
module, hence stabilize each eigenspace. However, by choice of yi each eigenspace either has
dimension 1 or the eigenvalue is −1 with corresponding eigenspace being nondegenerate of
dimension at most 2. In any case the eigenspace can afford only the trivial action of the
simple factor, a contradiction. This gives the claim and then Lemma ??(i) implies CA(yi) is
torus. Then the first paragraph gives d(x, yi) ≥ 3 for i = 1, . . . , 5.

If L = PSO(7, 3)′, set y1, y2, y3, y4, y5 elements of order 10, 13, 20, 14, 7, respectively. Using
ATLAS we see that none of these elements is centralized by a nontrivial unipotent element
of L. On the other hand, CA(x) = U a unipotent group. So the result holds here as well.

Now suppose n = 2k. First assume k ≥ 5. We again take u to be a regular unipotent
element, but here we must be more careful as CA(u) = U〈τ, δ〉 where τ is a graph automor-
phism which centralizes large parts of maximal tori. Let y1 be the image in L of an element
of SOε(2k, q)′ of order (qk − ε)/d, where d = 1 or 2, according to whether q is even or odd.

There exist subgroups SO−ε(2k − 4, q) × SO−(4, q) and SOε(2k − 4, q) × SO+(4, q) of
SOε(2k, q). From the first subgroup we take y2 = a2b2 and y3 = a3b3 where a2 = a3 is
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the image in L of an element of order qk−2 + ε while b2, b3 are images of elements of order
q2 − 1, q2 + 1, respectively. For p odd, the elements ai, bi do not lie in the derived group of
SOε(n, q), but their product does.

Let y4 = a4b4 be in the second group, with a4 of order qk−2 − ε and b4 of order q2 − 1
(if q = 2 choose b4 to be in one of the SL(2, 2) factors of SO+(4, 2)). Each of y2, y3, y4 are
products of two elements and these elements may not have relatively prime orders. So the
order of yi may be less than that of the product of the orders of the factors. More important
than the order is the action of a preimage of yi on the orthogonal module and this action is
clear from the description.

We require one more element. If qk−ε has a primitive prime divisor of order less than |y1|,
then we can take y5 to be an element of this order. If there is no such element, then either
(i) qk − ε = p2s

+ 1; or (ii) qk − ε = 2k − 1 = r, with r prime; or (iii) qk − ε = 3k − 1 = 2r
with r prime. In the last two cases there are r − 1 generators of 〈y1〉 and we can choose y5

as a generator not A-conjugate to y1 (eigenvalue arguments show that NA(〈yi〉)/CA(yi) has
order at most 2k). If (i) holds we can factor qk−2 + ε, take an element a5 ∈ 〈a3〉 of order a
primitive prime divisor and then set y5 = a5b5, where b5 = b2

3 (we use the square to obtain
an element in SO−(4, q)′).

We claim that for 1 ≤ i ≤ 5, CA(yi) is a torus of Gσ. As above, eigenspace arguments show
that CGσ(yi) is a torus. Next, ??(i) and primitive divisor arguments reduce consideration to
elements in the coset of a graph automorphism. Let a be as in ??(ii), with |a| a power of 2.
Note that a is in the image of the full orthogonal group. If p = 2, then a is an involution, as
yi centralizes no involution in Gσ. Then a is of type bj in the notation of [?] and 8.7 of [?]
shows that semisimple elements in CL(a) have fixed points on the orthogonal module. This
is a contradiction as yi has no fixed points.

Suppose p is odd. Let â and ŷi denote preimages of a, yi in SO(n, q). Then â centralizes
ŷi modulo the center, so â centralizes ŷ2

i . Consider the eigenspaces of â. If β is an eigenvalue
other then ±1, then β−1 must also be an eigenvalue of equal multiplicity as otherwise, â
would not preserve the orthogonal form. As det(â) = −1, we see that the eigenspace for
eigenvalue −1 must be nondegenerate of odd multiplicity. However, by choice of yi we see
that ŷ2

i leaves invariant no subspace of odd dimension. This establishes the claim and the
result follows.

We are left with the cases L = PSOε(8, q)′, excluding L ∼= PSO+(8, 2). First assume
q > 5 for ε = 1 and q > 3 for ε = −1.

Let x be a regular unipotent element. Choose y1 to be the image in L of an element of
order q4 − ε/d in SOε(8, q)′ for d = 1 or 2. Write q = pa.

We first claim that CA(y1) is a maximal torus of Gσ and that NA(〈y1〉)/CA(〈y1〉) has order
dividing 16a.

Using the description of 〈y1〉 as a maximal torus, we see that it is normalized by a group
of field automorphisms of L of order a. Next argue that for ε = 1 no element in the coset
of a nontrivial triality graph automorphism can normalize 〈y1〉. Indeed, triality morphisms
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permute the 8-dimensional orthogonal representations, whereas if v ∈ 〈y1〉 has order a prim-
itive prime divisor of |y1|, then v̂ ∈ SL4(q) has no fixed points on two of these modules, but
a 2-dimensional fixed point space on the third.

The usual arguments show that CA(y1) is a maximal torus of Gσ and NGσ(〈y1〉) induces
a group of order 8 (the centralizer of an element of order 4 in the Weyl group). The claim
now follows from the structure of A.

At this point we argue as in ?? that we can choose y2, . . . , y5 as nonconjugate generators
of 〈y1〉. For q > 11 this follows easily from numerical estimates, and in smaller cases one
uses precise information on the number of generators. The result follows.

This leaves us with several small cases. If L ∼= PSO−(8, 2), let x ∈ L be an element of
order 17. Then CA(x) = 〈x〉 and so we can take y1, . . . , y5 as any classes corresponding to
elements of L having order other than 17.

If L ∼= PSO−(8, 3), let x ∈ L be an element of order 41. Then CA(x) = 〈x, t〉, for t an
involution. The only possibility is that CL(t) = L2(81). This centralizer is diagonal in a
group A4

1 < G = D4. Let y1, . . . , y5 be unipotent elements of type A1, A1A1, A1A1A1, A3, D4

(in the Bala-Carter notation), respectively. From the action on the orthogonal module we
see that none of these is represented in CL(t).

Assume L = PSO+(8, 5). Let x (a regular unipotent element) and y1 be as before. Here
〈y1〉 has 48 generators so by the above claim there are at least 3 orbits on generators so we
take additional orbit representatives y2, y3. Now set y4 = a4b4, for a4 ∈ SO−(6, 5) of order
53 + 1 and b4 ∈ SO−(2, 5) of order 5 + 1 and y5 = a5b5, for a5 = a6

4 and b5 = a2
4. The earlier

arguments show that CA(yi) is a torus for each i and the result follows.
Finally, consider L = PSO+(8, 3)′. Here we take x to be an element of order 20, realized

as an element of order 5 in SO−(4, 3) times an element of order 4 in a commuting SO−(4, 3).
Write x = x5x4 a product of commuting elements of order 5, 4, respectively. Then CA(x) =
CA(x5) ∩ CA(x4). Each of CA(x5) and CA(x4) contains a unique subgroup SO−(4, 3)′ ∼=
PSL(2, 9). Hence CA(x) normalizes each factor of SO−(4, 3)′ × SO−(4, 3)′. We now argue
that |CA(x)| = 80 and that if 1 �= r ∈ CA(x) then either r has A-centralizer contained in
O−(4, 3)·O−(4, 3) or r is an involution with CL(r)′ = SO−(6, 3)′. Choose y1, y2 as elements of
order 13, 26, respectively, and let y3, y4, y5 be unipotent elements of types A1A1A1, D4, D4(a1)
respectively. The result follows.

7.3. The nongeneric cases.

The purpose of this subsection is to show that when L is one of the groups,

PSL(2, q), q = 5, 7, 8, 9, 11, 16, 27; PSL(3, 4) or PSO+(8, 2),

then G satisfies property (31
2
). Since A5

∼= PSL(2, 5) is the only simple group such that
L contains only three Aut(L) conjugacy classes and it required much of our attention in
subsection ??, we delay it to the end of this subsection. We start with,

Lemma 7.3.1. Assume L ∼= PSL(2, 8), then G has the property (31
2
).
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Proof. Let B1, B2, B3 ⊆ L be the Aut(L) conjugacy classes of elements of order 3, 7, 9,
respectively. Let C1, . . . , C4 ⊆ L be the Aut(L) conjugacy classes of elements of order
3, 7, 9, 2 respectively.

We show that the hypotheses (c) of Proposition ?? hold; to show hypothesis (c2) of
Proposition ??, we prove that the assumptions in part (a) or (b) of Lemma ?? are satisfied.
We first claim that:

(*) For all u, v ∈
⋃3

i=1 Bi such that 〈u〉 ∩ 〈v〉 = 1, dAut(L)(u, v) > 3.

Indeed, assume u ∈ B1 is of order 3. Then it is easy to check that every element w ∈
∆≤3

Aut(L)(u), must either centralize u or one of the 9 involutions in NL(〈u〉) ∼= D18. Thus if

w ∈ L, then either w belongs to the subgroup of order 9 in CL(u), or w is an involution.
Also since 〈u〉 ∩ 〈v〉 = 1, v can not belong to the subgroup of order 9 in CL(u). If u ∈ B2,
then (*) is obvious and if u ∈ B3, then u3 ∈ B1 and we saw that dAut(L)(u

3, v) > 3, and
hence also dAut(L)(u, v) > 3. This shows (*), and hence hypothesis (a) of Lemma ??, for
B ∈ {B1, . . . , B3} and C ∈ {C1, . . . , C3} holds. It remains to show that:

(**) Let C be the class of involutions of Aut(L). Then for each j ∈ {1, 2, 3},
if we set B = Bj, then the pair B, C satisfy hypothesis (b) of Lemma ??.

Indeed let v ∈ C be an involution and 1 �= t ∈ CAut(L)(v). We’ll find u′ ∈ B such that

dAut(L)(u
′, v) ≥ 3 ≤ dAut(L)(u

′, t),(i)

note that we may assume that the order of t is a prime. Assume t is an involution. The
reader may easily verify that we can choose u′ ∈ B not inverted by t or v and that such
a u′ satisfies (??). Assume that t has order 3 (t is an outer automorphism). Note that
CL(t) ∼= S3 and so any u′ ∈ B1 such that u′ /∈ CL(t) is of distance ≥ 3 from t in ∆Aut(L).
Thus any u′ ∈ B1 not inverted by v satisfies property (??). A similar argument shows that
any element u′ ∈ B2 ∪B3, not inverted by v satisfies (??).

Lemma 7.3.2. Assume L ∼= PSL(2, 7), then G has the property (31
2
).

Proof. The proof here is similar to the proof of Lemma ??. Let B1, B2, B3 ⊆ L be the Aut(L)
conjugacy classes of elements of order 3, 4, 7, respectively. Let C1, . . . , C4 ⊆ L be the Aut(L)
conjugacy classes of elements of order 3, 4, 7, 2 respectively.

We show that the hypotheses in (c) of Proposition ?? holds; again, to show hypothesis
(c2) of Proposition ??, we prove that the assumptions in part (a) or (b) of Lemma ?? are
satisfied. We claim that:

(*) (1) For u ∈ B3 and 1 �= v ∈ L, with 〈u〉 �= 〈v〉, we have dAut(L)(u, v) > 3.

(2) For u ∈ B1, we have |B1 ∩∆≤3
Aut(L)(u)| = 8, and |B2 ∩∆≤3

Aut(L)(u)| = 6.

(3) For u ∈ B2, we have |B1 ∩∆≤3
Aut(L)(u)| = 8, and |B2 ∩∆≤3

Aut(L)(u)| = 10.

Part (1) of (*) is obvious. For part (2) of (*) assume u ∈ B1 is of order 3. Let t ∈ CAut(L)(u) be
the unique involution. Then every element at distance ≤ 3 from u in ∆Aut(L) centralizes one
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of the 7 involutions in CAut(L)(t) ∼= D12. Since there are 4 outer such involutions (including
t) and 3 inner such involutions, part (2) of (*) follows.

Assume next that u ∈ B2. Then every element at distance ≤ 3 from u in ∆Aut(L),
centralizes one of the 9 involutions in CAut(L)(u

2) ∼= D16. Since there are 4 outer such
involutions and 5 inner such involutions, part (3) of (*) follows. Now (*) implies that
hypothesis (a) of Lemma ?? holds for all B ∈ {B1, . . . B3} and C ∈ {C1, . . . , C3}. It remains
to show:

(**) Let C be the class of involutions of Aut(L). Then for each j ∈ {1, 2, 3},
if we set B = Bj, then the pair B, C satisfy hypothesis (b) of Lemma ??.

Indeed let v ∈ C be an involution and 1 �= t ∈ CAut(L)(v). We’ll find u′ ∈ B such that (??)
holds. Note again that we may assume that t has prime order, so we may assume that t
is an involution. Since CAut(L)(v) ∼= D16 has 4 outer involutions and 5 inner involutions, it

follows that |B1 ∩ ∆≤2
Aut(L)(v)| = 8 and that |B2 ∩ ∆≤2

Aut(L)(v)| = 10. Also, if t /∈ L, then

|B1 ∩ ∆≤2
Aut(L)(t)| = 8, and |B2 ∩ ∆≤2

Aut(L)(t)| = 6. An easy counting argument now shows

(**).

Lemma 7.3.3. Assume L ∼= A6, then G has the property (31
2
).

Proof. Let B1, B2, B3 ⊆ L be the Aut(L) conjugacy classes of elements of order 3, 4, 5 and let
C1, C2, C3, C4 ⊆ L be the Aut(L) conjugacy classes of elements of order 2, 3, 4, 5, respectively.
We show that given B ∈ {B1, . . . B3} and C ∈ {C1, . . . , C4}, hypothesis (b) or hypothesis (c)
of Lemma ?? holds for B, C. Then, by Proposition ??(c), G has the property (31

2
).

Write B1 = B1
1 ∪ B2

1 , where B1
1 is the L-class of 3-cycles and B2

1 is the other L-class of
elements of order 3. Given 1 �= v ∈ L and t ∈ CAut(L)(v), we’ll find u1

1 ∈ B1
1 , u2

1 ∈ B2
1 , u2 ∈ B2

and u3 ∈ B3 (depending on t), such that each u′ ∈ {u1
1, u

2
1, u2, u3} satisfies the requirements

in hypothesis (b) or (c) of Lemma ??. If u′ satisfies the requirements in hypothesis (c) of
Lemma ??, we’ll write π(u′, t) for the unique path of hypothesis (c), and we’ll indicate an
h′ ∈ L as required in hypothesis (c). We note now that given 1 �= v ∈ L, if we can show
that for all t ∈ CAut(L)(v), there exists u1

1 as above, and if, in addition, CAut(L)(v) contains
an element interchanging B1

1 and B2
1 , then we can also find u2

1 as above. Note further that
to establish hypothesis (b) or (c) of Lemma ??, we may assume without loss that the order
of t is a prime. Thus we distinguish the following cases.

Case 1: v = (12)(34).
Here CAut(L)(v) contains an involution interchanging B1

1 and B2
1 so we only need to establish

the existence of u1
1, u2 and u3. To simplify we denote u1 = u1

1. Since CAut(L)(v) is a 2-group,
we may assume that t is an involution.
Subcase 1: t ∈ L.
If t = (13)(24) take u1 = (145), u2 = (1346)(25) and u3 ∈ B3 not inverted by v or t. The
case t = (14)(23) is a conjugate case. If t = (12)(56), take u1 = (136), u2 = (1236)(45) and
u3 ∈ B3 not inverted by v or t. Hypothesis (b) holds in this case. The case t = (34)(56) is a
conjugate case.
Subcase 2: t is a transposition or a product of 3 transpositions.
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Suppose t is a transposition. Then t = (12), (34), or (56). Let u1 = (135). We now list the
path π(u1, t) and the element h′, for the 3 possibilities of t.

t = (12) π(u1, t) = (135), (46), (12); h′ = (124).

t = (34) π(u1, t) = (135), (26), (34); h′ = (124).

t = (56) π(u1, t) = (135), (24), (56); h′ = (456)

We have uh′
1 = (135)(124) (resp. (135)(124), (135)(456)), so uh′

1 = (235) (resp. (235), (136))
so in all cases uh′

1 ∈ ∆≥3
Aut(L)(v). Also, (46)(124) = (16) /∈ ∆Aut(L)((12)), (26)(124) = (46) /∈

∆Aut(L)((34)) and (24)(456) = (25) /∈ ∆Aut(L)((56)). We get hypothesis (c).
Next let u2 = (1235)(46) if t = (34) or (56), and let u2 = (1345)(26) if t = (12). Finally,

let u3 ∈ B3, be an element not inverted by v. We get hypothesis (b).
Suppose now that t is a product of 3 transpositions. If t = (1i)(2j)(56), we take u1 = (1j5),

u2 = (1i25)(j6) and u3 ∈ B3, while if t = (12)(34)(56), we take u1 = (135), u2 = (1235)(46)
and u3 ∈ B3. We get hypothesis (b).
Subcase 3: L〈t〉 ∼= PGL(2, 9).
We note that ∆≤2

Aut(L)(t) centralizes one of the 11 involutions in CAut(L)(t) ∼= D20 and hence

B1 ∩∆≤2
Aut(L)(t) = ∅, | B2 ∩∆≤2

Aut(L)(t) |= 10 and | B3 ∩∆≤2
Aut(L)(t) |= 24. Thus any u1 ∈ B1,

such that dAut(L)(u1, v) ≥ 3 will do. Next note that any two distinct elements r, s ∈ B2 ∩
∆≤2

Aut(L)(t), satisfy 〈r2, s2〉 ∼= D10. So one of u2 = (1235)(46) or u2 = (1236)(45) is at distance

≥ 3 from both v and t in ∆Aut(L). Finally, any element u3 ∈ B3 � ∆≤2
Aut(L)(t) which is not

inverted by v, is at distance ≥ 3 from both v and t in ∆Aut(L). Hypothesis (b) holds in this
case.

Case 2: v = (123).
If t = (456) (or (465)), let u1

1 = (145). Then

π(u1
1, t) = (145), (23), (456).

We take h′ = (126). Then (u1
1)

h′
= (145)(126) = (245) ∈ ∆≥3

Aut(L)(v) and (23)h
′
= (23)(126) =

(36) /∈ ∆Aut(L)(456). We get hypothesis (c).
Next we let u2

1 = (124)(356), u2 = (2345)(16) and we take u3 ∈ B3, to get hypothesis (b).

If t = (123)(456) take u1
1 = (145). Let u2

1 = (124)(356). Then

π(u2
1, t) = (124)(356), (15)(26)(34), (123)(456).

We take h′ = (124). Then (u2
1)

h′
= u2

1 ∈ ∆≥3
Aut(L)(v) and ((15)(26)(34))h

′
= ((15)(26)(34))(124) =

(13)(25)(46) /∈ ∆Aut(L)(123)(456).
Next we let u2 = (3456)(12) and take u3 ∈ B3, to get hypothesis (b). The case when

t = (132)(465), (123)(465) or (132)(465) are handled similarly.
If t = (45), let u1

1 = (346). Then

π(u1
1, t) = (346), (12), (45).
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We take h′ = (125). Then (u1
1)

h′
= u1

1, and (12)h
′
= (12)(125) = (25) /∈ ∆Aut(L)((45)). We get

hypothesis (c).
Next we let u2

1 = (124)(356), u2 = (2346)(15) and u3 ∈ B3, to get hypothesis (b). The
cases v = (46) or (56) are conjugate cases.

In cases 3 and 4 below, CAut(L)(v) contains an element interchanging B1
1 and B2

1 so we
only need to establish the existence of u1

1, u2 and u3. To simplify we denote u1 = u1
1.

Case 3: v = (1234)(56).
Assume that t = (56). Let u1 = (125). Then

π(u1, t) = (125), (34), (56).

We take h′ = (356). Then uh′
1 = (125)(356) = (126) ∈ ∆≥3

Aut(L)(v) and (34)h
′

= (34)(356) =

(45) /∈ ∆Aut(L)((56)). We get hypothesis (c).
Next let u2 = (2346)(15) and u3 ∈ B3, to get hypothesis (b).
Assume that t = (13)(24), then any ui at distance ≥ 3, from t in ∆Aut(L), 1 ≤ i ≤ 3, will

give us hypothesis (b).
Case 4: v = (12345).

Here t is the unique (outer) involution in CAut(L)(u). Take u1 ∈ B1 (any such u1), u2 ∈ B2

such that u2 is not centralized by one of the 5 involutions in CL(t) ∼= D10. Finally, take
u3 ∈ B3 such that u3 is not centralized by one of the 6 outer involutions in CAut(L)(t).
Hypothesis (b) holds in this case.

Lemma 7.3.4. Let L ∼= PSL(3, 4) and let B be the conjugacy class of elements of Aut(L)
of order 7. Let 1 �= w ∈ Aut(L), then

δ(w) := |{u ∈ B | dAut(L)(u,w) ≤ 2}| < 1

2
|B|.

It follows that G has the property (31
2
).

Proof. By Corollary ??, to show that G has the property (31
2
), it suffices to show that

δ(w) < 1
2
|B|, for all 1 �= w ∈ Aut(L), and that L contains at least five distinct Aut(L)

classes. Since L contains the five Aut(L) classes C1, · · · , C5 of elements of order 2, 3, 4, 5, 7
respectively, it remains to show that δ(w) < 1

2
|B|, for all 1 �= w ∈ Aut(L).

Note that we may assume that the order of w is a prime number. Let C be the conjugacy
class of w in Aut(L). Let u ∈ B, and recall that CAut(L)(u) = 〈u〉 × Su, with Su

∼= S3. Let
t ∈ Su be an involution and let r ∈ Su be an element of order 3. Then CAut(L)(r) ∼= 7 : 6× 3

and CAut(L)(r)∩CAut(L)(t) ∼= 7 : 6. Since any element in ∆≤2
Aut(L)(u) centralizes some element

of prime order in CAut(L)(u), we see that any element in ∆≤2
Aut(L)(u), whose order is a prime

number either centralizes one of the 3 involutions in Su or is an outer automorphism of L
of order 3 and centralizes r. We use the notation of the ATLAS, pg. 24, for the conjugacy
classes of elements in Aut(L).

If C = 5A, then δ(w) = 0, so assume that C �= 5A. The computations of δ(w) for C = 3B
or 3C are slightly different and will be postponed to the end of the proof. To compute δ(w)
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we count the number of pairs

δ(C,B) := {(u,w) | u ∈ B,w ∈ C and dAut(L)(u, v) ≤ 2},
in two ways. Let t ∈ Su be an involution and set M = CAut(L)(t) ∼= L3(2) : 2 × 2. As we
noted, every w ∈ C with dAut(L)(u,w) ≤ 2 centralizes one of the three involutions in Su,
hence we get that δ(C,B) is at most 3 · |B| · |M ∩C|. On the other hand δ(C,B) = |C| · δ(w)
so we see that

δ(w) ≤ 3 · |B| · |M ∩ C|
|C| .

Hence we must show that

|M ∩ C|
|C| <

1

6
.

Since the number |M |
|Aut(L)| appears many times in our calculations, we note that |M |

|Aut(L)| = 1
360

.

Table 1 summarizes our computation. We now explain our computations briefly, only in case
we feel an explanation is needed. We note that the second column of the table gives the
number of M -classes in C ∩M and if it is more than one the third column gives the order
of the possible centralizers.

C |CM(w)| |CAut(L)(w)| |M∩C|
|C|

2A 1 25 28 · 3 24
360

3A 1 22 · 3 22 · 33 9
360

7A 1 14 42 3
360

2B 1 23 · 3 25 · 33 36
360

2C 2 |M |, 25 25 · 3 · 7 1
360

+ 21
360

= 22
360

2D 1 24 240 10
360

Table 1

Notice that in the cases C = 2B, 2D, C ∩M is contained in a subgroup of M isomorphic
to L3(2) : 2 and for w ∈ C ∩M , w /∈ L. Hence |CM(w)| = |CM∩L(w)| · 4 = 6 · 4 = 24. Also,
for C = 2C, we have that (C ∩M) � {t} is contained in the subgroup (M ∩ L)× 〈t〉, so for
w ∈ (C ∩M) � {t}, we have |CM(w)| = 25.

Next assume that C = 3B or 3C. We now must count the number of pairs δ(C,B) in a
slightly different way. Given u ∈ B, we already saw that every w ∈ C with dAut(L)(u,w) ≤ 2
centralizes the unique subgroup 〈r〉 of order 3 in CAut(L)(u). Now CAut(L)(r) ∼= 7 : 6 × 3,
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so there are 7 · 6 + 2 = 44 elements of order 3 in CAut(L)(r). Hence δ(C,B) ≤ 44 · |B|
and also δ(C,B) = |C| · δ(w). So δ(w) ≤ 44

|C| |B| and we need to show that 44
|C| < 1

2
. But

|C| ≥ |Aut(L)|
60·6 = 28·33·5·7

23·32·5 = 25 · 3 · 7, and hence 44
|C| < 1

2
.

Lemma 7.3.5. Let L ∼= PSO+(8, 2) and let B be the conjugacy class of elements of Aut(L)
of order 7. Let C be any nonidentity conjugacy class of elements in Aut(L), and let w ∈ C.
Then, δ(w) := |{u ∈ B | dAut(L)(u,w) ≤ 2}| ≤ 3

10
|B|, unless either C is the class of central

involutions of Aut(L), or C is a class of outer automorphisms, in which case δ(w) ≤ 3
5
|B|.

It follows that G has the property (31
2
).

Proof. Let C1, . . . , C5 ⊆ L be any five distinct Aut(L) conjugacy classes such that Ci is
not the class of central involutions, for all 1 ≤ i ≤ 5. Notice that once we will prove the
numerical bounds on δ(w), all the hypotheses of Corollary ?? will be satisfied and so by
Corollary ?? it will follow that G has the property (31

2
).

The calculations here are very similar to those in the proof of Lemma ??. Here also for
u ∈ B, we have CAut(L)(u) = 〈u〉 × Su, with Su

∼= S3. The same assertions made in ?? hold
here so we may consider only conjugacy classes C such that the order of the elements in C
is a prime number. Let t ∈ Su be an involution and let r ∈ Sw be an element of order 3.
Recall that CAut(L)(r) ∼= G2(2) × 3 and that CAut(L)(r) ∩ CAut(L)(t) ∼= G2(2). Again, as in

the proof of Lemma ??, any element in ∆≤2
Aut(L)(u), whose order is a prime number, either

centralizes one of the 3 involutions in Su or is an outer automorphism of L of order 3 and
centralizes r. As in the proof of Lemma ??, this fact will be used in the calculations below.

We use the notation of the ATLAS, pg. 86, for the conjugacy classes of elements in Aut(L).
We start by dealing with classes C which are not outer automorphisms of order 3. Let t ∈ Su

be an involution, and set M = CAut(L)(t) ∼= PSp(6, 2)× 2. As in the proof of Lemma ??, for
w ∈ C, we have

δ(w) ≤ 3 · |M ∩ C|
|C| · |B|.

so we must compute |M∩C|
|C| . As in the case of PSL(3, 4) we have |M |

|Aut(L)| = 1
360

.

Table 2 summarizes our computations. The 5-th column of Table 2 indicates to which class
(or classes) of PSp(6, 2), C ∩M ∩L corresponds to. In the case of the outer automorphisms
{2F, 2G}, the 5-th column indicates the class of the projection of the involution to PSp(6, 2),
in PSp(6, 2)× 2.

The case C = 2B is the same as C = 2C or C = 2D. The case C = 3A is the same as
C = 3B or C = 3C. The case C = 5A is the same as C = 5B or C = 5C.

Next assume that C = 3F or 3G. We now must count the number of pairs δ(C,B) in a
slightly different way. Given u ∈ B, we already saw that every w ∈ C with dAut(L)(u,w) ≤ 2
centralizes the unique subgroup 〈r〉 of order 3 in CAut(L)(u). Now CAut(L)(r) ∼= G2(2) × 3.
We first count the outer 3-elements in this group. These have the form r or r2 times an
element of order 1 or 3 in G2(2)′ ∼= PSU(3, 3). This group has 28 Sylow 3 subgroups, each
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C |CM(u)| |CAut(L)(u)| C ∩M ∩ L |M∩C|
|C|

2A 1 210 · 32 213 · 34 2B 72
360

2B 1 210 · 32 · 5 211 · 32 · 5 2A 2
360

2E 2 210 · 3, 28 · 3 211 · 32 2C, 2D 6
360

+ 24
360

= 30
360

3A 1 25 · 33 · 5 27 · 35 · 5 3A 36
360

3D 1 24 · 34 24 · 36 3B 9
360

3E 1 23 · 33 24 · 35 3C 18
360

5A 1 22 · 3 · 5 23 · 3 · 52 5A 10
360

7A 1 14 42 7A 3
360

2F 2 |M |, 210 · 32 · 5 2 · |PSp(6, 2)| 1A, 2A 1
360

+ 63
360

= 64
360

2G 3 210 · 32, 210 · 3, 28 · 3 210 · 32 2B, 2C, 2D 1
360

+ 3
360

+ 12
360

= 16
360

Table 2

of order 27. So δ(C,B) ≤ 28 · 27 · 2 · |B|. Also δ(C,B) = |C| · δ(w), hence δ(w) ≤ 28·27·2
|C| · |B|.

It suffices to show 28·27·2
|C| < 3

5
, which is easy.

Lemma 7.3.6. Let L ∼= PSL(2, 27), then G has the property (31
2
).

Proof. Let B be the Aut(L) class of elements of order 13. We show that δ(w) := |{u ∈ B |
dAut(L)(u,w) ≤ 2}| < 1

2
|B|, for all 1 �= w ∈ Aut(L). Since L contains the five distinct Aut(L)

conjugacy classes C1, . . . , C5 of elements order 2, 3, 7, 13 and 14 respectively, Corollary ??
completes the proof.

Now given u ∈ B, we have CAut(L)(u) = 〈u〉〈t〉, where t is an outer involution in Aut(L).

It follows that ∆≤2
Aut(L)(u) = CAut(L)(t) � {1}. Next we have that M := CAut(L)(t) ∼= 26 : 6.

Let 1 �= w ∈ Aut(L). The counting argument of Lemma ?? shows that to prove that

δ(w) < 1
2
|B|, it suffices to show that |M∩C|

|C| < 1
2
, where C is the conjugacy class of w in

Aut(L). This is an easy calculation using the ATLAS (where, of course, we may assume
that the order of w is a prime number).

Lemma 7.3.7. Let L ∼= PSL(2, 11) or PSL(2, 16). Then G has the property (31
2
).

Proof. Again, as in the proof of Lemma ??, it suffices to show that there exists a conjugacy
class B of L such that δ(w) := |{u ∈ B | dAut(L)(u,w) ≤ 2}| < 1

2
|B|, for all 1 �= w ∈ Aut(L);
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and that L contains at least five Aut(L) classes. For PSL(2, 11), let B be the class of
elements of order 11, and for PSL(2, 16), let B be the class of elements of order 17. Since
in both cases, given u ∈ B, we have CAut(L)(u) = 〈u〉, it is immediate that δ(w) < 1

2
|B|, for

all 1 �= w ∈ Aut(L). Also L ∼= PSL(2, 11) has the Aut(L) classless of elements of order 2, 3,
5, 6 and 11 and L ∼= PSL(2, 16) has the Aut(L) classes of elements of order 2, 3, 5, 15 and
17, so the proof of the lemma is complete.

Lemma 7.3.8. Assume L ∼= A5, then G has the property (31
2
).

Proof. Let C1, C2, C3 ⊆ L be the Aut(L) conjugacy classes of elements of order 3, 5, 2,
respectively. We show that L together with the classes C1, . . . , C3 satisfy all the hypotheses
(a), (b) and (c) of Lemma ??.

Hypothesis (c): We must show that given B, C ∈ {C1, C2, C3}, the pair B, C satisfies

hypothesis (c) of Lemma ??. For that we use Lemma ??. Given C ∈ {C1, . . . , C3}, 1 �= v ∈ C
and t ∈ CAut(L)(v), we’ll find u1 ∈ C1, u2 ∈ C2 and u3 ∈ C3, such that each u′ ∈ {u1, u2, u3}
satisfies the requirements in hypothesis (a), (b) or (c) of Lemma ??. Then, by Lemma ??,
this will show that hypothesis (c) of Lemma ?? holds. If u′ satisfies the requirements in
hypothesis (c) of Lemma ?? we’ll write π(u′, t) for the unique path in hypothesis (c), and
we’ll indicate an h′ ∈ L as required in hypothesis (c2). Note that we may assume without
loss that the order of t is a prime.

When C = C3, we may assume without loss that v = (12)(34). If

v = (12)(34) and t = (13)(24)

take u1 = (145), u2 ∈ C2 and u3 = (14)(25). The case t = (14)(23) is a conjugate case. If

v = (12)(34) and t = (12)

take u1 = (235) and u2 ∈ C2. For u3 = (13)(25), we have

π(u3, t) = (13)(25), (12)(35), (12).

Let h′ = (13)(24). Then uh′
3 = (13)(25)(13)(24) = (13)(45) ∈ ∆≥3

Aut(L)(v) and (12)(35)(13)(24) =

(15)(34) /∈ ∆Aut(L)((12)). The case t = (34) is a conjugate case.
When C = C1, we may assume that

v = (123) and t = (45)

We take u1 = (234) and u2 ∈ C2. For u3 = (14)(25), we have

π(u3, t) = (14)(25), (12)(45), (45).

Let h′ = (245). Then uh′
3 = (14)(25)(245) = (15)(24) ∈ ∆≥3

Aut(L)(v) and (12)(45)h
′

=

(12)(45)(245) = (14)(25) /∈ ∆Aut(L)((45)). Finally hypothesis (a) of Lemma ?? clearly holds
when C = C2, for any B ∈ {C1, C2, C3}.
Hypotheses (a) and (b): First we note that to show hypotheses (a) and (b) of Lemma
??, it is enough to show that they hold for some v1 ∈ C1 and some v2 ∈ C2. We thus start
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by picking

v1 = (123) and v2 = (12345).

We now list the orbit representatives of CAut(L)(vl) on Cj∩∆≥3
Aut(L)(vt), l = 1, 2 and 1 ≤ j ≤ 3.

We have CAut(L)(v1) = 〈(123)〉 × 〈(45)〉, and the orbit representatives are,

{(124), (142), (145)} {(12345), (12435), (13245), (13425)} {(12)(34), (14)(25)}.
We have CAut(L)(v2) = 〈(12345)〉, and the orbit representatives are,

{(123), (132), (124), (142)} {(12354), (12453), (12543), (13254)} {(12)(34), (13)(24)}.
We now show that hypothesis (b) of Lemma ?? holds for all possible choices of j and u.

We start with v = v1. For j = 1, let u ∈ C1 and let h1, h2 ∈ L such that uh1 = (124)
and uh2 = (142). Then dAut(L)(u

hi , v1) > 3, for i = 1, 2, so for any orbit O of CAut(L)(v1) on

C1 ∩∆≥3
Aut(L)(v1), either h = h1 or h = h2 will satisfy all the requirements of hypothesis (b).

Similarly, for j = 2, it is enough to note that dAut(L)(w, v1) = ∞, for all w ∈ C2, and that

for u ∈ C2, uL meets at least two of the orbits of CAut(L)(v1) on C2 ∩∆≥3
Aut(L)(v1).

Suppose j = 3. Let O be an orbit of CAut(L)(v1) on C3 ∩ ∆≥3
Aut(L)(v1). Let u ∈ C3 be

an involution. Let s ∈ ∆Aut(L)(u) and let t ∈ ∆Aut(L)(v1). Suppose (12)(34) ∈ O and let
q ∈ L, with uq = (14)(25). If t �= (45), or sq �= (12)(45), then [sq, t] �= 1, so taking h = q,
we see that hypothesis (b) holds. Thus t = (45) and sq = (12)(45). Let h = q(245). Then
uh = (14)(25)(245) = (15)(24) = (14)(25)(45) /∈ O, and sh = (12)(45)(245) = (14)(25), so
[sh, t] �= 1 and again hypothesis (b) holds. Next suppose that (14)(25) ∈ O. Let q ∈ L,
with uq = (12)(34). If t �= (45), or sq �= (12), then [sq, t] �= 1, so taking h = q, we
see that hypothesis (b) holds. Thus t = (45) and sq = (12). Let h = q(13)(24). Then
uh = (12)(34) /∈ O, and sh = (34), so [sh, t] �= 1 and again hypothesis (b) holds.

Suppose now that v = v2. Note that for all 1 ≤ j ≤ 3 and all w ∈ ∆>1(v2), dAut(L)(w, v2) =
∞. It follows that given u ∈ C1 ∪ C2 ∪ C3, to show that hypothesis (b) holds, it suffices to
show that uL meets at least 2 orbits of CAut(L)(v2) on Cj ∩∆≥3

Aut(L)(v2) and this is easy.
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