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Deformation-induced melting in the margins of the

West-Antarctic ice streams

Jenny Suckale1, John D. Platt1, Thibaut Perol,1, and James R. Rice1,2

Abstract. Maps of the surface velocity of ice in West Antarctica show that flow local-
izes in narrow bands of fast flowing ice streams bordered by ridges of nearly stagnant
ice. Despite the importance of ice streams for the stability of the West-Antarctic Ice Sheet,
our understanding of the physical processes that determine their flow speed and width
is incomplete. Here, we study the thermal and mechanical properties of ice-stream mar-
gins, where flow transitions from rapid to stagnant over a few kilometers. Our goal is
to explore under which conditions the intense shear deformation in active ice-stream mar-
gins may lead to deformation-induced melting. We propose a 2D model that represents
a cross-section through the ice-stream margin perpendicular to the downstream flow di-
rection. We include advection and surface crevassing into our model. To estimate melt
rates based on latent heat, we limit temperature by melting conditions. We strive for
a realistic description of the rheology of ice entailing multiple deformation mechanisms
dominant at different stresses and accounting for the temperature dependence of mate-
rial properties. Using rheology parameters as constrained by laboratory data and obser-
vations, we are able to verify predictions that a zone of temperate ice is likely to form
in active shear margins.

1. Introduction

The West-Antarctic Ice Sheet is thought to lose over 80%
of its mass [Bamber et al., 2000] through outlet glaciers and
arterial drainage routes called ice streams, which are typi-
cally about a kilometer thick, tens of kilometers wide and
hundreds of kilometers long. Contrary to outlet glaciers,
which flow through mountain gaps and are thus confined
by the topography of the land surface, topography can not
fully explain the location of the fast-flowing ice streams
in the Ross Ice Shelf, Antarctica [Shabtaie and Bentley ,
1988, 1987]. Further evidence that ice-stream width is not
controlled by topography alone comes from evidence that
some margins have shifted in the past [Clarke et al., 2000;
Fahnestock et al., 2000; Jacobel et al., 2000, 1996] or are
migrating currently [Echelmeyer and Harrison, 1999; Bind-
schadler and Vornberger , 1998; Harrison et al., 1998]. These
observations suggest that a physical mechanism must exist
that allows the bed to transition from deforming beneath
the ice stream to undeforming beneath the ridge, thus se-
lecting the location of the margin and the flow speed of the
stream self-consistently.

The Ross Ice Streams rest on weak and unconsolidated
sediment, commonly referred to as till, which overlays for-
mer seafloor [Tulaczyk et al., 1998; Dreimanis, 1988]. Over
the last few years it has become increasingly clear that till
deformation is probably the primary mechanism that allows
ice streams to move rapidly despite relatively small gravita-
tional stresses [Alley et al., 1986]. In sustained flow, glacial
till can be approximated as a Coulomb plastic material with
a shear strength that is proportional to the effective pres-
sure, defined as the difference between overburden and pore
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pressure [Tulaczyk et al., 2000; Iverson et al., 1998; Kamb,
1991]. The deformational behavior of till suggests that ice
is flowing fast where the stresses in the till have reached the
yielding point and is stagnant where the till is not stressed
sufficiently to deform. Hence, the position of the shear mar-
gin is determined by the location where the stress in the till
layer starts dropping below the yield stress of the till.

Drilling into several active ice streams has confirmed near-
lithostatic fluid pressure in the till below the ice streams
[Kamb, 2001, 1991] and inverse methods have shown that
the till layer is nearly everywhere weak Joughin et al. [2004].
These findings imply that only a very modest shear stress
can be supported by the bed. Measurements of shear
stresses in the margins of the Ross Ice Streams [Joughin
et al., 2002] and a laboratory study of ice cores retrieved
from depth [Jackson and Kamb, 1997] confirmed that the
remainder of the driving stress is balanced by stresses on an
approximately vertical surface parallel to the edge of the ice
stream. We refer to these lateral boundaries of ice streams,
where the surface velocity drops by two to three orders of
magnitude over as little as a few kilometers, as the shear
margins.

While force-balance considerations explain why shear
margins play an important role in ice-stream dynamics
[Joughin et al., 2004; Whillans and Van der Veen, 2001;
Harrison et al., 1998; Jackson and Kamb, 1997; Whillans
and Van Der Veen, 1993], they do not offer any direct in-
sights into the mechanism through which the margin affects
the ice-stream flow. One possibility is that shear margins
represent not only the transition from fast to slow flow, but
may also coincide with the boundary between temperate and
frozen conditions at the bed [Schoof , 2012; Jacobson and
Raymond , 1998]. One challenge with this idea is that even
a small perturbation in ice-stream width would lead to either
run-away growth or to stoppage of an ice stream [Jacobson
and Raymond , 1998]. Schoof [2004] questioned the assump-
tion that the transition between a temperate and a frozen
bed determines, or even coincides with, the position of the
shear margin. Instead, he invokes a spatially variable yield
stress in the till layer, analogous to Barenblatt-Dugdale con-
cepts in fracture mechanics (e.g., Rice [1968a, b]), and de-
rives the associated stream widths. However, Schoof [2004]
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assumes a Newtonian rheology, recognized as a severe simpli-
fication, and does not offer an explanation for the assumed
functional forms of the yield stress along the glacial bed.

The goal of this study is to investigate the possibility of
deformation-induced melting in active shear margins. There
are two reasons why melting and the associated presence of
meltwater in ice-stream margins might have important con-
sequences for the dynamics of ice streams. First, the shear
strength of glacial till varies highly with porosity, which is
controlled by the water content for full saturation [Rathbun
et al., 2008; Tulaczyk , 1999; Iverson et al., 1998] and dimin-
ishes with effective pressure, in agreement with critical-state
soil mechanics (e.g., Schofield and Wroth [1968]). The sensi-
tive dependence of shear strength on water content suggests
that the spatial variability of basal stress and the positions
of the shear margins could be intricately linked to meltwa-
ter generation. Second, if significant quantities of meltwater
are produced in the margin, the water may accumulate in
a channelized drainage system as pointed out by Perol and
Rice [2011]. The presence of a channel alters both the basal
stresses outside of it and the pore-pressure distribution in
its vicinity, which could contribute to locking of the bed of
a widening stream.

The possibility that the shear margins of active ice
streams may be temperate was first pointed out by Jacob-
son and Raymond [1998] and studied in more detail by Beem
et al. [2010] and Perol and Rice [2011]. Assuming uniform
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Figure 1. A: The left panel shows a satellite image of
the confluence between Ice Streams B1 and B2 in the
upstream portion of Whillans Ice Stream, taken by the
Radarsat Antarctic Mapping Project. The right panel is
a detailed view of Dragon margin, Unicorn ridge and the
profile S1 along which Echelmeyer and Harrison [1999]
measured surface velocities and Harrison et al. [1998] re-
ported temperature for the upper few hundred meters.
We have highlighted the positions of the two outermost
boreholes, Out B and Up B, used in Harrison et al.
[1998]. B: Approximate locations of the seven bore-
holes in the vicinity of the shear margin with respect
to surface crevassing (after Harrison et al. [1998]). The
dark grey area represents the roughly 2 km-wide zone of
chaotic crevassing. The light grey zones exhibit less in-
tense crevassing.

strain rates through the ice thickness, Perol and Rice [2011]
devised a 1D heat-transfer model, which, however, was not
versatile enough to allow for ice advection perpendicular to
the margin. They showed that the shear-strain rates mea-
sured by [Joughin et al., 2002] for the five Ross Ice Streams
are consistent with internal melting at depth for all stream
margins except the currently inactive Kamb Ice Stream. As
remarked upon by Perol and Rice [2013], there is also some
observational evidence suggesting a temperate zone. Clarke
et al. [2000] combined different radar measurements to im-
age the ice sheet in the vicinity of Unicorn ridge (Figure 1).
They found numerous linear diffractors near the base of the
ice sheet, some of which Clarke et al. [2000] interpreted as
entrained morainal debris. One prominent feature in their
study is a bottom diffractor that extends to about 230 m
above the bed and might delineate a zone of wet and re-
flective ice [Clarke et al., 2000]. Further, drilling into the
currently inactive Kamb ice stream margin revealed flowing
water in a 1.6 m cavity between the bottom of the ice sheet
and its bed [Vogel et al., 2005].

Here, we devise a 2D thermomechanical model of an ice
stream moving over a plastic bed in steady state. We con-
sider a cross-section through the ice-stream margin perpen-
dicular to the downstream flow direction and analyze the
effect of the anti-plane shear stress components on the me-
chanical equilibrium and energy dissipation. Our ice rhe-
ology takes multiple creep mechanisms into account, which
dominate at different stress levels. In addition to diffusion
and advection of heat, we include the temperature depen-
dence of material properties and a simplified representation
of surface crevassing assuming a temporally steady state of
stress and flow velocity. To estimate melt rates based on la-
tent heat, we limit temperature by melting conditions. We
solve the governing equations numerically using finite dif-
ferences for a Cartesian grid with three refinement levels.
We also carefully benchmark our computational technique
to demonstrate that we resolve the stress concentration and
nonlinearities implied in our model setup.

Our model is intended as a representation of the Ross
Ice Streams. Despite the general scope of the model, we
chose the southern margin of Whillans ice stream B2, com-
monly referred to as Dragon margin (Figure 1), as a specific
test case for our model. Dragon margin is located nearby
research camps and skiways and has been studied exten-
sively. The two most important data sets for our purposes

Stream B2 Dragon Unicorn 

Figure 2. Surface velocities across Dragon margin as
measured by Echelmeyer and Harrison [1999] and the
transverse derivative of surface velocities, du/dy, com-
puted from the measured surface velocities. Highlighted
in red are the approximate transverse velocity deriva-
tives for boreholes ’Dragon Pad’, ’Love Love’, and ’Chaos’
quoted from Harrison et al. [1998].
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are detailed observations of surface velocities across Dragon
margin [Echelmeyer and Harrison, 1999; Echelmeyer et al.,
1994] and temperature measurements from nine boreholes
distributed across Dragon margin [Harrison et al., 1998]
(Figure. 2). In addition, Jackson and Kamb [1997] mea-
sured the enhancement factor at Dragon margin to fit the
observed rheology with the standard parametrization of
Glen’s law and Clarke et al. [2000] provided valuable in-
sights into the complex deformational history of the area
over the last few hundred years.

2. Model setup

We consider a slab of ice flowing in the downstream direc-
tion x (Figure 3). The height coordinate, z, is taken positive
upward from the base of the ice. In the transverse direction,
the ice stream extends from the left boundary of the domain
to its center (−W/2 ≤ y ≤ 0) and the ridge from the cen-
ter to the right boundary of the domain (0 ≤ y ≤ W/2).
The left boundary of our modeling domain thus coincides
with the middle of the stream and the origin of our coordi-
nate system (y = 0, z = 0) represents the transition point
from slipping to locking at the bed, indicated as a black
dot in Figure 3. We do not explicitly model the process
which would lead to such a transition. We distinguish the
locked-to-sliding transition point from the shear margin it-
self, which constitutes the ice column at the lateral bound-
ary of the stream where the surface velocity of ice increases
rapidly over a few kilometers. We assume negligible varia-
tion of ice-sheet thickness in the transverse direction (along
the y axis) and neglect topography at the bed, such that
the ice surface is parallel to the bed. We also neglect down-
stream variation of ice properties and flow speed u, which
reduces our model to two dimensions, and assume a litho-
static pressure field. All notations used in this paper are
summarized in Table 1 at the end of the paper.

2.1. Mechanical model

The only free variable of our mechanical model is the
downstream velocity u(y, z). Accordingly, the strain-rate
tensor ε̇,

ε̇ij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
, (1)

and the deviatoric stress tensor τ have only two non-zero
components, the shear strain rates and shear stresses in hor-
izontal (ε̇xy and τxy) and vertical (ε̇xz and τxz) direction on a
face where x is constant. Given these assumptions, the con-
servation of momentum (or static equilibrium in this case)
reduces to

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

)
+ ρg sinα = 0 (2)

where ρ is the ice density, g is the acceleration due to grav-
ity, α is the inclination angle of the slab, and µ is the
temperature- and strain-rate-dependent, effective dynamic
viscosity. Note that by reducing our analysis to anti-plane
deformation as in eq. 2, we inevitably neglect small com-
ponents of in-plane deformation that must accompany the
marginal melting and drainage that we later infer.

The stream-ridge system in Figure 3 is underlain every-
where by a thick layer of glacial till. Underneath the ice
stream, the till is failing in shear, which justifies equating
the basal shear stress, τbase, underneath the ice stream with
the yield stress. In the interest of simplicity, we assume that
the basal stress is constant. Underneath the ridge, we as-
sume that the shear stress at the ice-till interface does not
exceed the yield stress, implying that failure and sliding do
not occur. The full details which explain locking are yet to
be fully understood. The appropriate boundary conditions

at the bed are then

τxz = τbase at z = 0, y ≤ 0 (3)

u = 0 at z = 0, y > 0 . (4)

The ice surface is assumed to be stress free. On the sides
of the modeling domain, we use symmetric boundary condi-
tions, implying an infinite juxtaposition of ice streams and
ridges. Later, we estimate τbase to best match measured
surface flow rates and borehole temperature profiles.

2.2. Ice rheology

There is no single mechanism that captures how ice de-
forms over a wide range of stresses [Cuffey and Paterson,
2010]. For our modeling domain, which encompasses both
high and low stress conditions, we approximate the rheology
of ice as a combination of diffusional creep ε̇D and Glen’s
Law ε̇G

ε̇ = ε̇D + ε̇G . (5)

Diffusional creep

(ε̇D)ij =
42Ω

kBTd2
B exp

(
− Q

RT

)
τij , (6)

dominates the deformational behavior of ice at low stresses
and Glen’s Law

(ε̇G)ij = AE exp

[
−Q
R

(
1

Th
− 1

T ∗

)]
τ2
Eτij , (7)

dominates at intermediate to high stresses, where τE is the
effective shear stress defined by the second invariant of the
deviatoric stress tensor, in our case τ2

E = τ2
xy + τ2

xz, and ε̇E
is the effective tensorial deviatoric strain rate, in our case
ε̇2E = ε̇2xy + ε̇2xz.
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Figure 3. Simplified geometry of our model setup. The
ice thickness is H and the total width of the stream is
W. The 2D setup (bottom) is equivalent to assuming a
3D stream-ridge geometry with no downstream variation
(top).
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The parameters specifying diffusional creep in (eq. 6)
are the molecular volume Ω = 3.27 10-29 m3, the Boltzmann
constant kB = 1.38 10-23 m2 kg s-2 K-1, the grain size d =1-
10 mm, the exponential prefactor B = 9.1 10-4 m2 s-1, the
activation energy Q = 59.4 kJ mol-1, and the gas constant
R = 8.314 J K-1mol-1 [Frost and Ashby , 1982]. For Glen’s
Law (eq. 7), we follow Cuffey and Paterson [2010] in using
the pre-exponential constant A = 3.5 10-25 s-1Pa-3, the tem-
perature adjusted for melting point depression Th = T+p0P
with p0 = 7 × 10-8 K Pa-1 and T in K, and the activation
energy Q = 60 kJ mol-1 for Th < T ∗ and Q = 115 kJ mol-1

for Th > T ∗ where T ∗ = 263.15 K= −10◦C. The sum of the
coefficients of τij in eqs. 6 and 7 defines 1/(2µ).

The rheological parameter that is most difficult to con-
strain is the enhancement factor. Enhancement is not a
physical variable by itself, but represents effects of grain
size, impurities, fabrics and possibly other variables [Cuf-
fey and Paterson, 2010]. As a consequence, estimates for
enhancement vary widely. For the specific case of Dragon
margin, Jackson and Kamb [1997] determined enhancement
factors between E ≈ 1.12 and E ≈ 2.55 for different ice
specimen retrieved from Dragon margin. Because of the sig-
nificant ambiguity introduced into our model results even by
this moderate variation, we set E = 1 for most of our com-
putations to allow for easier comparisons. We discuss the
ramifications of varying enhancement in Sec. 5.

2.3. Thermal model

Our thermal model captures the effect of both diffusion
and advection of heat. In addition, we cap temperature at
the melting point to estimate melt production based on la-
tent heat and include the effect of cold surface air pooling
in crevasses [Harrison et al., 1998]. For a spatially-variable
thermal conductivity k, the steady-state temperature field
is thus given by

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+ρc

(
v
∂T

∂y
+ w

∂T

∂z

)
+ 2τE ε̇E − Lṁ = 0 , (8)

where v and w are the lateral and vertical advection speeds,
respectively, c is the specific heat of ice, τE is the effective
shear stress, ε̇E is the effective tensorial shear strain rate,
L is the latent heat of ice per unit mass and ṁ is the mass
melting per unit time and unit volume. The thermal con-
ductivity k and specific heat c vary with temperature as
summarized in Cuffey and Paterson [2010]:

k(T ) = k1 exp(−k2 × 10−3 T ) (9)

c(T ) = c1 + c2 T , (10)

where T is in Kelvin and the forefactors are k1 =
9.828 W m-1 K-1, k2 = 5.7 K-1, c1 = 152.5 J kg-1 K-1, and
c2 = 7.122 J kg-1 K-2, respectively.

To compute the melt rate per unit volume ṁ in eq. 8, we
assume that shear heating in the temperate zone is absorbed
as latent heat. This assumption implies that the tempera-
ture in the temperate zone is capped at the melting point,
which allows us to reduce eq. 8 to the following non-linear
Poisson problem

∂

∂y

(
k
∂T

∂y

)
+
∂

∂z

(
k
∂T

∂z

)
+ ρc

(
v
∂T

∂y
+ w

∂T

∂z

)
+ [1−H(T − Tm)] 2τE ε̇E = 0 , (11)

whereH(T−Tm) denotes the Heaviside function. H(T−Tm)
is one in the temperate zone and zero outside such that Lṁ
is non-zero only in the temperate zone where it equals the
shear heating 2τE ε̇E .

The mechanical model set up in Section 2.1 solves only
for the downstream velocity u. To include the horizontal

and vertical velocities into our thermal model, we constrain
the functional forms for both v and w apriori, assuming that
the associated strain rates, stresses and work rates are neg-
ligible. Considering horizontal and vertical velocities in the
thermal but not the mechanical model is, of course, strictly
inconsistent. This inaccuracy is warranted by the poten-
tially important effect that the advection of cold ice into
the shear margin is likely to have on deformation-induced
melting [Jacobson and Raymond , 1998]. In the mechanical
model, however, the strain rates associated with the hori-
zontal and vertical velocities are two orders of magnitude
smaller than the anti-plane rates, implying that the strain
rate components in these directions can be neglected in ε̇E
of the creep law and the equilibrium equation.

For the vertical advection component we follow Zotikov
[1986] and Jacobson and Raymond [1998] in assuming that
w varies linearly with depth

w(y, z) = −a z
H
, (12)

where a is the surface accumulation rate of ice in m/yr and
a uniform contribution to w equal to the melt rate at the
bed of the ice sheet is neglected. Eq. 12 implies that accu-
mulation of ice at the surface is compensated by downslope
stretching of ice and that basal melting or freeze-on are neg-
ligible [Zotikov , 1986].

Several studies have suggested that the position of Dragon
margin has shifted in the past and may even be shifting cur-
rently with speeds on the order of 1-10 m/yr [Echelmeyer
and Harrison, 1999; Harrison et al., 1998] to potentially
≈ 100 m/yr [Clarke et al., 2000; Bindschadler and Vorn-
berger , 1998]. The simplest way to include ongoing mar-
gin migration at constant rate into our ice-stream model is
through influx of cold ice from the ridge based on the ratio-
nale that in a coordinate system moving with the margin,
outward expansion of the stream is equivalent to influx of
cold ice from the ridge (as also argued in Schoof [2012]). To
be consistent with zero-slip boundary condition at the bed
underneath the ridge, we impose

v(y, z) = v0

[
1−

(
H − z
H

)4
]
, (13)

(see for example Cuffey and Paterson [2010]).
Similarly to the mechanical model, we use symmetric

boundary condition on the sides of the domain. On the
top, we specify the surface temperature of ice (see Sec. 2.5).
Underneath the stream, we assume that the bed is at the
melting point as supported by observations (e.g. Engelhardt
et al. [1990]). Underneath the ridge, we do not specify apri-
ori whether the bed is temperate or not. Instead, we adjust
the geothermal heat flux G directly beneath the ice sheet
such that the bed reaches a temperature of −5◦C at large
distances from the margin in agreement with observations
(e.g. Rose [1979]). Depending on the computation, this con-
dition typically requires geothermal heat fluxes on the order
ofG = 48-85 mW/m2. We assume the same geothermal heat
flux underneath the stream. Assuming a finite geothermal
heat flux underneath the ice stream has no effect on the solu-
tion for the downstream velocity and temperature, because
the additional heating does not raise the base temperature
above the melting point. It does, however, affect the total
meltwater generation associated with both the geothermal
heat flux and the frictional heating at the base of the ice
stream (Sec. 2.4).

2.4. Meltwater production
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Despite the fact that our mechanical model (Sec. 2.1) en-
tails a stress singularity, it is an integrable singularity from
the standpoint of both force equilibrium and heat balance,
which allows us to use the dissipation in the temperate zone
to obtain an estimate for the melt rate per unit volume (see
Sec. 2.3). In 2D, the mass balance for the meltwater pro-
duced in the temperate zone is

∂qy
∂y

+
∂qz
∂z

= −2τE ε̇E
Lρw

(14)

where qy and qz represent the meltwater flux in horizontal
and vertical direction, respectively, and ρw is the density of
water.

For simplicity, we neglect meltwater flux in the horizontal
direction, qy = 0, noting that we have previously assumed
a hydrostatic pressure in our mechanical model (Sec. 2.1),
and integrate eq. 14 numerically to obtain the basal melt-
water flux due to shear heating in the temperate zone very
simply as

qtemp = −
∫ Hm

0

ṁ

ρw
dz = −

∫ Hm

0

2τE ε̇E
Lρw

dz , (15)

where Hm indicates the height of the temperate zone mea-
sured from the bed upwards. In addition to melt production
from shear heating in the temperate zone, frictional heat dis-
sipation at the bed and the difference between heat in- and
out-flux may contribute to the melt rate, yielding

qbase = qtemp +
1

Lρw

[
u(y, 0)τbase +G− k ∂T

∂z

]
. (16)

Based on the two assumptions that meltwater percolation
occurs through Darcy’s law [Lliboutry , 1996] and that the
water pressure in veins equals the ice overburden pressure,
dp/dz = −ρg, the permeability of the temperate ice can be
deduced as [Perol and Rice, 2011]

κ =
qbaseµw

(ρ− ρw)g
. (17)

The meltwater fluxes we later infer imply a temperate-ice
permeabilities on the order of 10-16 m2, which is consistent
with measurements by Jordan and Stark [2001].

2.5. Surface crevassing

The crevassed zone at Dragon margin consists of an
approximately 2 km-wide zone of intense, chaotic crevass-
ing [Echelmeyer and Harrison, 1999; Harrison et al., 1998;
Vornberger and Whillans, 1990]. On the ridge-side of the
margin, the chaotic crevasses transition to large arcuate
crevasses and on the stream-side to somewhat organized
and widely spaced crevasses that tend upstream [Echelmeyer
and Harrison, 1999; Harrison et al., 1998]. The crevasses
are thought to extend about 30 m into the ice [Harrison
et al., 1998]. The location of the crevassed zone and the
positions of the nine boreholes for which Harrison et al.
[1998] reported temperature measurements are reproduced
in Fig. 1A and B. Harrison et al. [1998] also indicate the
transverse derivatives of the surface velocities at the three
boreholes, ’Dragon Pad’, ’Lost Love’, and ’Chaos’ (Fig. 2),
which indicates that borehole ’Dragon Pad’ is located clos-
est to the locked-to-sliding transition but on the ridge side,
at approximately y = 200 in our modeling domain (Fig. 3).

We represent the zone of chaotic crevassing as a 2 km-wide
rectangular area in our y, z-plane that extends from the sur-
face 30 m into the ice. We assume that the dense spacing of
open crevasses lowers the effective viscosity in this area by
an order of magnitude as compared to uncrevassed ice (i.e.
from µ to µ/10). We refer to the drop in effective viscos-
ity as the mechanical-weakening factor. While this choice

H 

W/2 

Figure 4. Cartesian grid used in our computation. The
grey shaded areas highlight the two zones of grid refine-
ment necessary to resolve the sudden transition from fast
flow to stagnation at the ice-stream bed.

is somewhat arbitrary, we verified that the results are not
sensitive to the assumed value, mostly because the crevassed
zone is relatively shallow. To capture the zones of arcuate
and upstream crevassing on the ridge and stream side of the
chaotic zone, we gradually lower the effective viscosity unaf-
fected by crevassing to the mechanically-weakened effective
viscosity representative of chaotic crvassing over 400 m on
both the stream and the ridge side. We include the effect
of cool winter ice pooling in the crevasses by enforcing a
surface temperature of −34 C◦ in the crevassed zone, which
gradually increases to −26 C◦ in the uncrevassed ice.

There is no doubt that the representation of surface
crevassing considered here is simplified. A more com-
plete model would allow the crevassed zone to evolve
self-consistently instead of specifying its extent apriori.
Nonetheless, we argue that the approach we have chosen

Figure 5. Benchmark computation for Dragon margin
(W = 34H). Each color represents one of nine differ-
ent angles from 5◦-175◦. For each angle, the dotted lines
represent the analytically-derived nonsingular shear heat-
ing and the full lines the numerically-derived nonsingular
shear heating. The discrepancy at r ≈ 5 m between nu-
merical and analytical for this specific computation is due
to the analytical solution requiringW � H, which is only
approximately true for ice stream B2. There is no dis-
cernible difference between our analytical and numerical
estimates for very wide ice streams (W > 200H).
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here provides a reasonable first step for considering crevass-
ing in the context of a steady-state model.

3. Methodology

3.1. Numerical methodology

Our numerical implementation uses centered finite-
differences on a Cartesian grid, yielding a second-order ac-
curate approximation to the governing equations. Our grid
setup allows for three refinement levels in the vicinity of the
singularity at the transition point between stream and ridge
in the mechanical model (see Section 2.1). We assess the
adequacy of this grid setup through a comparison with an
analytical treatment of the singularity in Sec. 4.1. We do
not use grid refinement in our solution to the thermal model
(see Section 2.3), because our temperature field is capped at
the melting point, which implies constant temperature in the
vicinity of the stress singularity.

The mechanical and thermal model are coupled through
the dependence of viscosity on temperature and the depen-
dence of temperature on shear heating. We therefore have to
solve the two models iteratively by repeating the following
computational steps: First, we seek an approximate solu-
tion to our mechanical model (eq. 2). Second, we compute
the dissipative heating associated with the estimated veloc-
ity field. Third, we compute the temperature field resulting
from this dissipative heating term by solving eq. 11. Fourth,
we update our estimates for the effective viscosity, thermal
conductivity and specific heat based on the new tempera-
ture field. Once the coupled mechanical and thermal models
have converged to a stable solution for the temperature and
velocity fields of the stream-ridge system, we estimate melt
production (eq. 16).

A concern when solving our mechanical model numeri-
cally for a creep-type rheology is to resolve the singularity at
the base between stream and ridge sufficiently. We amelio-
rate this problem by using a grid with three refinement levels
in the vicinity of the singularity. It is worth mentioning at
this point that while our rheology entails more parameters
than a simple Glen Law, most of these parameters are not
varied in our computations. We tested the impact of varying
the grain size in eq. 6 within a reasonable range of 1-10 mm
and found little effect. The Glen-law component of the rhe-
ology clearly dominates the thermomechanical behavior in
most of the computational domain.

The main challenge in our thermal model is that the
source term in eq. 11 depends on temperature, which makes
the equation nonlinear. The solution of eq. 11 thus requires
an iterative procedure in itself. At each iteration, we update
the source term based on the revised estimate for the extent
of the temperate zone. We also shift the transition between
the boundary condition at the base of the domain, such that
geothermal heat flux is imposed only underneath the portion
of the ridge that is frozen (although we continue to main-
tain a no-slip condition underneath the entire ridge). We
solve eq. 11 through a multigrid solver [Briggs et al., 2000],
in which we cycle through a sequence of four increasingly
coarse grids. We have also found satisfactory results with
classical iterative techniques such as successive overrelax-
ation, but the multigrid is computationally more efficient
and less prone to error oscillations, particularly along the
bed.

To specify the material properties in the crevassed zone,
we construct a Heaviside distribution of 2 km width and 30 m
depth, in which we reduce the effective viscosity as computed
from eqs. 5-7 for the lowered temperatures in the crevassed
zone by the mechanical weakening factor. We smear out
the transition between chaotic crevassing and uncrevassed
ice over 400 m using a standard trigonometric taper to rep-
resent the areas of less intense crevassing [Harrison et al.,
1998]. The crevassed zone thus has a total width of 2.8 km.

We enforce a surface temperature of −34 C◦ in the crevassed
zone, which gradually increases to−26 C◦ in the uncrevassed
ice based on the same smeared Heaviside function.

3.2. Validation of the numerical approach

Two previous studies [Schoof , 2004; Jacobson and Ray-
mond , 1998] have investigated the thermomechanics of ice-
stream margins with differing results. While some of the dif-
ferences are clearly due to contrasting model assumptions,
Schoof [2004] raised the concern that a purely numerical
approach, like Jacobson and Raymond [1998], might not
resolve the singularity in the mechanical model. Instead,
Schoof [2004] devised a nonsingular model like commonly
used in fracture theory that can be solved analytically, but
is based on significant simplifying assumptions. To relax
some of these assumptions, we have developed the numeri-
cal approach described in Sec. 3.1, but validate it carefully
against an analytical treatment to ensure that we resolve
the singularity adequately.

Mathematically, the transition from a slipping ice stream
to a locked ridge is analogous to a crack problem. In this
analogy, the singularity at the bed between stream and ridge
represents the crack tip and the base of the ice stream can
be thought of as a shear crack. Using this parallel, we can
study the dissipation in the near-tip field with the analyti-
cal techniques developed for crack mechanics. Our strategy
for solving for the stress, strain-rate and dissipation in the
near-tip field consists of two steps: First, we can deduce
from Rice [1967], reinterpreted for nonlinear viscous flow,
and Rice [1968b] that the shear heating in the near-tip re-
gion is given by

2τE ε̇E =
3Jtip
2πr

(√
4− sin2 θ + cos θ

)
(18)

where r and θ are the polar coordinates centered on the slip
singularity, such that r is the radial distance from the slip
singularity and θ the angle taken to be zero at the bed un-
derneath the ridge (see appendix A for details). The 1/r
term in this result applies for any creep law, while the an-
gular dependence here is specific to Glen’s law. Eq. 18
provides an exact solution for the shear heating in the near-
field parametrized by an unspecified constant, Jtip. This
constant, Jtip, captures the intensity of straining at the
crack tip, which depends on the far-field loading. To cre-
ate the link to the far field in the second step of our analy-
sis, we use the path-independence of J-type integrals, which
were pioneered by Rice [1968a], Rice [1968b], Cherepanov
[1968], and Bilby and Eshelby [1968] in the context of cracks
in elastic solids, but have been generalized to more com-
plex, non-linear creep rheologies (e.g. Ben Amar and Rice
[2002]; Kubo et al. [1979]; Landes and Begley [1976]; Gold-
man and Hutchinson [1975]) relevant for our case and ap-
plied to glaciers by McMeeking and Johnson [1986]. As de-
tailed in appendix B, we evaluate the J-integral around the
boundary of the domain, which due to path-independence
allows us to approximately estimate Jtip as

Jtip = Hτlatε̇lat , (19)

where τlat is the average shear stress, τxy, at the margin that
would balance the gravitational load of the ice stream and
ε̇lat is the strain rate associated with that average lateral
shear stress. Note that contrary to the exact result for the
near-tip field (see eq. 18), the evaluation of the J-integral in
eq. 19 is approximate and based on the simplifying assump-
tions that (1) the rheological behavior of ice is independent
of position, hence neglecting the effect of temperature vari-
ations and (2) that ice streams are much wider than thick
(H � W ). It is also worth noting that Glen’s Law clearly
dominates the ice rheology in the high-stress region around
the crack tip, which obviates taking diffusional creep into
account although the analysis procedures remain valid with
it included. Also, to the extent that the near-tip zone is
temperate, the first condition may be met within that zone.



SUCKALE, PLATT, PEROL AND RICE: MELTING IN ICE-STREAM MARGINS X - 7

4. Results

To gain a better understanding of the different effects that
contribute to the thermomechanics of ice streams, we start
by reducing our model to its bare minimum. In its most
simplistic form, the model is reminiscent of models that are
amenable to analytical solution like Schoof [2004]. Then, we
add in one term after another, gradually obtaining a more
realistic representation of the behavior of a stream-ridge sys-
tem.

The sequence of effects that we consider is as follows:
First, we focus on the role of the singularity at the locking-
to-slipping transition point at the bed. Second, we investi-
gate the ramifications of a temperature-dependent creep rhe-
ology. Third, we consider the ramifications of vertical and
horizontal advection of cold ice into the margin. Fourth, we
take into account crevasses along the surface expression of
the margin. To quantify the explanatory potential of this se-
quence of approximations, we attempt to reproduce the sur-
face velocities measured for Dragon margin by Echelmeyer
and Harrison [1999] at each step and compare the respective
fits.

4.1. The role of the singularity

Numerical models of singular systems are inevitably less
accurate than analytical approaches in the immediate vicin-
ity of the singularity. It is thus valuable to first verify that
the singularity is resolved satisfactorily in our simulations.
To render our numerical model comparable to the analyt-
ical benchmark results derived in Section 3.2, we neglect
the temperature-dependence of the ice rheology and ther-
mal conductivity for all computations in this section.

It is unreasonable to expect that the numerical and an-
alytical solutions match exactly, for two reasons: First, the
analytical solution is an exact asymptotic result, except that
its coefficient Jtip is known only in the limit of very wide ice
streams. We therefore expect that the error between ana-
lytical and numerical results decreases with increasing ice-
stream width. Second, the analytical treatment only cap-
tures the contribution to shear heating that results from the
stress singularity at the bed. The effect of the nonsingular,
but still intense, shear heating throughout the entire depth
extent of the ice is not accounted for by the singular term
only. The numerically-estimated shear heating should thus
approach the analytically-estimated shear heating only in
the immediate vicinity of the singularity (r → 0) apart from
uncertainties in the multiplying factor Jtip, but will deviate
at non-negligible distances to the singularity. In addition to
serving as a benchmark, the comparison between analytical
and numerical results can hence shed light on the relative
importance of shear heating in the near-field as opposed to
the far-field.

Figure 5 shows an example computation for Dragon mar-
gin (W = 34H) for zero basal stress to facilitate the compar-
ison with the analytical results, where we compare the angu-
lar dependence of dissipation defined as 2τE ε̇E×r instead of
the singular dissipation 2τE ε̇E . The numerically-computed
dissipation approaches the analytical value for radii on the
order of a few meters. The importance of terms beyond
the dominant singularity is strikingly apparent beyond 60 m
from the tip, where the ordering of the angular dependence
is reversed. The errors in the vicinity of the singularity is
between 6-17% depending on the angle. The slight but sys-
tematic deviations at small radii in Fig. 5 are due to the
analytical results requiring very wide ice streams (W � H),
which is only approximately true for Dragon margin. We
achieved considerably better accuracy for wider ice streams,
with errors dropping to 1%.

We conclude that our simulations reproduce the magni-
tude of shear heating in the immediate vicinity of the sin-
gularity accurately. As the radius approaches zero, how-
ever, the numerical solutions become increasingly dominated
by numerical error associated with the quickly diverging

stresses and are less unreliable. The radius below which the
numerical solutions become inaccurate depends primarily on
the resolution. It is thus possible to resolve the singularity
better than in Figure 5. Ultimately, however, there will al-
ways be a critical radius below which the analytical result
is more accurate. Beyond serving as a benchmark, Figure 5
also demonstrates that the far-field contribution to shear
heating becomes increasingly important at radial distances
beyond a few meters, rendering the analytical solution that
only captures heating in the near-field of the singularity less
adequate.

4.2. The importance of a temperature-dependent
rheology

The most significant assumption in analytical models of
ice-stream dynamics is probably the usage of a simplified
rheology, such as a constant Newtonian viscosity [Schoof ,
2004, 2012] or a temperature-independent power-law rheol-
ogy. In this section, we quantify the ramifications of us-
ing a simplified rheology by comparing our model predic-
tions to the surface velocities at Dragon margin observed by
Echelmeyer and Harrison [1999]. All computations in this
section are based on the reduced thermal model

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+ [1−H(T − Tm)] 2τE ε̇E = 0 ,

(20)
which neglects the advective terms and the effect of surface
crevassing as compared to the full thermal model defined in
Sec. 2.3. The latter two effects are discussed in detail in the
subsequent sections.

In Figure 7, we compare the temperate zones and pre-
dicted surface velocities for three different rheologies. The
computation on top (Figures 7A1 and B1) is based on a

Shear heating (nonlinear, temperature-independent rheology) 

Shear heating (nonlinear, temperature-dependent rheology) 

Figure 6. Eighty contours of constant shear heating in
units of [Pa/yr] in the vicinity of the singularity when ne-
glecting (top) and including (bottom) the temperature-
dependence of the rheology.
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B3. Surface velocities (nonlinear, temperature-dependent rheology) 

A2. Temperature (nonlinear, temperature-independent rheology) B2. Surface velocities (nonlinear, temperature-independent rheology) 

A1. Temperature (linear rheology) B1. Surface velocities (linear rheology) 

A3. Temperature (nonlinear, temperature-dependent rheology) 

Figure 7. Top: Temperature field (A1) and surface velocities (B1) assuming a Newtonian rheology of
µ = 1014 Pa s. Middle: Temperature field (A2) and surface velocities (B2) for a power-law rheology that
accounts for the strain-rate dependence of the effective viscosity, but neglects the temperature depen-
dence. Bottom: Temperature field (A2) and surface velocities (B2) for a realistic rheology that captures
both strain-rate and temperature dependence. The best fitting basal stresses are τbase = 2.56 kPa (A1,
B1), τbase = 1.12 kPa (A2, B2) and τbase = 4.07 kPa (A3,B3), respectively. All computations neglect
advection and surface crevassing. Measured surface velocities from Echelmeyer and Harrison [1999].

constant Newtonian rheology of µ = 1014 Pa s, which clearly
gives the worst fit to observational data. The computation
in the middle (Figures 7A2 and B2) takes the strain-rate
dependence of the rheology into account, but neglects the
temperature dependence. While this scenario is clearly more
realistic than the Newtonian case, the width of the shear
margin is overestimated by approximately a factor of two.
Considering a realistic rheology that takes both the strain-
rate and the temperature dependence into account improves
the fit to observations dramatically (Figures 7A3 and B3).
The extent of the temperate zone in the last computation
(Figures 7A3 and B3) is roughly comparable to the obser-
vations by Clarke et al. [2000].

Figure 6 demonstrates why the temperature dependence
of the ice rheology is such an important effect. It shows
the spatial variation in shear heating in the vicinity of the
slip singularity for the strain-rate dependent rheologies (Fig-
ures 7A2, B2 and A3, B3). Both cases show a pronounced
peak in shear heating at the slip singularity. When taking
temperature into account, we find a second local maximum
in shear heating at the ice surface above the singularity. The
reason is that the ice is coldest on the surface, which trans-
lates into higher effective viscosity and higher shear heating
than in the ice below.

We conclude that the width of the high-strain region at
the margin is controlled primarily by differences in the tem-
perature of ice and thereby in its effective viscosity. To
reproduce the rapid increase in surface speeds observed at
Dragon margin [Echelmeyer and Harrison, 1999], the ice in
the margin has to be significantly warmer and thus weaker
than the ice outside.

4.3. The effect of advection

The computations in Figure 7 indicate that a significant
portion of the ice in Dragon margin is temperate. However,
both models may overestimate the volume of temperate ice,
because they do not consider the effect of cold ice being ad-
vected into the margin both from the surface and from the
ridge. To better isolate the effect of horizontal as opposed to
vertical advection, we study them through separate simula-
tions. The specific forms of the thermal model we consider
in this section are therefore

∂

∂y

(
k
∂T

∂y

)
+
∂

∂z

(
k
∂T

∂z

)
+ ρcw

∂T

∂z
+

[1−H(T − Tm)] 2τE ε̇E = 0 , (21)
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and

∂

∂y

(
k
∂T

∂y

)
+
∂

∂z

(
k
∂T

∂z

)
+ ρcv

∂T

∂y
+

[1−H(T − Tm)] 2τE ε̇E = 0 , (22)

where v and w are the horizontal and the vertical advection
velocities as defined in Sec. 2.3.

To test the effect of vertical advection only, we first as-
sume the same basal stress (τbase = 4.07 kPa) as in Fig-
ure 7A3,B3 and add vertical advection based on an accu-
mulation of a = 0.1 m/yr. We find that the temperate zone
vanishes almost entirely. The associated surface velocities in
the ice stream, however, are now much lower than observa-
tions suggest [Echelmeyer and Harrison, 1999]. The reason
is that by cooling the margin, vertical advection makes the
margin stronger and a strong margin provides more resis-
tance against gravity. To reproduce the observed surface
velocities, we have to lower the assumed basal stress under-
neath the ice stream to τbase ≈ 3.17 kPa. Figures 9A1 and
B1, show the resulting temperature field and surface veloc-
ities. Interestingly, the extent of the temperate zone is now
comparable to Figure 7A3,B3. We thus conclude that the
main effect of vertical advection, if we insist that the sur-
face deformation data be matched, is to slightly shift the
force balance between the resistance to flow provided by the
shear margin as compared to basal friction. The extent of
the temperate zone in the margin changes only slightly after
accounting for the different basal stress required to balance
gravity.

Observations suggest that Dragon margin is currently mi-
grating outwards with a constant speed of −7.3 m/yr [Har-
rison et al., 1998], possibly more [Echelmeyer and Harri-
son, 1999]. The effect of including horizontal advection at
−7.3 m/yr is shown in Figures 9A2 and B2. As a conse-
quence of the lateral influx of cold ice from the ridge, the
temperate zone vanishes entirely and it becomes impossi-
ble to reproduce the rapid increase in the observed surface
speed of ice in our computations. The finding that horizon-
tal advection on the order of m/yr precludes the formation
of a temperate zone is consistent with the previous study
by Jacobson and Raymond [1998]. Our simulations indi-
cate that horizontal advection with speeds on the order of
0.1 m/yr are associated with finite temperate zones, albeit
smaller ones than in the absence of horizontal influx of cold
ice.

Our inability to reproduce observed surface velocities
for the estimated migration speeds is clearly an important
caveat. We argue that the main problem is that our sim-
plified representation of horizontal advection does not ad-
equately represent the physics of margin migration. Two
concerns in particular come to mind: First, it is highly ques-
tionable that margin migration as rapid as several m/yr can
be treated through a steady-state model. Indeed, the evi-
dence in favor of migration of Dragon margin comes primar-
ily from surface lineations and subsurface diffractors that in-
dicate a complex deformational history [Clarke et al., 2000;
Echelmeyer and Harrison, 1999; Harrison et al., 1998] and
both inward and outward migration of the margin [Clarke
et al., 2000]. The observational evidence thus suggest that
the system has not reached a steady state. Second, Dragon
margin is located close to the confluence between ice streams
B1 and B2. The interaction between the two streams and
the interjacent Unicorn ridge may be an important factor to
consider in modeling the evolution of the system. An exam-
ple for observational evidence that supports a non-trivial ge-
ometric connection between ice stream B1 and B2 is a hook-
shaped surface lineation called fishhook, which connects the
two streams and correlates with several near-surface strain
features [Clarke et al., 2000].

Nonetheless, the simulations including horizontal advec-
tion lend additional support to our previous conclusion that

Dragon margin is at least partially temperate. Our compu-
tations show that only temperate ice is weak enough to con-
centrate strain to the degree necessary for the surface speed
to increase from approximately zero to its maximum value
over as little as 8 km. Cold ice as predicted in Figure 9A2,B2
is more rigid than temperate ice and consequently associated
with a much wider margin than observed. The finding that
Dragon margin is likely temperate at depth is consistent
with Perol and Rice [2011]. Albeit not including horizontal
advection, they predicted temperate zones in the shear mar-
gins of the active Siple-Coast ice streams using a 1D heat-
transfer model in conjunction with the shear-strain rates
measured by Joughin et al. [2002] to constrain shear heat-
ing. In fact, the size of the temperate zone estimate here
for Dragon margin and the results by Perol and Rice match
moderately well (Fig. 8).

4.4. The ramifications of surface crevassing

The ice streams of West Antarctica were first identified
by radar detection of their crevassed margins [Rose, 1979],
which highlights that intense surface crevassing is a charac-
teristic feature of the Ross Ice Streams. This observation
raises the question how surface crevasses affect the ther-
momechanics of ice-stream margins. Within the framework
of our model, surface crevassing has two competing effects:
On the one hand, crevasses lower the creep resistance of
the ice, because of the void space they introduce into the
ice. We refer to this effect as mechanical weakening. On
the other hand, crevasses lower the temperature in the ice
through cool winter air pooling in the crevasses [Harrison
et al., 1998] thus increasing the creep resistance. We call
this effect thermal strengthening.

There are multiple sets of crevassing parameters that
yield a comparably good fit to surface velocities. This
ambiguity results primarily from the uncertainty in the
mechanical-weakening factor, but also from varying the ex-
act location of the crevassed zone and the basal shear stress.
While we are able to reproduce the velocity data for Dragon
margin [Echelmeyer and Harrison, 1999] with a wide range
of modeling parameters, compatibility with temperature
measurements [Harrison et al., 1998] poses more constraints.
Figures 12 and 10 illustrate a computation which attempts
to match both data sets simultaneously. To facilitate the
comparison with our simulations, we briefly summarize four
key observations by Harrison et al. [1998]. First, the tem-
perature for the two boreholes in the ridge, named ’OutB’

Figure 8. Comparison of the temperate zone from
Fig. 9A1 and B1, replotted on a 1:1 scale, with the
simplified 1D model by Perol and Rice [2011] using
measured surface velocities Echelmeyer and Harrison
[1999] with a surface accumulation of a = 0.1 m/yr in
both cases.
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A1. Temperature field (vertical advection only) 

B1. Surface velocities (vertical advection only) 

A2. Temperature field (horizontal advection only) 

B2. Surface velocities (horizontal advection only) 

Figure 9. Temperature fields and surface velocities for Dragon margin when including only vertical ad-
vection (A1 and B1) with a = 0.1 m/yr and only horizontal advection (A2 and B2) with v = −7.3 km/yr,
respectively. The best fitting basal stresses are τbase = 5.31 kPa (A1 and B1) and τbase = 0.94 kPa (A2
and B2), respectively. Both computations neglect surface crevassing.

and ’Stage’ (see Fig. 1 for approximate borehole locations),
is approximately constant at −26◦C over the depth range
measured (Fig. 12). Second, out of the nine boreholes,
the boreholes ’Remote’, ’Intermediate’ and ’Pad’ exhibit the
warmest temperature at depth (−22◦C at a depth of approx-
imately 700 m) with ’Intermediate’ being slightly cooler than
the other two. Third, borehole ’UpB’, located well into the
stream, is slightly cooler yet (−25◦C at a depth of approx-
imately 700 m, see Fig. 12). Fourth, the −26◦C contour
extends from borehole ’Dragon Pad’ to borehole ’Intermedi-
ate’ and attains the largest depths (≈ 830 m) at boreholes
’Lost Love’ and ’Chaos’ (Fig. 10).

Supposing that the temperatures measured by Harrison
et al. [1998] resemble a steady state, these four observations
translate into the following constraints for our modeling.
First, the finding that the boreholes in the ridge maintain
a typical surface temperature of −26◦C over a 300 m depth
interval suggests high rates of vertical advection. High ver-
tical advection in turn implies high accumulations on the
order of a = 0.20-0.24 m/yr, which may be reasonable for
Antarctica. Second, the relatively warm temperatures mea-
sured for ’Remote’, ’Intermediate’ and ’Pad’ points to in-
ternal heating at these locations. The offset between the
locations of highest strain rate and highest internal heat-
ing may indicate horizontal advection probably relating to
margin migration [Echelmeyer and Harrison, 1999; Harrison
et al., 1998]. Third, the comparatively cooler temperatures
at ’UpB’ are consistent with a localized heat source close
to ’Remote’, ’Intermediate’, and ’Pad’ that does not extend
far into the stream. Fourth, we take the −26◦C contour as
a proxy for the extent and location of the crevassed zone
at Dragon margin, which stretches from ’Dragon Pad’ to
’Intermediate’.

Figure 12A shows the computed temperatures in our
modeling domain. The cooling effect of crevassing depresses
the temperature notably in the vicinity of the shear margin.

We also compare computed and measured temperatures at
a depth of 700 m for the three boreholes that are located far
from the margin. The temperatures we estimate are 1-2◦

higher than the measured values. The fit to surface veloci-
ties (Fig. 12B) is slightly less satisfactory than in previous
simulations (e.g. Fig. 7B3 and Fig. 9B1). While it is cer-
tainly possible to improve the fit to surface velocities, doing
so comes at the cost of deteriorating the fit to the available
temperature data.

Figure 10 compares the computed and measured temper-
atures for the boreholes in the vicinity of the shear margin
at a depth of 700 m for the same computation also shown
in Figure 12. We successfully reproduce the extent and ap-
proximate depths of the −26◦C contour from Harrison et al.
[1998], highlighted on the boreholes ’Dragon Pad’ to ’Inter-
mediate’ as short horizontal dashes. Our computations are
also consistent with the observation that the three leftmost
boreholes are warmest and that the borehole ’Intermediate’
is colder than its two neighboring boreholes. We suggest
that the relatively warmer temperatures at these three bore-
holes could result from their proximity to a temperate zone
instead of non-steady state affects as argued in Harrison
et al. [1998]. Despite being able to reproduces these key fea-
tures, the temperatures we compute are systematically too
high by 1-6◦C with the highest errors occurring at the bore-
holes closest to the margin (i.e. ’Dragon Pad’, ’Lost Love’
and ’Chaos’).

Figure 11 summarizes the relationship between the av-
erage absolute errors in reproducing the observational data
and the properties of the temperate zones for various speeds
of horizontal advection v0. The speed of horizontal advec-
tion is the most consequential parameter when reproducing
both data sets simultaneously, because it has a strong effect
on the temperatures and dynamics of the shear margin. The
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-24 

-24/-26 -19/-25 -18/-21 -21/-26 -18/-24 -17/21 -19/-22 

qbase 

Figure 10. Extent of a potential temperate zone at Dragon margin plotted on a 1:1 scale and meltwater
flux at the base of the ice, qbase, in mm/yr (grey line) for the computation also shown in Fig. 12. The
total meltwater produced in the temperate zone is 25 m2/yr. The approximate locations of the boreholes
from Harrison et al. [1998] are highlighted in grey with the left number representing the computed
temperature and the right value the measured temperature at a depth of approximately 700 m. Small
horizontal dashes along the boreholes in the vicinity of the shear margin indicate the approximate
position of the −26◦C contour.

A. Error in reproducing observational data 

B. Properties of the temperate zones 

C. Temperature and drainage for specific speeds of horizontal advection 
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Figure 11. A. Average absolute error in reproducing observed temperatures and velocities for horizon-
tal advection speeds between v0 = −0.1 and −0.4 m/yr. B. Maximum height of the temperate zones
and total meltwater production for horizontal advection speeds between −0.1 and −0.4 m/yr. The total
meltwater production is computed by integrating the basal meltwater flux, qbase over the width of the
zone where ice is temperate not only at the bed but at finite depth. C. Temperature fields and drainage
curves for the four horizontal advection speeds v0 = −0.1,−0.2,−0.3 and −0.4 m/yr, respectively. From
top to bottom, the best-fitting basal stresses are τbase = 1.57, 1.44, 1.31 and 1.13 kPa. Apart from the
speed of horizontal advection and basal stress, all computations are based on the same model parameters,
most importantly a = 0.23 m/yr and G = 85 mW/m2.

speed of vertical advection, on the other hand, is reasonably
well constrained by fitting the temperature measurements

in boreholes ’OutB’ and ’Stage’ (Fig. 12A) and does not af-
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A. Temperature field 
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B. Surface velocities 
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Figure 12. Temperature field (A) and surface velocities
(B) for Dragon when attempting to match the observed
borehole temperatures [Harrison et al., 1998], see
Figs. 1 and 2 for borehole locations, and surface veloc-
ities [Echelmeyer and Harrison, 1999] simultaneously.
The computation is based on the model parameters
τbase = 1.22 kPa, accumulation a = 0.23 m/yr, geother-
mal heat flux G = 85 mW/m2, and horizontal advection
at v = −0.35 m/yr. The approximate locations of the
nine boreholes considered in Harrison et al. [1998] are
indicated as grey dots. We highlight the boreholes lo-
cated far from margin as grey lines in accordance to their
depth. The left numbers represent the computed value
and the right number the measured value at maximum
depth. The corresponding temperature estimates for the
boreholes in the vicinity of the margin are shown in the
next figure.

fect the shear margin as sensitively (see also the discussion
in Sec. 4.3). Figure 11 highlights that the maximum height
and the shape of the temperate zones are highly dependent
on the assumed speed of horizontal advection and that large
temperate zones tend to produce a better fit to the observed
velocities while small temperate zones produce more realistic
temperatures. We argue that horizontal-advection speeds
on the order of v0 = −0.3 to −0.35 m/yr probably provide
a reasonable compromise (Figs. 12 and 10 show the case
where v0 = −0.35 m/yr). Increasing the speed of horizon-
tal advection beyond v0 ≈ −0.35 m/yr deteriorates the fit
to observed surface velocities notably (similar to Fig. 9B2)
while improving the match to measured temperatures only
minimally.

The temperate zones for horizontal-advection speeds be-
tween v0 = −0.3 and −0.35 m/yr reach a maximum height
of 120-160 m. In the vicinity of the locked-to-sliding tran-
sition point, the height of the temperate zone has a second

maximum of approximately 80 m. The width of the tem-
perate zones, which we define as the maximum width range
over which ice is temperate not only at the bed but at a fi-
nite depth, are approximately 2.2 and 2.3 km. We obtain the
total meltwater production by integrating the basal meltwa-
ter flux over the temperate zone, which extends from about
y = −16.94 km to y = 512 m for v0 = −0.30 m/yr and from
y = −19.30 km to y = 413 m for v0 = −0.35 m/yr, is 26.5
and 25 m3/yr and meter in downstream direction, respec-
tively. Increasing the rate of outward margin migration,
shifts the temperate zone further into the stream, depresses
the maximum depth to which temperate ice extends and
decreases the total meltwater production (Fig. 11).

When weighing how to prioritize the two data sets, it is
important to keep in mind that a steady-state approach to
modelling the temperatures throughout Dragon margin is in
itself highly questionable (see also Sec. 4.3). A simple scal-
ing analysis shows that the time it takes for the full ice thick-
ness to reach steady state, t = H2/αth, is approximately
104 years. In contrast, Harrison et al. [1998] estimated the
residence time of ice in Dragon margin is approximately a
half century. It is thus clear that the stream-ridge system
can not possibly be in steady state. This insight is supported
by field observations that indicate a complex deformational
history dating back over the last few hundred years [Clarke
et al., 2000; Echelmeyer and Harrison, 1999; Harrison et al.,
1998]. Non-steady state effects should be most significant
for the boreholes closest to the margin, because of the rapid
margin migration in recent years [Echelmeyer and Harrison,
1999; Harrison et al., 1998]. The observation that the de-
viations between computed and observed temperatures are
indeed highest in the shear margin lends support to the in-
terpretation that non-steady effects are probably the main
reason for the temperature mismatch between model and
data.

5. Discussion

While several previous models of ice streams [Perol and
Rice, 2011; Schoof , 2004; Jacobson and Raymond , 1998]
have raised the possibility of melting in active ice-stream
margins, only Perol and Rice [2011] discuss the extent of a
potential temperate zone in detail (see Figure 8 for a com-
parison with their results). Our goal in this study is to pro-
vide additional constraints on how different factors such as a
strong stress concentration at the bed modeled as a singular-
ity (Sec. 4.1), the assumed ice rheology (Sec. 4.2), horizon-
tal and vertical advection (Sec. 4.3) and surface crevassing
(Sec. 4.4) affect deformation-induced melting and the size
of the temperate zone, if any.

A model that strives to represent ice-stream margins in a
somewhat realistic way inevitably entails a large number of
parameters. In our case, the majority of model parameters
relate to the ice rheology. To limit the ambiguity intro-
duced into our model by a large number of parameters, we
decided not to vary the rheological parameters. As detailed
in Sec. 2, we adopt the recommended parameter values
in Cuffey and Paterson [2010] and an enhancement factor
of E = 1. When neglecting surface crevassing, our model
is thus reduced to one free variable, the basal shear stress
underneath the stream. Incorporating surface crevassing re-
quires new model parameters, but varying the extent of the
crevassed zone has little effect on our results within the pa-
rameter ranges consistent with observations (Sec. 2.5).

Throughout this paper, we focus primarily on reproduc-
ing the surface velocities observed by [Echelmeyer and Har-
rison, 1999]. The simulations including surface crevassing
(Sec. 4.4), however, also lend themselves to a comparison
with the temperature data by [Harrison et al., 1998]. Con-
sistency with the temperature data requires high rates of
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vertical and horizontal advection (Sec. 4.4). A perfect fit
to the observed temperatures can not be expected within
the confines of a steady-state model (see Sec. 4.4), partic-
ularly for a location with a complex deformational history
like Dragon margin [Clarke et al., 2000]. We therefore argue
that the computation shown in Figs. 12 and 10 represents
a reasonable compromise between the velocity [Echelmeyer
and Harrison, 1999] and the temperature [Harrison et al.,
1998] data. This particular computation entails a temper-
ate zone with a maximum height of ≈ 120 m and entails a
meltwater production of 25 m3/yr per meter in downstream
direction (Fig. 10).

In two previous studies, Echelmeyer et al. [1994] and
Scambos et al. [1994] have chosen to adjust the enhance-
ment factor and its spatial variability in the model domain
to reproduce the observed surface velocities computation-
ally. It is certainly possible to match the surface velocity
Echelmeyer and Harrison [1999] and temperature [Harri-
son et al., 1998] data for Dragon margin only by varying
enhancement in different parts of the stream-ridge system.
However, we require very high enhancement values on the
order of 15-20 in the shear margin to obtain a satisfactory
fit to observational data, which conflicts with the results
of Jackson and Kamb [1997] who determined enhancement
factors between E ≈ 1.12 and E ≈ 2.55 for different ice
specimen retrieved from Dragon margin.

Our simulations show that it is not necessary to resort
to very high enhancement factors to reproduce rapid ve-
locity increases in shear margins. We obtain excellent fits
to surface velocities even when neglecting enhancement en-
tirely. This insight is not meant to imply that varied effects
such as fabric, impurities or grain-size variations, which are
usually integrated into a single enhancement factor, are not
important. Instead, we argue that the relatively small en-
hancement factors measured at Dragon margin [Jackson and
Kamb, 1997] in combination with our simulations suggest
that enhancement effects are probably not the whole story
and that deformation-induced melting may play an impor-
tant role in the thermomechanics of ice-stream margins as
well. As commented by Perol and Rice [2013], two pieces of
observational evidence lend additional support to this poss-
bility: Clarke et al. [2000] mapped a prominent diffractor
under Unicorn ridge that may indicate a former temperate
zone, and drilling into a now inactive margin by Vogel et al.
[2005] revealed flowing water in a 1.6 m deep gap between
the base of the ice sheet and the till below.

6. Conclusion

The goal of this study is to investigate the possibility of
deformation-induced melting in active shear margins. Melt-
ing and the associated presence of meltwater in ice-stream
margins might have important consequences for the dynam-
ics of ice streams, primarily because the yield strength of
glacial till depends sensitively on porosity, which is con-
trolled by the water content if saturated. The position of
the shear margins could thus be intricately linked to melt-
water production, which remains poorly constrained. We
devise a 2D thermomechanical model of an ice stream mov-
ing over a plastic bed in steady state. We solve our model
numerically after carefully benchmarking our computational
approach against an asymptotic analytic solution. In combi-
nation with previous studies [Perol and Rice, 2013; Schoof ,
2004; Jacobson and Raymond , 1998], our simulations lend
theoretical support to the hypothesis that active shear mar-
gins are partially temperate. For Dragon margin, we esti-
mate a temperate zone with a maximum height of ∼ 120
to 150 m that produces approximately 25 to 26.5 m3/yr of
meltwater per meter in downstream direction. This estimate
for the extent of a temperate zone is roughly comparable to
the height of the bottom diffractor identified by Clarke et al.
[2000] under Unicorn Ridge. Despite focusing primarily on
Dragon margin, we argue that our insights may generalize
to the other active Ross Ice Streams.
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Appendix A: The near-tip field parametrized
by Jtip

By reinterpreting the material rheology a parallel can be
drawn between the downstream velocity profile in a two-
dimensional margin and an anti-plane crack problem. In
an elastic (or “deformation theory” elastic-plastic) body the
stress depends on the strain, while in the viscous material
considered here the stress depends on the strain rate. The
stress fields in the elastic and viscous problems are identical,
strain rate in the viscous problem is analogous to strain in
the elastic problem, and downstream velocity is analogous
to displacement.

In this section we will solve analytically for the shear heat-
ing profile near the point where the bed transitions from
slipping to locking. To develop the analytic solution we
must neglect the temperature dependence of the rheology
and assume a relationship of the form

ε̇E = AτnE , (A1)

where A and n are constant. Our problem is now mathe-
matically equivalent to the anti-plane crack problem solved
in Rice [1967, 1968b], which solved for the stress field in
a material with a linear stress-strain relationship up to a
given yield stress and an arbitrary non-linear stress-strain
relationship (including a power-law relationship as a special
case) above the yield stress. The solution in Rice [1967]
relies on a transformation to the hodograph plane. This
transformation interchanges the dependent and independent
variables, allowing us to solve for y and z as a function of
the strain rate components ε̇xz and ε̇yz. As shown in Rice
[1967], the solution for the field near the crack tip takes the
form

y = X(ε̇E) + F (ε̇E) cos 2φ , z = F (ε̇E) sin 2φ (A2)

where we have used the polar coordinates,

ε̇xy = −ε̇E sinφ , ε̇xz = ε̇E cosφ. (A3)

For the power-law rheology given in equation (A1) the func-
tions X(ε̇E) and F (ε̇E) are

F (ε̇E) =
Jtip

2πε̇EτE(ε̇E)
, X(ε̇E) =

n− 1

n+ 1
F (ε̇E), (A4)

where the constant Jtip is determined by the far-field loading
on the margin, and the evaluation of Jtip will be discussed
in detail in Appendix B. The function F (ε̇E) can then be
related to the shear-heating rate through

2τE ε̇E =
Jtip

πF (ε̇E)
. (A5)

To solve for F (ε̇E) we first eliminate φ from equation
(A4), which uncovers the equation for a circle

(y −X(ε̇E))2 + z2 = F (ε̇E)2. (A6)

Thus, lines of constant shear heating form circles in the
(y, z)-plane with a radius of F (ε̇E) and a center at y =
X(ε̇E), z = 0.

For a Newtonian rheology (n = 1), X(ε̇E) = 0 and equa-
tion (A6) simplifies to,

2τE ε̇E =
Jtip
πr

, (A7)

where r =
√
y2 + z2. This means that lines of constant

frictional heating form circles about the point where the
bed transitions from slipping to locking, and thus the shear

heating within the ridge and the ice stream is the same.
For the more realistic Glen’s law rheology (n = 3) the so-
lution is more complicated. In this case X(ε̇E) = F (ε̇E)/2,
and equation (A6) is a quadratic equation in F (ε̇E). Noting
that F > 0 is required for a physically relevant frictional
heating profile, the only solution is

F (ε̇E) =
2

3

(√
4y2 + 3z2 − y

)
. (A8)

This can be simplified by using polar coordinates centered
on the transition point,

y = r cos θ , z = r sin θ (A9)

leading to the final from of the frictional heating profile

2τE ε̇E =
3Jtip
2πr

(√
4− sin2 θ − cos θ

)
. (A10)

For Glen’s law the circles that show the lines of constant
shear heating are no longer centered on the transition point,
but are shifted towards the ridge by an amount X(ε̇E) =
Jtip/(4πτE ε̇E) that varies with the magnitude of shear heat-
ing. This means that the shear heating is skewed, with more
intense heating in the ridge than the ice stream.

Appendix B: J-integral evaluation for an
anti-plane flow

In this section we use a path independent integral to eval-
uate the constant Jtip from Appendix A, linking the far-field
loading on the ice stream to the shear heating singularity
near the transition from a slipping to a locking bed. This
is an extension to the J-integral commonly used in frac-
ture mechanics [Rice, 1968a, b; Cherepanov , 1968]. Path-
independent integral concepts have been applied to creeping
solids before, as shown in Landes and Begley [1976], Kubo
et al. [1979], or Ben Amar and Rice [2002], and more ex-
plicitly applied to glacial flow by McMeeking and Johnson
[1986].

Our domain of ice is made to coincide with that of a clas-
sical anti-plane crack problem, for an ice slab of thickness
2H, when we add to our domain its mirror image about the
base. Thus, we have a classical crack problem with u = 0
along the prolongation of the slipping zone into the locked
zone z = 0 and y > 0, gravity loadings in the respective
domains z > 0 and z < 0, fraction-free surfaces, τzx = 0, at
z = ±H and with τzx = τbase on both sides of z = 0 where
y < 0.

A

BC

D E

Figure 13. Sketch showing the two paths Γtip and Γfar
used to evaluate the path independent integral defined in
eq. B1. Γtip is taken sufficiently close to the transition
point that the stress field is described by the solution in
Appendix A and Γfar is evaluated along the border of
the domain.
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Assuming that the properties of ice do not change with
temperature (or that temperature varies only with z), the
appropriate path-independent integral for our problem is

J =

∫
Γ

(Φ( ˙εE , z)− ρg sinαu) dz − τ · n∂u
∂y

ds, (B1)

where τ = (τxy, τyz), Φ is analogous to the strain energy
density function from elasticity and is defined for a creeping
solid as

Φ(ε̇E) = 2

∫ ε̇E

0

τE (ξ) dξ , (B2)

n is the outward unit normal to the curve Γ, and ds is eval-
uated in a counter-clockwise fashion. For any closed curve
Γ that does not enclose the transition point (i.e., the crack
tip), J = 0 so that the is integral path-independent.

For classical crack problems, Γ is taken to start on the
lower crack surface z = 0−, y < 0, encircle the crack tip,
and end on the upper crack surface z = 0+, y < 0. J is
independent of path Γ for all paths with the same starting
and ending points. If there is no traction on the crack faces
(τbase = 0), J is independent of where we start and end
along the faces. When τbase 6= 0, we start and end at points
y < 0 which are close to the tip, and in the limit when y → 0
on both faces, we define Jtip as the value of J . Subsequently,
we focus on the part of any path Γ in the domain z ≥ 0 so
that the result of eq. B1, taken along that part of the path,
is Jtip/2.

We now evaluate Jtip along the two curves Γtip and Γfar
shown in Figure 13, which meet these specifications, with
Γtip sufficiently close to the transition point that the de-
formation can be described by the solution in Appendix A.
Evaluation along Γtip just confirms the relations involving
Jtip in that appendix. For a typical ice stream geometry
the contribution to J from the portion of Γfar in the cen-
ter of the ridge is negligible, so for the boundary conditions
highlighted in Fig. 13

Jtip
2

=

∫ 0

H

[Φ (ε̇xz)− ρg sinαu]y=−W/2 dz+∫ 0

−W/2
τbase

∂u(y, 0)

∂y
dy. (B3)

To calculate the two integrals in (B3) we need to know u
within the ice stream. An approximate evaluation can be
produced using a simple one-dimensional model with a con-
stant basal stress τbase beneath the ice stream. Assuming
that τxy and u are functions of y alone we integrate the
equation for mechanical equilibrium from z = 0 to z = H,
arriving at

dτxy
dy

= −
(
ρg sinα− τbase

H

)
, ε̇xy = Aτnxy , (B4)

where it may be noted that the first of these is exact if we

reinterpret τxy as its average over the thickness H in the z

direction. This average becomes arbitrarily larger than the

average of τxz as W/H becomes increasingly large. In that

same limit, ε̇xy becomes much larger than ε̇xz, and the flow

law reduces to the second equation. Treating the problem in

that large W/H limit, we integrate outwards from the stress

free boundary at y = −W/2 to calculate τxy(y) and hence

the strain-rate profile

du

dy
= −2A

(
ρg sinα− τbase

H

)n(
y +

W

2

)n
. (B5)

To create the single boundary condition needed to integrate

this equation we assume that the downstream velocity van-

ishes at the margin, as is appropriate to the large W/H

limit, and find

u =
2A

n+ 1

(
ρg sinα− τbase

H

)n [(W
2

)n+1

−
(
y +

W

2

)n+1
]
.

(B6)

The boundary condition used here is an approximation since

the velocity field in the vicinity of the margin will be a func-

tion of both y and z, and will not completely vanish. How-

ever, comparing the predictions for velocity in the center

of the ice stream from equation (B6) and two-dimensional

computational models we find that in the limit H � W/2

equation (B6) is the asymptotic limit of such models.

Using the one-dimensional model to evaluate Jtip, which

relies only on the value of u at the center of the ice stream,

eq. B3 gives

Jtip
2

=
2AH

n+ 1

(
ρg sinα− τbase

H

)n+1
(
W

2

)n+1

(B7)

Defining the average lateral shear stress at the margins and

the corresponding equivalent strain rate

τlat =
(
ρg sinα− τbase

H

) W
2

, ε̇lat = Aτnlat. (B8)

we can simplify the equation for Jtip to

Jtip =
4H

n+ 1
τlatε̇lat (B9)

when W � H.
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Tables

Table 1. Overview of the notation used in this study.

Symbol Variable Unit

a surface accumulation rate of ice m yr-1

A temperature-dependent creep parameter s-1 Pa-3

α inclination angle rad
c specific heat of ice J kg-1 K-1

c1 empirical forefactor J kg−1 K-1

c2 empirical forefactor J kg−1 K-2

d grain size mm
E enhancement factor
ε̇ strain rate tensor yr-1

ε̇D strain resulting from diffusional creep yr-1

ε̇E effective strain rate yr-1

ε̇G strain resulting from Glen’s Law yr-1

ε̇lat average shear strain at the margin yr-1

F variable used to calculate transition point stress field m
g gravitational acceleration m s-2

G Geothermal heat flux at the ice sheet base m W m-2

Γ curve along which J-integral is evaluated
Γtip curve through transition point stress field
Γfar curve around border of domain
H ice sheet thickness m
Hm height of the temperate zone m
Jtip J-integral evaluated along Γtip J m-2 yr-1

k thermal conductivity of ice W m-1 K-1

k1 empirical factor W m-1 K-1

k2 empirical factor K-1

kB Boltzmann constant m2kg s-2 K-1

L latent heat per unit mass J kg-1

ṁ melt rate per unit volume kg s-1 m-3

n exponent in ice rheology
n unit normal vector to Γ
µ effective viscosity of ice Pa s
µw viscosity of water Pa s
Ω molecular volume m3

φ angle between principal strain rate direction and z rad
Φ strain energy density analog Pa yr-1

q meltwater flux m s-1

qbase meltwater flux at the bed m s-1

qtemp meltwater flux in the temperate zone m s-1

Q activation energy J mol-1
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Symbol Variable Unit

r radial distance from the singularity m
R gas constant J K-1 mol-1

ρ density of ice kg m-3

ρw density of water kg m-3

s arc length of curve Γ m
T temperature C

Tmelt melting temperature of ice C
Th temperature adjusted for melting point depression K
T ∗ cutoff temperature in Glen’s Law K
τ stress tensor Pa
τE effective stress Pa
τlat average shear stress at the margin Pa
τbase basal shear stress Pa
θ angle from the base of the ridge rad
u downstream velocity component m s-1

v transverse velocity component m s-1

v0 speed of lateral margin migration m s-1

vout velocity boundary condition in local model m s-1

w vertical velocity component m s-1

W ice stream width m
x downstream cartesian coordinate m
X variable used to calculate transition point stress field m
ξ dummy integration variable used to define Φ
y transverse cartesian coordinate m
z vertical cartesian coordinate m


