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A calculation on the sliding of ice over a wavy surface
using a Newtonian viscous approximation

By J. F. NYE
H. H. Wills Physics Laboratory, University of Bristol

(Communicated by F. C. Frank, F.R.8.—Received 25 November 1968)

A glacier slides over its irregular rock bed by a combination of regelation and plastic de-
formation (Weertman 195%). An exact calculation for this combined process is made possible
by using a model in which the flow properties of the ice are simplified as Newtonian viscous,
rather than obeying a more realistic nonlinear flow law. The bed is represented as a smooth
plane on which there are perturbations of general three-dimensional form but small slope,
and the ice is assumed to maintain contact with the bed everywhere. The first-order solution
for the velocity field leads to an expression for the drag, which is a second-order effect. It is
found that the velocities due to regelation and to viscous flow are additive only when the bed
consists of a single sine wave. In the general case the total drag is a summation of the drags
due to each of the Fourier components of the bed relief taken separately. The total drag is
expressible in terms of a single average property of the bed relief, namely, the product of its
mean square amplitude and its autocorrelation function, or, alternatively, its power spec-
trum. Numerical illustrations are given for a Gaussian autocorrelation function.

1. INTRODUCTION

According to the Weertman theory (1957, 1964) a glacier sliding over its rock bed
may move past obstacles by two mechanisms. The first is regelation, whereby the
ice melts under pressure on the upstream side of the obstacles and refreezes on
the downstream side. The second is plastic deformation. This paper provides an
exact calculation of the drag from the combined processes by idealizing the flow
properties of the ice as those of a Newtonian viscous material. The ice is pictured
as sliding slowly over an undulating smooth rigid surface, which can exert only nor-
mal, not tangential, forces, and, at the same time, the ice is melting and freezing at
the interface as it encounters variations of pressure. Inertia forces are negligible.
The resistance to motion arises from the regelation process and also from the de-
formation that the ice undergoes in conforming to the shape of the surface. This is
a model appropriate to ice at the melting point, where a water film provides the
lubricant. If the ice is below the melting point there are two physical differences:
there is no water to provide a lubricant, and regelation is suppressed. To adapt the
model to these conditions it is simple to eliminate the regelation process. On the
other hand, the lubrication condition is an essential part of the model, and therefore
we do not expect our results to apply to ice below the melting point unless the
molecular adhesion between ice and rock should turn out to be so small that it makes
only a small contribution to the total drag.

Weertman estimated the drag arising from the combined plastic deformation
and regelation mechanism by using the more realistic, nonlinear, Glen flow law
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for ice (strain-rate proportional to the 3rd or 4th power of the stress). Weertman’s
result is expressed in terms of the average dimensions and spacings of obstacles.
Lliboutry (1959, 1968) has also made an estimate, again based on the Glen flow law,
but taking first a sinusoidal profile, with amplitude small compared with the wave-
length, and then considering a superposition of sine waves. If the ambient pressure
is not sufficiently high, cavities will form in the lee of obstacles, and when this
happens it may have an important effect on the drag (Lliboutry 1959, 1968;
Weertman 1964). In this paper we deal with sliding without cavitation and make an
exact calculation for a bed which is a slightly perturbed plane. This means that the
irregularities in the bed can be of arbitrary three-dimensional form provided their
slopes are always small. The price paid for an exact calculation with this degree of
generality is that it is made for a Newtonian viscous material rather than for one
obeying a nonlinear flow law. On the other hand, it has the advantage of bringing out
very clearly the principles governing the superposition (a) of the regelation and
the plastic deformation process and (b) of the drags from the different harmonic
components of the bed surface. Both these are difficult points in calculations made
with a nonlinear flow law and it is helpful to see their exact formulation in the linear
flow law approximation. In addition, the analysis produces the following useful
result. The drag can be expressed in two quite different forms. The first, and more
obvious, is as an integral involving the two-dimensional Fourier components of
the bed relief. The second form is as an integral involving the bed relief zy(z, %)
itself. It is interesting that, in this second representation, the only feature of zy(x, %)
that is relevant in determining the drag is the product of the mean square amplitude
{22 and the autocorrelation function ¢(X, Y), defined by

fiowf_: dzdy zo(z, y) 2oz + X,y + Y)
fo_owf:o dz dy {zo(, )}

Both (22> and ¢(X, Y) express mean properties of the bed relief. It is, of course,
very reasonable that certain average properties of the bed relief zy(x, y), rather than
all its details, should determine the over-all drag. In the Newtonian viscous approxi-
mation one has the advantage of being able to see explicitly how this comes about
and which average properties are relevant.

We start with a bed zy(z) which is wavy in the z direction only, and use a Fourier
transform method. Then we extend the analysis to the bed zy(x, y) which is wavy in
both the z and y directions.

oX,Y) =

2. BED WAVY IN ONE DIRECTION ONLY

We consider slow flow only and neglect inertia terms throughout. It may be veri-
fied at the end that this is permissible for vanishingly small Reynolds number, as is
appropriate for a glacier, where the Reynolds number is in the range 10~! to
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10-17. We also neglect gravity forces, since the scale of the perturbations of the bed
is small. First consider a Newtonian viscous material of viscosity # moving steadily
with uniform velocity U in the Oz direction between two boundary planes at z = 0
and z = 2, (figure 1a). The boundary at z = 0 is smooth and stationary, while the
boundary at z = z, is of the type that allows no slip of the fluid and is moving at
velocity U, with the fluid. The lower boundary will correspond to the ice-rock
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F1cure 1(a) Unperturbed flow, (b) flow after introducing a perturbation
in the bed and a steady velocity on the plane z = z,.

interface, the bed, while the upper one is introduced merely to make the boundary
conditions of the problem specific. Now impose on the lower boundary (figure 15) a
small perturbation, so that its equation is
z = ef(w) = 2y(w), say,

where € is a dimensionless number small compared with 1, and let the mean 2, be
zero. At the same time impose a certain additional velocity on the upper boundary.
Let the velocity components be u, w and consider the new steady motion. We choose
2, large compared with any significant wavelength in the bed variation. The bed
now exerts a drag on the material so that, at large z, u varies linearly with z. We fix
the velocity imposed at the upper boundary by requiring that the average of u
on the bed remains unchanged at the value U. The problem is to find the drag per
unit area of the bed, which is 5 times the value of ou/dz at large z.

This model would be appropriate in the absence of regelation. When regelation is
present a certain amount of ice either melts or freezes on to the lower surface. This
has the effect of changing the lower boundary condition in our model of the flow
within the ice. Instead of there being no velocity component normal to the perturbed
bed there is now a definite distribution of normal velocity, positive and negative,
given by the freezing and melting rates. Although this complicates our mental
picture of the flow it does not, as we shall see, complicate the mathematics to any
great extent.

Turning now to the physics of the regelation process, our picture is that, owing to
the depression of the melting point by pressure, there is melting at places of high
pressure and freezing at places of low pressure. Water flows from one to the other via
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a thin film which separates the ice and the rock. At the same time the latent heat
liberated at the freezing places flows through the ice and through the rock to the
melting places. A thorough study of the analogous problem of regelation by a wire
cutting through a block of ice (Nye 1967; Frank 1967; Nunn & Rowell 1967; Town-
send & Vickery 1967; Shreve, private communication) shows that the details of this
traditional picture need modification, perhaps substantial. There is evidence, how-
ever, that under pressures high enough to suppress cavitation and with materials of
low conductivity,such asrock, the traditional picture may suffice, and we shall there-
fore adopt it in this paper. When flow in the ice occurs in conjunction with regela-
tion there will be some modification in the thermal conduction process in the ice,
in that the ice is now moving faster than it would otherwise have done. This effect
of conduction in a moving medium is negligible when the velocity is that of pure
regelation (Nye 1967) and will be assumed still negligible at the somewhat larger
velocities which exist when regelation is combined with plastic flow.

A connecting link between the flow process and the regelation process is the dis-
tribution of pressure p,(x) on the bed, for this must, of course, be the same for both
processes. In the same way the distribution of velocity normal to the bed w, () is
common to both processes. Our procedure in calculation will be to start with an
unknown distribution w,(z) and to calculate p,(x), first by going through the physics
of regelation and then by solving the viscosity equations. Equating the two expres-
sions for p,(x) will finally give us our result.

(i) Regelation

Consider unit length of bed parallel to Oy and a length ds measured in the =z
plane. The volume of new ice frozen in this area per unit time is w,(x) ds, where
w,(x) is the outward normal velocity component of the ice on the bed. The heat
liberated is Lw, () ds, where L is the latent heat per unit volume of ice. To first order
we can consider this heat source as Lw, () dx lying in a strip of width dz in the plane
z = 0. The temperature drop across the water film is taken as negligible (Nye 1967).
Within the rock and the ice (ignoring internal melting and refreezing in the ice)
the temperature 6 obeys Laplace’s equation

0% 0%0 0
@ + 52—2 = 0.
We take the Fourier transform thus
0 320 0 320
f_w dxa—x—ze‘i"’”+ f_w d:a:a—zze—i’“c = 0. (1)

It is sufficient for our purpose if we allow the perturbation of the bed to be confined
to a large but finite length of the x axis, namely — } < « < 1/, so that at sufficiently
large distances from the origin all perturbations are zero. Then the first term in

(1) may be integrated twice by parts to give
d20

—lc29+d——z—2 =0, where 0= f:o dz O(x, z) e~ 1k,
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The solution that satisfies the heat sources at z = 0 and does not diverge at + oo is

Lw, (k)
SK|k|

9= o—lhel,
where w,,(k) is the Fourier transform of w,,(x) and K is the mean thermal conductivity
of ice and rock.

If 6 is measured relative to the average melting point, we may write for the tem-
perature on the boundary, 6(x) = — Op,,(x), where C is a constant and p,,(x) is the
normal pressure (relative to the average pressure), or, taking transforms,

0(k) = — Oy (k).
Bars will always denote Fourier transforms. Thus.

_ Lw,(k
alk) =~ s )

This is the relation we need, from the physics of regelation, between the dis-
tribution of normal velocity on the bed, represented here by its Fourier transform
W, (k), and the distribution of normal pressure, represented by its Fourier transform
P, (k). The corresponding calculation for the case of pure regelation, without plastic
deformation, over a bed consisting of a single sine wave has been done by Lliboutry
(1968, pp. 39-40).

(i) Flow within the ice

We now seek a connexion between the distributions of normal pressure and
normal velocity at the bed by studying the slow viscous flow of the ice.

The fundamental hydrodynamical equations for the slow steady flow of an in-
compressible viscous fluid in two dimensions, without body forces and with inertia
terms neglected, are

% op w  Pw op
(a—xﬁa—zz) = % (%%‘) =% (3)
ou ow
and Pl 0, (4)

where 7 is the viscosity, » and w are the velocity components and p is the pressure.
Operating on the first equation with 8/0x and on the second with 9/9z, adding and
using the third equation, gives

2p Pp

T =Y ®)

We write for the perturbed solution

u = U+ euy(, 2) + €2uy(x,2) + ...,
w= ew,(, 2) + e2wy(x,2) + ..., (6)
p= €p; (@, 2) + €*py(,2) + ... .
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Boundary conditions

There are two conditions to be satisfied on the bed: the normal component of the
velocity is given as w, (x) and the tangential component of the surface traction is
zero. The first condition gives

—usina+weosa =w, on 2z =z, (7)

where tan a = dzy/dz. Since w,(x) is zero when e is zero we write w,(z) = eW ().
Equation (7) must be expressed as a condition on z = 0. Using (6) and remembering
that zy(x) = ef(x), we have, to order e,

= Uf'(@) +w,(@,0) = W(x). (8)

We have here assumed that a is small, of order €.
To write down the second boundary condition denote the stress components by
Oy 0y Ty, and define the stress deviator components o, o, by

’ 7
Opg=0,+P, 0,=0,+D,

where p = — (0, +0,). Thus o+ o7 = 0. Consider the tractions (apart from hydro-
static pressure) on a small triangular element with hypotenuse along the bed at an
angle « to the x axis, and with the other two sides parallel to Oz and Oz. The con-
dition that there is no tangential traction on the hypothenuse is readily obtained
by resolving forces parallel to it:

Ty, =0 tan2a on =z =z, 9)
To express this as a condition on z = 0, first write
To(%,2) = eTy(x, 2) + O(e?).
Now both o and o are O(€). Hence 1,(x,2,) = 0, and, since z, is O(€), we have
T,(%,0) =0,

as the second boundary condition onz = 0.
In terms of velocity perturbations this is

2 T o =0 on 2=0. (10)

ow;[0x on z = 0 may be obtained by differentiating the first condition (8). Thus the
two conditions may be finally written

w, = Uf (@) + W(a)

ou,/oz = — Uf"(x) — W’(w)} on #=0. (1)
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Solution of the equations

When the solution (6) is substituted into the differential equations (3), (4) and
(5), there result, for the first-order perturbation, the equations

Puy [P\ _Oopy o (P Py} opy (12)
ot 022)  ox’ o2 02) T o’
ouy ow,
o= (13)
Pp, | *py
and W'F@—O. (14)

Taking the Fourier transform of (14) and integrating by parts as in equation (1),
gives
o S N
—k*p, + F 0, where p;= dx p, (2, z) e~tke,
The required solution is

Py = 4,67, (15)

where 4, is an arbitrary constant, since the solution proportional to et* diverges
at infinity. Taking the Fourier transforms of (12) and (13), and using (15), we have

A%, Jdz2 — k2, = ikA, e, (16)
7028, |dz2 — k¥, = — || A, e kE, )
ik, +dw, /dz = 0. (18)

The general solutions of (16) and (17) are

Uy = iAli —|klz —Iklz

=y w e T e (19)

wl = 1_4_1 ze~|k|2+ O e—lklz, (20)
29 1

where B;, C, are arbitrary constants. The boundary conditions on u, and w, are given
by equations (11), which when transformed become

wy, = iUkf+W

- = 0.
aﬁl/az=—ik(iUlcf+W)} on #

These two boundary conditions are insufficient to fix the three constants 4,, B,, C;,
because in deriving (14) we differentiated the original equations and thereby intro-
duced unwanted solutions. We must make sure that the solutions are compatible
with (18) and this adds the necessary third condition on the constants. The solution
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satisfying the boundary conditions is then found to be

Uy = —ik(iUfk+ W) ze~1ki2, (21)
Wy = (1Ufk+ W) (1+ |k|z) ekl (22)
Dy = 29(iUfk+ W)|k| eIk, (23)
and, in particular,onz = 0, |
Pi(k) = 29{iUf (k) k+ W (%)} |k|. (24)

To find the normal pressure p,, on z = 0 we note that
Py =—0,=p—0,=p—290w[oz.

It is readily found from equation (22) that ¢w,/¢6z = 0 on z = 0. Hence, to order ¢,
ow[oz = 0 on z = 0, and, therefore, to order ¢, p,, = p. Thus equation (24) provides
the relation from viscosity theory that we have been seeking between the pressure
distribution and the normal velocity distribution on z = 0; to order ¢ the Fourier
transforms of these two distributions are ep,(k) and ¢W (k). The corresponding
relation obtained from regelation physics is (2), which may be written

L (k)

Py(k) = —m (z = 0). (25)
Solving (24) and (25) as simultaneous equations for p,(k) and W (k) gives
_ o 2iqUfkL k|k| _ = 1Ufk?
Dy(k) = TRAE (z=0), W(k)= — ki—‘i‘ﬁ’ (26)

where k2 = L/4CKn. With L = 70 cal cm~3, ' = 0-007 °C bar~1, K = 0-005 cal cm—1
°C~1s~'and 7 = 1 bar yr, we find &, = 0-1 em~1, which corresponds to a wavelength
of 50 cm. The expression thus found for W (k) may now be substituted into equations
(21), (22) and (23) to give the flow solution to order ¢, thus

2
= UF ggtggee™,
_ .o K3k
wy, = lUfk—z——‘—z (1 + I]C,Z) e—'k'z, (27)
P = 20y U i) e

Consider for a moment the case where the bed is the single sine wave
2o(x) = easin kyz.

It is clear that changing the sign of € gives a bed that is identical except for a dis-
placement, and therefore gives the same drag. Thus the drag will depend on even
powers of ; and it isin fact of order €2. It is possible to calculate it for the general case
2o(x).= ef(x) by carrying the perturbation analysis as far as terms in €2 and then find-
ing the average value of the stress 7, at fixed z. I have done this, but it is much more
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direct to make use of the fact that, physically, the drag on the bed arises because
the normal pressure on the upstream side of the bumps is greater than that on the
downstream side. To find the drag one simply forms the appropriate integral for
the component of the normal pressure on the bed acting in the flow direction. The
advantage of this method is that it only requires a knowledge of p(z, 2,) to order e,
and thus it is not necessary to carry the perturbation analysis any further than we
have already done. It also makes it clear that although the drag is of O(e?) it arises
directly from the first-order perturbation, O(e), in the flow, and this in turn explains
why the drags arising from the different Fourier components of the bed are simply
additive, as we shall see in a moment.
The force in the x direction on the bed, taking unit width in the y direction, is

[c)

P dpeaP- 7 wawodo, (29)

— 00

to order'e?. By areverse Fourier transformation,

7= ny2 " anfwen,

and hence, keeping z = 0 from now on,
F = (¢/2m) f " du py(a) f " akikf(k) ek,

or F=eyem [~ de ki) (), (29)

— 0

where the asterisk denotes the complex conjugate. This is a general formula for the
drag force into which we may substitute the expression for (k) given by the com-
plex conjugate of the first of equations (26). Thus

p - 108 © i TOOTH () 12|
m —©

k2 + k2
or, since the integrand is even in k,

UL [= . |2(k)* W
F= *fo a 2R Iggillkz : (30)

Equation (30) expresses the drag force F' in terms of the Fourier transform z(k)

of the bed surface z,(x).
If the regelation process were absent (say K — 0), we should have k% — co and

F = (2U/m) f :dlclzo(k) |2k,

If, on the other hand, movement were entirely by regelation (say 7 — o), we should
have k% — 0 and, using k2% = L/4CKy,

F = (LU/27CK) f * ak|7(k)|2 .
0
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Let us recall that the length of the perturbed part of the bed is, and therefore
the drag per unit area of the perturbed bed is F/I. To avoid introducing ! explicitly
into the expression for the drag per unit area we may introduce the mean square
amplitude of the bed relief (22). Angle brackets, { ), will always denote the average
value over the area of the perturbation. Then

O I B N T R UEACTD

by Parseval’s theorem. Then the drag per unit area (7,,) may be written in the gen-

eral case as
i [l I;ks
+
<T.tz> = 277 U<20> - . (31)
f dk|z(k

These results could have been obtained, though less compactly, by assuming a
periodic bed and using Fourier series rather than integrals. For example, if zy(x)
is given by the sine series

2o(x) = €f(x) = e(a, sinkgx + aysin 2k +...),

the leading terms of the solution are
u=U+eUz % @y, (k)2 €02 gin nkyx + €2
n=1
X [Uz{ > aiﬂn(nko)?’} + ] +0(e3),
n=1

w=€eU Y a,f,(nky) (1+nkyz)e~?cosnkyx + O(c",
n=1 .

© (32)
p =2enU Y a,f,(nky)?e "% cos nkyx + O(2),
n=1

= —2enUz Y a,,fB,(nky)? e~™*o?sin nkyx + €
n=1

x |:17U {élaz ﬂn(nk0)3: + ] +0(e),

where f,, = k%/{k3. + (nky)?} and dots denote harmonics, the drag per unit area being

© k.2 k)3
17Un§1 (ea,,)? ]Z%. (33)

This shows clearly that the drag arises from the term in % of order €2, which has a
non-fluctuating component proportional to z. The expression for 7, shows that it has
fluctuations of order ¢, which vanish on z = 0; the steady term, which gives the drag,
appears in order 2. The drags from the various harmonic components of the bed are
additive and each contributes a term proportional to the square of its amplitude.
The relative phases of the Fourier components are of no importance. The reason for
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this additive property lies in the steps leading from equation (28) to equation (30).
The drag is proportional to the integral of the product of p, (z, 0) and f'(x). When both
functions are expanded into Fourier series the cross-terms give zero, after integra-
tion, by the orthogonality property of Fourier-components. Thus the pressure
fluctuations given by the mth Fourier component of the bed profile have no net
interaction with the nth Fourier component of the bed slope, if m + n. (The precise
place in the analysis where this orthogonality property of the Fourier components
is invoked is the equation following (28) where the formula for the reverse Fourier
transform is used.)

The argument about the non-interaction of different Fourier components only
holds because to obtain the drag the product of p,(x, 0) and f'(x) is integrated over a
whole period, or from — oo to + 00 in the case of the Fourier integral representation.
From another point of view we may think of the drag as the mean value, the zero-
order harmonic, of 7,,. From this standpoint interaction between the harmonics
begins, naturally enough, in the €2 terms. Thus, all harmonic components of the
bed contribute to the zero-order harmonic of the drag, which is what we have calcu-
lated. Similarly, they all interact, but in a more complicated way, to contribute to
each higher harmonic of the drag; these are the terms, indicated by the dots in
equations (32), that we have not evaluated.

The single sine wave

2o(x) = Asinkyx
would evidently give a drag per unit area of amount
e Iy
ki + k3
If we now think of U as the mean slip velocity on z = 0 produced by a given applied
shear stress (7,,) (applied, say, at the level z = 2, in figure 1b) we may use this
equation to write U as the sum of two terms

g (1, 1 )= (T | Kro)OK
742 \3 T k%k,) T qA%3 T~ A2Lk,

The first term is the velocity that would be produced if regelation were absent
{K — 0), and the second is the velocity that would be produced if there were no
deformation in the material (3 — c0). Thus the first is the velocity due to pure vis-
cosity and the second is the velocity due to pure regelation. The actual velocity is the
sum of the two.

The form of the expression (33) shows that this decomposition of the velocity
into two parts can only be made when the bed is a single sinusoid. When the bed is
a sum of sinusoids one cannot simply add the regelation velocity to the viscous flow
velocity. The reason why a single sinusoid has this property, while other curves do
not, may be explained in the following way. Flow over a sinusoid by pure regelation
gives a sinusoidal variation of pressure on the boundary. Likewise, flow over a sinu-
soid by pure viscous flow gives a sinusoidal pressure variation on the boundary. The

<Tacz> = ’I]UA2 (34)
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two velocity fields may therefore be combined, since they have a common boundary
pressure, without disturbing one another. But if the bed is anything other than a
sinusoid (for example a sinusoid and a higher harmonic) the forms of the pressure
distributions demanded by the two processes acting alone are different. So the two
flows cannot be combined without mutual disturbance.

The superposition rule is therefore as follows. Decompose the bed into harmonics
and for each harmonic add the velocity due to pure regelation to the velocity due to
pure viscous flow. This gives the total velocity produced by a given applied shear
stress—and hence the drag produced by a given velocity. The total drag for a given
velocity is the sum of the drags due to the various harmonic components of the bed.
This is also the conclusion reached by Lliboutry (1968), on more intuitive grounds,
for the case when the flow law is non-linear.

We have assumed throughout that no cavities form between the bed and the
flowing material, and we may suppose, roughly, that cavities are liable to form if the
normal stress at the interface becomes tensile. To ensure that this does not happen
the ambient pressure p,, say, must be sufficiently high that the total pressure
Po+ P, > 0 everywhere on the bed (p,, is the normal pressure due to the viscous
flow and regelation processes and takes both positive and negative values).
We have already seen that, to order ¢, p,, = p on z = 0. The condition is thus

Do > —D-
For the single sine wave zy(z) = A4 sin kyx this gives p, > 29U AkZ kE[(k2 + k3).

(iii) T'he drag as an integral over the bed

Having seen how the drag may be expressed as a summation or an integral over
the Fourier components of the bed, we now try to express it as an integral over the
bed itself. In equation (30) the quantity |Z,(k)|2 is the power spectrum of the bed
relief, and this suggests that we should introduce the (dimensionless) autocorrela-
tion function ¢(X) of the bed defined by

(X)) = f :o dzzy() zo(x + X) / f:) da{zy(2)}2. (35)

¢(X) is symmetrical about X = 0, where it takes the value 1, and falls to zero at
large X since the bed relief at widely separated points is uncorrelated. Taking the
Fourier transform we have

&(k) = f : s 2() f : dX 2y + X) 14X / f : dafey()}2.

With the substitution ' = x4+ X the numerator on the right-hand side reduces to

[ dmerens[” auaerets = 250 20 = R0

— 0

(this is really an application of the convolution theorem). Thus we may substitute:
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into equation (30) and divide by I to obtain
(Tpy = 2m g URE) K2 fw dkc(k) k3 (k3 + k)~
0

— oy U3 e f * A kB + k?)1 f 7 AXe(X) e,
0 — 00

We must not rearrange these integrals and try to carry out the integration over &
because this leads to divergence at k = co. Instead a factor of k is first removed by
integrating by parts with respect to X, to obtain

(7> = — 2Am-UCRY k2 f " AR + k) f ? AXe(X)e kX,
0 — 0

the first term in the integration by parts vanishes at both limits, because ¢(X) is
zero at infinity. Write the exponential as cos kX —isin kX, and then, since ¢'(X)
is odd in X, the expression becomes

(1, = —dm UG IR f ® Al K2k + ?) f * AXe/(X)sin kX (36)
0 0
Y f 0°° dXe'(X) f 0°° k{1 — I2(k + k%) 1} sin kX,

In integrating sin £X with respect to k the upper limit contributes zero in view of the
subsequent integration over X. Therefore we finally obtain

(o = — AL U B f ? AXe/(X) (X1 — by Fy(ky X)), (37)
0
where
Fy(lex X) = ks f (k3 + k)1 sin kX = Yoo XBi(k, X) + kX, (k, X)),
0

Ei (k. X) and H,(k, X) being exponential-integral functions defined and tabulated
by Abramowitz & Stegun (1964, pp. 228-43, especially 5.1.30 and 5.1.31).

Equation (37) is the result we want, for it shows that the drag is proportional
to the mean square amplitude of the bed relief (2Z) and to an integral that involves
no property of the bed other than the dimensionless autocorrelation function
¢(X). The expression {X 1 — k, F(k, X)} is a weighting factor to be applied to ¢'(X);
it behaves as X~ for small X, falls to zero at X = 1-86k; ", reaches a minimum value
of —0-045k,, at X = 2-85k; !, and then approaches zero for large X as —2k5;% X3,
In fact only one mean property of the bed relief is involved rather than two, namely
the product (22) ¢(X). This is equal to the autocovariance, which may be defined for
our purpose as

-1 dzzy(x) zo(x + X),

and all the results could be expressed in terms of this function. It is a little more
convenient, however, to continue in terms of (z2) and ¢(X).
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As k, — 0, which corresponds to pure regelation without viscous flow,

ky Fy(ke X) — 0.
Hence, for pure regelation, since k3 = L/4CKy,
UL f @ ¢'(X)
<sz> == 70K 0 dX X (38)

Near the origin ¢'(X) is proportional to — X and therefore the integrand remains
finite. The behaviour at the other limit &, — co, which corresponds to viscous flow
without regelation, is best obtained, not from equation (37), but by returning to
equation (36), which takes the form

(Tyy = — 471—177U<z§)J‘00 dkk? fw dX¢'(X)sin kX.
0 0

The k? factor must be removed by integrating by parts twice with respect to X,
and then, carrying out the integration with respect to k:
0 k=
(Tpy = —4m 19U (z%)f dXX-1c¢"(X) [cos kX]
0 k=0
The upper limit of k& contributes zero in view of the integration over X. From the
lower limit we therefore have

(1) = dn-iqU(R) f : dX X-1¢"(X) (39)

as the required expression for the drag in the absence of regelation—the counterpart
of (38).

The meaning of the various formulae for the drag may now be illustrated by
examples.

(@) Single sine wave
When the bed is a single sine wave of amplitude 4 and wave number %, the drag
is given by equation (34). If &, is much smaller than k., so that the waves are very
long, the formula reduces to
(Toe) = NU ARG,

The drag is entirely determined by viscosity, the heat conduction path for the
regelation process being so long that regelation plays no part. In the short-wave
approximation, on the other hand, &, is much larger than %, and we have

(T = QUANE ky = (ULJACK) A%,

Here the drag is entirely determined by regelation, viscous flow being absent.
Formula (34) may also be written as

(T = MUK Aleo)? Feo(I + K. (40)

The function ky(k2 + k%)~ has a maximum at k, = k4. Therefore, if one considers
anumber of sine waves each with the same ratio of amplitude to wavelength, so that
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Akyremains the same, the wave with k, = k will give the greatest drag. Both Weert-
man (1957) and Lliboutry (1968) consider models with this feature, namely, in
varying the obstacle size they keep the ratio of amplitude to wavelength (the
‘roughness’) constant. In such a model k, represents an optimum wave number, at
which the regelation velocity and viscous flow velocities are equal. For shorter
waves regelation predominates, because the thermal conduction path is small, while
for longer waves viscous flow predominates. The most effective sine wave for pro-
ducing drag is thus the one with k, = k. This lead Weertman to the idea that on a
bed of general shape the drag would arise predominantly from obstacles of this size—
the ‘controlling obstacle size’. A difficulty with the further development of this
idea is to know what range of obstacle sizes in the neighbourhood of the controlling
size is effective in producing drag. As soon as one examines this question it becomes
clear that no simple answer can be given unless the spectral distribution of the
obstacles is first specified. To meet this point Lliboutry (1968, p. 48) adopts a specific
model consisting of four sine waves, and it is instructive to consider this in the
context of the present linear model.

(b) Four sine waves

Suppose the bed consists of four sine waves of wave numbers k,, sk, s2k,, s3k,
and amplitudes a,, s~1a,, s~2a,, s~3a, respectively, s being a number. Thus the
four waves have the same ‘roughness’ and their wave numbers are in geometrical
progression. Lliboutry takes s = 101% =31-6. Using formula (40) shows that the
drag contributions from the four waves are in the ratios

1 s . s? . s3
R+ kG " k& + (sko)? * K+ (s%h)? " e + (s%k)?

If the wave number of any of the four waves is k,, that wave will contribute the
greatest drag. Thus, for example, if s > 1 and if the second wave is at the optimum,
so that sk, = k,, the ratios are approximately 2s—1:1:2s71:2s~2. If the waves are
spaced out so that s = 31-6, this implies that 89 %, of the total drag is contributed by
the wave whose wave number is k..

On the other hand, if the waves are more closely spaced, clearly the wave with
k = k, contributes proportionately less. Finally, when we pass to the limit of a
continuous spectrum it seems no longer possible to speak of &, as defining a control-
ling obstacle size. One reason for thisis that there is no clear analogue of the assump-
tion of constant ‘roughness’ in the case of a continuous spectrum.

The role played by k, when the bed has a continuous spectrum may be illustrated
by two examples.

(¢) Uniform power spectrum with sharp cut-off
Suppose the power spectrum of the bed is
_ constant (|k| < k,,),
Izo(k)|2 — { | | 'm
0 (%] > k),

29 Vol. 311. A.
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where £, is a cut-off frequency. Formula (31) then gives by straightforward integra-

¢
o ooy = NUEH Ky — v In(L+97)},
wherey = k,,/k,. If y < 1, the spectrum contains only low frequencies and we find

The thermal parameters do not appear and the drag is due entirely to viscosity.
If v > 1, so that the spectrum cuts off only at very high frequency, we find

Ty = MU Kk, = (ULJACK) (25 ko

Here the drag is due entirely to regelation (since 7 does not appear). Thus (7,,) is
proportional to k3, for small k,, and proportional to k,, for large k,,. For intermediate
ky(k,, ~ ky) there is a smooth transition between these two types of behaviour.
One notices in particular that with a wide, flat spectrum covering the neighbourhood
of the wave number &, , namely the case k,, > k., the formula for the drag becomes
independent of k. Thus k, does not play the part of a controlling obstacle size if the
spectrum is of this nature.
This power spectrum corresponds to an autocorrelation function
sink,, X
k,X °’

m

(X)) =

a function that oscillates with decreasing amplitude as X increases. If the auto-
correlation function of a glacier bed were measured it would probably be a little like
this but its oscillations would no doubt fall off much faster, and quite possibly it
would not oscillate at all. The best guess we can make is perhaps a Gaussian,

o(X) = exp (- £k§X?), (41)
say, where kjlis alength.
(d) Gaussian autocorrelation function

If we adopt (41) the power spectrum |Z,(k)|?, being proportional to the Fourier
transform of ¢(X), will also be Gaussian, centred on the origin; it is proportional to
exp (— k?/k2). Formula (31) then gives

(Tuoy = 29U (23) kif ® ak k3(k2 + k*)Lexp (— k2/k%)/f dkexp (— k?[k3).
0 0
The integral in the numerator may be written as

f " Ao kexp (— K¥/k3)— k2 f " Ao (k% + )t exp (— k2/k3)
0 0
= §k§— k% exp (kS /k3) B, (k3/%3),

where ¥, (x) is the same exponential-integral function as was used earlier (Abramo-
witz & Stegun, 1964, p. 230, 5.1.28). The denominator equals 7tk,. Hence

<Tacz> =1 U<z(2)> k?k Fy(x), (42)
where Fy(k) = 2mk —ktexp (k2) B (k2)} (K = kolky).
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For k < 1, Fy(x) = 2m~3«3, and for k > 1, Fy(x) = 2m*«. Thus for small k,

(Toe) = 2m iU {eg) I, (43)
and for large k,
Ty = 20U B) ki by = (UL|2mACK) k.

It is hardly surprising that this behaviour at the extremes is identical, apart from
numerical factors, with that of the previous example of a flat spectrum with a sharp
cut-off. In fact the difference in general behaviour between the drag given by
examples (c) and (d) is quite small, and we may draw the conclusion that the
presence of oscillations in ¢(X) in example (c) is not particularly important. The value
of the drag is essentially determined by the fall-off distance of the autocorrelation
function, ;! in example (¢) and 2k3? in example (d).

Inworking out the above examples it has been more convenient to use the formula
(31) for the drag expressed as an integral over k, rather than the formula (37)
which gives the drag as an integral over X, the space variable of the autocorrelation
function; but there is no fundamental significance in this. On the contrary, from a
physical point of view the integral over X could be regarded as more meaningful,
in that the autocorrelation function of a glacier bed is a more direct description
than its power spectrum; from this standpoint the formula that contains the power
spectrum is used merely as a device for calculation. Whether one accepts this view
is ultimately a matter of taste; mathematically, of course, the two formulae are
equivalent.

(iv) The stagnation depth and application to glaciers

An interesting general feature of the whole problem is illustrated in figure 15.
Consider the point P where the averaged velocity profile meets the z axis and let its
depth below the surface be D, which we shall call the stagnation depth. From the
theory of simple shearing

(Tuey = 9U[D.

But {r,,) is proportional to #U in all the formulae, and it therefore follows that the
stagnation depth is independent of the shear stress, the velocity and the viscosity.
It is determined entirely by geometrical factors, that is, by the topography of the
bed and the fixed constant k..

For example, the formula (34) for a single sine wave gives

1 1 1
D=z (i 1)
and the most realistic example, the bed with a Gaussian autocorrelation function,
gives, from equation (42),
D1 = (2) ki Fy(ko/ ko)
One may guess that for many glacier beds }k,, which in this last formula deter-
mines the rate of fall-off of the autocorrelation function, is considerably smaller

29-2



462 J. F. Nye

than k.. That is, the distance over which the bed is autocorrelated, 2k3?, is consider-
ably greater than k31, which was estimated as 8 cm. Where this guess is correct
ko/ky < 1, and the appropriate formula is (43), from which

D = 2K I, (44)

Now temperate glaciers flow by a combination of shearing within the ice and
sliding on the bed, in varying proportions. The significance of D is that when D is
small compared with the thickness of the glacier the motion is mostly by shearing,
whereas when D is large compared with the thickness of the glacier the motion is
mostly by sliding. If we use the values {(z2)* = 10cm, k3! = 10m in (44) we find
D ~ 100km, which means that motion is almost entirely by sliding. Butif (z2)* = 1m
and k3l = 5m, D ~ 100 m which is of the same order of magnitude as the thickness
of a glacier. In this case, then, motion would be shared more equally between
shearing and sliding. From the scanty observational evidence available it seems
that both situations —that is predominantly sliding motion and shared motion—
actually occur in temperate glaciers.

Kamb & LaChapelle (1964), who have made direct observations of the process
of glacier sliding over bedrock, refer to a detailed theoretical study by Kamb to be
reported later. They emphasize that the natural distance scale for transition from
regelation slip to plastic slip expresses itself basically in terms of the wavelength of
the irregularities rather than in terms of their amplitude. That view is in accord
with the conclusions of this paper, where the relevant parameter is the wave
number k.. It would be interesting to know how the other conclusions of this paper
stand in relation to the Kamb theory, which one hopes will be published.

The application of the model described here to an actual glacier involves very
revealing difficulties of interpretation that are described in a separate paper
(Nye 1969). (Note added in proof. Further analysis shows that the power spectra
of examples (c) and (d) fall off too sharply at high frequencies to represent a real
glacier bed adequately, and that consequently formula (44) and the conclusions
drawn from it are wrong. A power spectrum more appropriate to a real glacier
bed, and its consequences, are given in Nye (1969).)

3. BED WAVY IN BOTH DIRECTIONS

The above analysis for a bed that is wavy only in the x direction may be modified.
quite simply to cover the general case of a bed that is wavy in both the « and the y
directions.

Let the bed now be
2= ef(x, ?/) = Zo(x, y), say,
with the mean z, equal to zero, and take the x axis parallel to the unperturbed.
flow, which is 4 = U, v = 0, w = 0. Consider first how the drag force on the bed is.
related to the pressure distribution, following the previous treatment on p.453.
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Let (x, y,2,) be the normal pressure on the bed at the point (x,y, z,). The drag force
dF over the element dzdy in the (z,y) plane is

dF = p(z, y, 2,) grad z, dz dy,

dF and grad z, being two-dimensional vectors in the (z,y) plane. To first order in
€ we write p(z, y,2,) = €p,(%, ¥, 0), as before, and so

F = e?[ [ dzdyp,(x,y, 0) grad f. (45)

Keeping z = 0 from now on,we have, by a reverse Fourier transformation,
f= (47r2)“1fdkf(k) etk-r,

where k = (k,, k,) is the wave vector of the bed relief, dk is the area element in
k-space, r = (%, y) is the position vector in the (z,y) plane and the integral is over
the whole of k-space. Then taking the gradient and substituting in (45) gives

F = ie®(4n?)~ [ drp,(r) [ dkkf(k) e, (46)
dr being written for dzdy; and hence
F = ie?(4n?)~ [ dkkf(k) p¥(K), (47)

a formula analogous to (29), giving the drag in terms of the Fourier transform of the
pressure distribution.

Now 7,(k) may be obtained directly from the previous analysis by the following
reasoning. In the first calculation the k vectors were all parallel to the unperturbed
velocity vector U. The new feature here is that there are k vectors not parallel to U.
Consider a bed that contains only one Fourier component, with k not parallel to U.
If the whole bed is now imagined to have a velocity parallel to the corrugations it
obviously makes no difference to the solution. Therefore the pressure distribution
will be determined by the component of U in the direction of k; the component of
U perpendicular to k has no relevance. This means that the previous expression for
P1(k) will hold for p,(k) provided we use not U but the component of U in the direc-
tion of k, that is (U . k)/k. Making this substitution in the first of equations (26) gives

Pa(k) = 2inf(k) (U.K) bk (k% + k2)~
as the required expression. Using this in equation (47), and noting that
ef(k) (k) = |zo(K)[?,
we have the formula for the vector drag in terms of the power spectrum of the bed
relief F = (21 i [ dk|2,(k)[2(U . k) kk(E2 + k)2, (48)
Since U = (U, 0) the drag may be written in component form as

F, = (27?1 UIL[ dk|Zo(K)[2 k2 (R + k)~
29-3
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for the longitudinal drag, and
= (2m?) 1y Uk3 j dk|Zy(K)|2 k, ke, k(K% + k)2
for the transverse d.rag, that is, the drag component perpendicular to the velocity.

(1) The drag in terms of the autocorrelation function

The next step is to turn the integral over k-space into one over (z,y) space,
the previous analysis being used as a guide. Thus, we first define a two-dimensional
autocorrelation function ¢(R) of zy(r) by

¢(R) = fdrz0 )zo(r+R) fdr{zo )32,
where r = (z,y) and R = (X, Y) and the integrals are over the whole of the r plane.
The two-dimensional Fourier transform is
e(k) = [drzy(r) f dR zy(r+R) e—“‘-R/f dr{zy(r)}2.

Substitute r’ = r+ R into the numerator to give zZ§(k) Zy(k) = |Z,(k)|?, and use the
resulting expression for |Zy(k)|2 in equation (48). Dividing by the area of the per-
turbed region we obtain

(v) = (2m?) 1pRB) kL J’ dk¢(k) (U.K) kk (k3 + k)1,
where © = (7,,,7,,). {t) is therefore the vector drag per unit area.
The longltudmal drag component is

(Taey = (2m) U efy b, [ AkE(K) g h(k + 5%~
= (@)U K f dkk2R(kS + k%)~ f " ay f " AXo(X, V)exp{—i(k, X +k,7)}.

Remove the k2 factor by integrating twice by parts with respect to X, thus

k ® ® Pe(X,Y .
(raey = — n) oy U [digps [~ av [ ax®e e Dexp(—ice, X +2,7).

Now take (k,$) as polar coordinates for k, measuring ¢ from the direction of R,
sothat dk = kdkdg¢. Then

Ty = — (200" UL2) ki f dk 2 +k2de 325X2 J d¢ exp {—ikR cos ¢}

_ 2%c(R)
=—m UKL fo dk ( "B+ k2) de 0 Jo(kR) (49)
(Jo being a Bessel function)
B % (R) o(kR)
=—7 117U<z§)lc,ide 0 {f dkJ(kR) k2j dk k2+k2}
?c(R
— — UG f rZAR) {— — oy Pl R)}, (50)

where
Fy(ky R) = k4 jo dkJ o(kR) (k% + k)™t = dm{Io(ky R) — Lo(ky R)}



Sliding of ice over a wavy surface 465

(Abramowitz & Stegun 1964, p. 488, 11.4.45). I (k.R) is a Bessel function and
L(k4 R) is a modified Struve function, I(k, R) — Ly(ky R) being tabulated by Abra-
mowitz & Stegun (1964, table 12.1).
Equation (50) is the analogue of equation (37) for the bed wavy only in the
x-direction. As k,—>0 (pure regelation) k4 Fy(kyR) — 0 and we are left with the
first term. Thus, since k2 = L[4CK7,

UL(23) 2%c(R
(T =— 0K de 6X2 B (51)
The behaviour at the other limit, ky — 00 (pure viscous flow), is best obtained by
returning to equation (49). Express dR as Rdf dR, where 6 is an azimuth measured
from an arbitrary zero, and group the terms so as to give

(T = =~ UG f dkk? f a0 f ar 2Rk kr). (52)

f dkk2J o(kR) diverges at large k and so we must not try to carry out the integration
0

over k at this point. Nor can we proceed by expressing k2Jy(kR) in terms of deriva-
tives of Jo(kR) by using Bessel’s equation, for this leads to divergence later at B = 0.
To avoid these difficulties first note the following relation which may be derived from
Bessel’s equation for Jy(kR):

klz ( ) Jy(kR) = f dRRJ,(kR).

This relation allows us to integrate in (52) by parts with respect to R, taking the two
members as 92¢(R)/0X2 and RJ ((kR). We get first

[820(R) p OokR)E="
| oXT VTR |peo’

which vanishes at the upper limit because ¢2¢c(R)/0X?2 is zero. It also vanishes at the
lower limit because, near R = 0, Jy(kR) = 1 —%(kR)?>+ ..., and so

RoJy(kR)|OR = — 3(kER)?+
We are left with
2% (R)

(T )——71-117U<z0)f dkf def dR(aR 3 ).(RaR) o(kR);

the k2 has cancelled, and divergence at B = 0 has been avoided, as we shall see. The
only term now depending on % is Jy(kR). So, carrying out the integration over £,
which gives R, and carrying out the indicated differentiation with respect to R,
we get a factor — R-1d6dR = — R—2dR. Thus, we finally reach the relatively simple

formula
nU(zo) 1 9 (R)
oy =TT [ am g 2 T2 (59)

for the drag in the pure viscous case.
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The expression of the transverse drag (7,,) in terms of ¢(R) follows precisely simi-
lar lines except that 0%¢c(R)/0X?2 is replaced by 92c(R)/0X 0Y throughout, thus

?]U<z0> 1 & 9%(R)
Ty = deRzaRaan
Isotropic case
If the autocorrelation function of the surface is isotropic, the transverse com-
ponent of the drag vanishes, and we use equation (50) for the longitudinal com-
ponent, writing ¢(R) = ¢(R). It is found that, since ¢(R) is independent of 6,

2 2
86(;((1:) = ( 0520%+s1n20Rd(_1R) ¢(R).

Putting this in (50) and carrying out the integration over & gives the formula

) = UG [ AR [~y ) T3 (B ) o).

In the limit of pure viscous flow (ky — oo) for an isotropic bed we use equation (53)

and obtain 1 d d
2
ey = 10D [ R 5 (B ) o (54
Example

Consider the isotropic, Gaussian autocorrelation function ¢(R) = exp{— R?/RE},
where R, is a constant and suppose, as suggested previously for a realistic example,
By > k;l. Formula (54) then gives, without difficulty (and with no divergence at
R =0)

(Tpey = 6miqgU{23) BgP.

If 2k;! in the corresponding one-dimensional formula (43) is identified with R,,
the ratio of the drag of the isotropically wavy bed to the drag of the bed that is
wavy in only one direction is 377/8 = 1-18. Thus, introducing waviness in the trans-
verse direction, but keeping the mean square amplitude the same, has increased
the drag by 18 %,.

I am indebted to Dr M. V. Berry for help with certain parts of the mathematics
of this paper. The suggestion that the drag should be expressed as an integral over
the bed was his, and he contributed essential steps in reaching the final results. I
also acknowledge with thanks the helpful comments made by Professor G.K.
Batchelor on an earlier version of the paper.



Sliding of ice over a wavy surface 467

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of mathematical functions. National Bureau
of Standards.

Frank, F. C. 1967 Regelation: a supplementary note. Phil. Mag. 16, No. 144, 1267-74.

Kamb, B. & LaChapelle, E. 1964 Direct observation of the mechanism of glacier sliding over
bedrock. J. Glaciol. 5, 159-172.

Lliboutry, L. 1959 Une théorie du frottement du glacier sur son lit. Annal. Géophys. 15,
250-265.

Lliboutry, L. 1968 General theory of subglacial cavitation and sliding of temperate glaciers.
J. Glaciol. 7, 21-58.

Nunn, K. R. & Rowell, D. M. 1967 Regelation experiments with wires. Phil. Mag. 16, No. 144,
1281-3.

Nye, J. F. 1967 Theory of regelation. Phil. Mag. 16, No. 144, 1249-66.

Nye, J. F. 1969 To be submitted to J. Glaciol.

Townsend, D. W. & Vickery, R. P. 1967 An experiment in regelation. Phil. Mag. 16, No. 144,
1275-80.

Weertman, J. 1957 On the sliding of glaciers. J. Glaciol. 3, 33-38.

Weertman, J. 1964 The theory of glacier sliding. J. Glaciol. 5, 287-303.



	Article Contents
	p.445
	p.446
	p.447
	p.448
	p.449
	p.450
	p.451
	p.452
	p.453
	p.454
	p.455
	p.456
	p.457
	p.458
	p.459
	p.460
	p.461
	p.462
	p.463
	p.464
	p.465
	p.466
	p.467

	Issue Table of Contents
	Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 311, No. 1506 (Jul. 29, 1969), pp. 331-476
	Front Matter
	Review Lecture. Hydrostatic Extrusion [pp.331-347]
	The Rutherford Memorial Lecture, 1968. Some Problems of the Growth and Spread of Science into Developing Countries [pp.349-369]
	A Nonlinear Mechanism for the Generation of Sea Waves [pp.371-389]
	Infrared Spectra of Hydrocarbons Chemisorbed on Silica-Supported Metals. II. Ethylene on Nickel and Platinum Over a Range of Temperatures [pp.391-413]
	Infrared Spectra of Hydrocarbons Chemisorbed on Silica-Supported Metals. III. 1-Butene on Nickel and Platinum Over a Range of Temperatures [pp.415-427]
	The Indentation of Materials by Wedges [pp.429-444]
	A Calculation on the Sliding of Ice Over a Wavy Surface Using a Newtonian Viscous Approximation [pp.445-467]
	The Measurement of Velocity by Applying Schlieren-Interferometry to Doppler-Shifted Laser Light [pp.469-476]
	Back Matter



