PART I.

Name: ____________________

School: ____________________

Answer all questions and write your answers in the boxes provided.

1. A parabola \(y = ax^2 + bx + c \) has vertex \((4, 2)\) and \((2, 0)\) is on the graph of the parabola. What is \(abc\)?

2. What is the coefficient of \(x^7\) in the polynomial expansion of \((1 + 2x - x^2)^4\)?

3. What is the value of \(\sqrt{\frac{8^{10} + 4^{10}}{8^4 + 4^{11}}}\)?

4. We are given that \(\sin(x) = 3\cos(x)\). What is the value of \(\sin(x)\cos(x)\)?

5. On the globe 17 parallels (lines of latitude) and 24 meridians (lines of longitude) are drawn. Into how many parts do they divide the surface of the globe?
6. The average value of all the pennies, nickels, dimes and quarters in Paula’s purse is 20 cents. If she had one more quarter, the average value would be 21 cents. How many dimes does she have in her purse?

7. At a fast-food restaurant, the cost of 3 burgers, 5 drinks and 1 salad is $23.50, while the cost of 5 burgers, 9 drinks and 1 salad is $39.50. How much is 2 burgers, 2 drinks and 2 salads?

8. If x, y and z are positive integers such that \(\frac{51}{11} = x - \frac{1}{y - \frac{1}{z}} \), find $x + y + z$.

9. The price of gas went up 100% and then a month later it went up again, this time by 25%. In another month, after a sharp reduction of $x\%$ the price got back to its original level. Find x.

10. For how many positive integers n between 1 and 200 (inclusive) is the number n^n a perfect square?
PART II.

Name: _____________________

School: __________________

Answer all questions by writing your answers in the boxes provided.

11. If \(f(x) \) is a function such that \(2f(1/x) + f(x)/x = x \) for all \(x \neq 0 \), find \(f(2) \).

12. Find \(m + n \), where \(m \) and \(n \) are relatively prime positive integers such that

\[
\frac{m}{n} = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \cdots \left(1 - \frac{1}{24^2}\right).
\]

13. Find all pairs of positive integers \((x, y)\) such that \(x \leq y \) and \(1/x + 1/y = 1/6 \).

14. Alice and Bob run on a circular track, starting at the same time at diametrically opposite points of the track. Alice runs clockwise and Bob counterclockwise. Each runner runs at a constant speed. They first meet when Alice has run 100 meters. Next they meet when Bob has run 150 meters from their previous meeting place. Find the length of the track (in meters).

15. Let \(M \) and \(N \) be the midpoints of the sides \(BC \) and \(CD \) of a parallelogram \(ABCD \). If the area of the triangle \(AMN \) is 15 cm\(^2\), find the area of the parallelogram.

16. The product of the digits of a four-digit number is 90. How many such numbers are there?

17. For a semicircle of radius 1, find the side length of a square with two vertices on the diameter and two on the arc of the semicircle.
PART III.

Name: ______________________

School: ____________________

Solve as many problems as you can by writing your final answers in the boxes provided and giving FULL WRITTEN EXPLANATIONS with a complete justification-proof.

18. Find the length of the altitude (the shortest distance from a vertex to the opposite face) of the regular tetrahedron (triangular pyramid) whose sides are of length 1.

 __
19. How many different right triangles are formed by connecting 3 vertices of a regular 10-gon?
20. Find a positive integer n such that $\frac{1}{n} < \sqrt{99} - \sqrt{98} < \frac{1}{(n-1)}$.
21. The increasing sequence 1, 3, 4, 9, 10, 12, 13, ... consists of all those positive integers which are either powers of 3 or sums of distinct powers of 3. Find the 100th term of this sequence.