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Research Statement

James B. Wilson

My research began with finite groups, p-groups, and algorithms – areas which led to bilinear maps, ∗-
algebras, and Jordan algebras. The study of p-groups often uses nonassociative algebras, which mimic the
group structure, but have have more amenable linear properties [7]. These are typically Lie algebras. The
methods that I have developed also use nonassociative algebras. However, the deeper results that I obtain seem
to require sophisticated machinery, and my approach is quite unrelated to earlier methodologies.

Theorem 1 gives group isomorphism invariants of central product decompositions of p-groups but also shows
that in general there are no group isomorphisms sending these central product decompositions to one-another.
Theorem 2 helps explain how this is possible. Theorems 4 and 5 are polynomial-time algorithms to find central
and direct products given only generators of a group. Finally, Theorems 6, 7, and 8 are statements about the
number and structure of centrally indecomposable p-groups. Each of these I proved using Jordan and other
nonassociative algebras.

One of the delights is that these theorems read like classical group theory but the proofs do not. Alse, the
excursion into other areas brings with it some unexpected examples and questions for p-groups.

Central decompositions and bilinear maps.
A central decomposition of a group G is a set H of subgroups in which distinct members commute, and G is

generated byH but no proper subset. Central decompositions make central products precise. A group is centrally
indecomposable when it has only the trivial central decomposition. A central decomposition is fully refined if
every member is centrally indecomposable. My first breakthrough was to translate central decompositions of
p-groups into the context of bilinear maps.

Every p-group P determines bilinear maps by commutation. For instance, if P has nilpotency class 2 then
define b : V × V → W , where V = P/P ′, W = P ′, and P ′ denotes the commutator subgroup of P ; so that,

b(P ′x, P ′y) := [x, y] = x−1y−1xy, ∀x, y ∈ P. (1)

If H is a central decomposition of P then H induces an orthogonal decomposition X (H) = {HP ′/P ′ : H ∈ H}
of b. Therefore the study of central decompositions relates to the study of orthogonal decompositions of bilinear
maps. Indeed, bilinear maps also give rise to class 2 nilpotent groups so bilinear maps are not far removed from
the original goal of studying p-groups. For 2-groups I also use an associated quadratic map resulting from the
power map x 7→ x2, x ∈ P . Bilinear and quadratic maps are not new to the theory of p-groups, but outside of
extraspecial p-groups (where the bilinear/quadratic maps are forms, i.e. |P ′| = p), there has not been much use
for the geometric structure of these maps for the study of p-groups.

On the uniqueness of central decompositions.

Theorem 1 [15, Theorem 1] For p-groups P of class 2 and exponent p,

(i) the following are invariants of fully refined central decompositions of P : the number of members, the
multiset of orders of the members, and the multiset of orders of the centers of the members; and

(ii) the number of Aut P -orbits acting on the set of fully refined central decompositions can be any positive
integer.
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Theorem 1.(i) can be compared with the Krull-Remak-Schmidt theorem which proves the uniqueness of direct
products of groups, up to an automorphism of the group. Indeed, the proof suggests the following:

Conjecture 1 The multiset of group isomorphism types of a fully refined central decomposition of a p-group P

of class 2 and exponent p is uniquely determined by p.

Work towards this conjecture is on going and the current results suggests any counterexamples will have order
exceeding 530. Theorem 1.(ii) highlights how the proof of Theorem 1.(i) cannot use standard methods such as
generalizing the proof of the Krull-Remak-Schmidt theorem.

The assumption of exponent p in these theorems makes it possible to convert all isometries of the associated
bilinear map into automorphisms of the group. This leads to:

Problem 1 Generalize Theorem 1 to p-groups of arbitrary class and exponent.

The standard extraspecial groups show that for groups of large exponent, the multiset of group isomorphism
types of fully refined central decompositions is not uniquely determined. Still, appropriately modified versions
of Theorem 1 are known in larger exponent and for 2-groups, but require an equivalence of p-groups related
to the isoclinism of P. Hall [3]. The details are carried out in [18]. More work is needed for arbitrary class
p-groups.

To explain how group isomorphism invariants can be obtained where there are no group isomorphisms, the
proof of Theorem 1 relies on coarser decompositions called semi-refined central decompositions (of size at least
half the size of a fully refined central decomposition) admitting the following transitivity:

Theorem 2 [15, Corollary 6.10] AutP is transitive on the set of all semi-refined central decompositions of a
p-group P of class 2 and exponent p.

As with Theorem 1, this is fundamentally a result about bilinear maps. To study bilinear maps it was necessary
to produce the following family of nonassociative algebras.

Let b : V × V → W be a bilinear map, such as in (1). Define

Adj(b) := {(f, g) ∈ EndV × (EndV )op : b(uf, v) = b(u, vg),∀u, v ∈ V }. (2)

If b is alternating then (f, g) ∈ Adj(b) if, and only if, (f, g)∗ := (g, f) ∈ Adj(b). The operation ∗ makes Adj(b)
an associative algebra with involution, that is, a ∗-algebra. In this case, b also has a related Jordan algebra

Sym(b) := {f ∈ EndV : b(uf, v) = b(u, vf),∀u, v ∈ V } (3)

with nonassociative product f • g := 1
2 (fg + gf) for f, g ∈ Sym(b) (in characteristic 2 quadratic Jordan algebras

are required). The details of these algebras are given in [15, Section 4]. Orthogonal decompositions of b are in a
one-to-one correspondence with sets of idempotents of the Jordan algebra Sym(b). To prove Theorems 1 and 2
the action of groups of isometries and pseudo-isometries (conformal mappings) of the bilinear map are studied
using both Sym(b) and Adj(b).

When b is a nondegenerate bilinear form these are familiar algebras: here Adj(b) ∼= Mn(K) for some field
K, with the transpose (or a variation of transpose) as the ∗ operator. Likewise, Sym(b) is the set of matrices
fixed by the anti-isomorphism ∗ of Adj(b), for example, the set of symmetric matrices. However, when b is a
bilinear map, Adj(b) and Sym(b) can have highly varied structure, including non-trivial radicals and multiple
non-isomorphic simple quotients. Even though the bilinear map b is alternating, the simple factors of Adj(b)
and Sym(b) quite often pertain to symmetric bilinear forms, and other non-alternating forms. The symmetric
bilinear forms lead to the lack of transitivity in Theorem 1.(ii). In Jordan algebras, it is standard to obtain
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transitivity by broadening the scope to groups of isotopes of the algebras [11], but for applications to p-groups
only isometries and pseudo-isometries can be used. To work around this problem, linear transformations are
judiciously chosen which do not preserve the bilinear map but nevertheless establish Theorem 2 which then
leads to Theorem 1.(i).

The work involved in Theorems 1 and 2 leads to various results with directions left to explore. For instance,
there is no theorem of Witt type for bilinear maps, maximal totally isotropic subspace can have different
dimensions, and alternating bilinear maps can even have orthogonal groups as their isometries. Yet, I prove:

Theorem 3 [15, Theorem 4.19] The isometry group of a bilinear map is unipotent-by-classical.

Once again, this theorem is proved using techniques from nonassociative algebras. In progress is work on the
following:

Problem 2 What is the structure of the pseudo-isometry (conformal) group of a bilinear map?

This problem has immediate application to the structure of the automorphism group of a p-group (cf. [15,
Proposition 3.5] and [19]) and could help answer open problems raised by A. Mann and others [9, Section 2].
The importance of connecting these isometry/pseudo-isometry/automorphism groups to nonassociative algebras
is that the algebras can be easily computed and probed using linear algebra, whereas even finding generators
for the groups is a very difficult problem in practice.

Algorithms for finding central decompositions.
To make central decompositions useful it is important to be able to locate a central decomposition of a

p-group or report that the group is centrally indecomposable. Abstractly the problem is finite, but brute
force is unreasonable. The theorems that follow are a precise way of expressing theoretically (and practically)
“reasonable” methods to find decompositions.

It is standard to input p-groups via presentations exhibiting a normal series with abelian quotients, called
a polycyclic presentation or pcp [6, Chapter 8]. The input length of a pcp is roughly the length n of the
presentation and so n is used for timing. Polynomial-time algorithms run with O(nc) steps where c is a
constant. Deterministic algorithms run the same steps each time they are given the same input. There are also
Las Vegas algorithms which allow for random variations in the process but require that any output be provably
correct, and the failure to output occurs with small probability [13, Chapter 1].

Theorem 4 [16, Theorem 1] There are polynomial-time algorithms to find generators for a fully refined central
decomposition of a finite p-group of class 2. The first is deterministic with running time O(p + log5 |P |). The
second algorithm is Las Vegas with running time O(log5 |P |).

(The Las Vegas algorithm uses the method of Berlekamp to factor polynomials over Zp, cf. [1].) This I proved
using effective versions of the algebras Adj(b) and Sym(b) and a modifications to the library of algorithms for
associative algebras first developed by Ronyai [12].

Algorithms for finding direct products. It was brought to my attention by E. M. Luks and C.R.B. Wright
that there were no known algorithms for testing if a finite group was directly indecomposable, and if not, to
find a proper direct product in the group. Even for p-groups of class 2 this problem was not settled. Settling
this problem is the focus of my paper [17] and the following theorem:

Theorem 5 [17, Theorem 1] There are polynomial-time algorithms to find generators for each of the following

(i) a fully refined direct product decomposition of a nonassociative algebra specified by structure constants,
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(ii) a fully refined direct product decomposition of p-groups of class 2, specified by a pcp.

The first algorithm is deterministic polynomial time in the length of the input and the size of p. The second
algorithm is Las Vegas polynomial time in the size of the input.

Using standard group theory the and similar methods, it is likely that an algorithm for finding direct product of
general solvable groups is possible, and work continues in this direction. To solve the problem for nonassociative
algebras I derived a third algebra related to the bilinear maps. This third algebra is a commutative ring whose
idempotents correspond to the direct decompositions of the nonassociative algebra. Finding idempotents in a
commutative ring is essentially the same problem as factoring polynomials [2, Section 1]. The prototype of this
third algebra can be seen in [10].

Indecomposable p-groups
The third stage in studying central decompositions is to understand the centrally indecomposable groups. In

the following result I demonstrate that a complete classification is highly unlikely.

Theorem 6 [19] For each n there are at least p2n3/27+Cn2
pairwise non-isomorphic centrally indecomposable

groups of order pn, for some constant C.

The total number of groups of order pn is known to be p2n3/27+O(n8/3), with the conjectured sharper bound
of O(n2) in the exponent [5, 9, 14]. Of course, the value of the constants leave open many possibilities. To
strengthen this result I have also proved:

Theorem 7 [19] A randomly presented p-group is almost always centrally indecomposable.

Randomly presented means that the rank of the lower exponent p central factors are randomly selected and
then the group is specified with random commutators and powers. This approach is similar to the meaning of
almost always used in [4]. Unfortunately, it is possible that probability models for random p-groups of these
sorts may not converge to a uniformly distributed random p-group [9]. This leads to:

Problem 3 Construct a probability model for random presentations of p-groups which approximates the uniform
distribution. Use this model to describe a typical p-group.

A prototype of possible model is given in the proof of Sims’ upper bound on the total number of p-groups of a
given order.

The most ambitious future direction comes from the following observation: if a group P is centrally inde-
composable then so is any group Q where Q/N ∼= P and N ≤ Q′ (such a group Q is called a descendant of
P ). Thus there is a natural meaning of a minimal centrally indecomposable group but even these groups are
numerous and complex. However, the bilinear commutation maps can often be simplified if the ground field is
extended. For p-groups P of small class (and possibly in general) this extension can be applied to P directly
to produce a p-group k ⊗ P of the same class as P but with the property that the associated bilinear map of
commutation is now over the field k. With this process it is possible to prove theorems such as:

Theorem 8 [19] Let P be a centrally indecomposable p-group of class 2, exponent p, and rank 2n. If P ′ ∼= Z2
p

and k is the algebraic closure of Zp, then k ⊗ P is either centrally decomposable or isomorphic to the p-group
with bilinear commutation map b : (U ⊕ U)× (U ⊕ U) → W where U := k[x]/(xn), W := U/〈1, . . . , xn−3〉 as a
k-vector space, and b is defined by

b
(
p(x)⊕ q(x), r(x)⊕ s(x)

)
≡ p(x)r(x)− q(x)s(x) (mod 〈1, . . . , xn−3〉). (4)
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Call a p-group P absolutely centrally indecomposable when k ⊗ P is centrally indecomposable for every field
extension k, in particular, over the algebraic closure of Zp. In this terminology, Theorem 8 is one of several
results I have uncovered while addressing the following broader goal:

Problem 4 Study minimal absolutely centrally indecomposable p-groups.

The resulting groups k ⊗ P , for k the algebraic closure of Zp, are locally finite and of infinite rank, but the
class is the same as the class of P . In this sense the process is dual to the study of descendants and their related
pro p-groups where the rank is fixed but the class is infinite [8]. I am in the process of synthesizing both points
of view.
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