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ABSTRACT 
The controls on pore-scale hydrate distribution must be evaluated in order to better characterize the quality, 
volume, and potential hazard of methane hydrate deposits. Surface energy and wetting effects influence 
solidification behavior in porous media. In the two-phase hydrate-liquid stability zone, the solubility of 
methane at the onset of hydrate formation increases as the pore size decreases and causes hydrate crystals to 
occupy smaller volumes with larger surface curvatures. Two-dimensional models of methane solubility 
demonstrate how changes in crystal-liquid interface geometry take place as the hydrate saturation level 
increases. These interface changes cause the methane solubility to increase further. Similar behavior is 
responsible for the dependence of ice saturation on temperature in porous media, and between gas 
saturation and matrix potential in the vadose zone. Here, we describe our algorithm for assembling a three-
dimensional porous medium from a particle size distribution that can be specified to match laboratory or 
field constraints. We outline how Monte Carlo integration techniques can be used to predict changes in 
methane solubility with hydrate saturation in such polydispersed porous media. The effects of surface 
energy are generally expected to dominate until a threshold in hydrate saturation is reached, beyond which 
wetting effects are responsible for most of the residual liquid with its dissolved contents. Variations in 
solubility with pore geometry, hydrate saturation, and salt content offer powerful constraints on the 
deposition of hydrates and especially on the development of anomalies. Ongoing work is focused on the 
implications of our results for explaining behavior observed in boreholes and inferred from geophysical 
data. 
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NOMENCLATURE 
c Concentration at given saturation level [m3/m3] 
cB Bulk concentration [m3/m3] 
ceq Equilibrium solubility of hydrate guest [kg/kg] 
c3 Solubility of hydrate guest in 3-phase 
equilibrium at temperature T3 [kg/kg] 
d thickness of liquid film [m] 
L Latent heat of fusion [J/kg] 
n Number of particles 
P0 Disjoining pressure [Pa] 
PT Strength of wetting interactions [Pa] 
R Radius of adjacent particle [m] 
Rh Radius of curvature for hydrate [m] 
Sl Liquid fraction [m3/m3] 
T Temperature [K] 
Tm Reference equilibrium temperature [K] 

Tm0 Melting temperature of the pure system [K] 
T3 Temperature for 3-phase equilibrium at 
concentration c3 [K] 
x Horizontal distance coordinate [m] 
y Horizontal distance coordinate [m] 
z  Vertical distance coordinate [m] 
α Temperature scale in solubility relation [K] 
β Exponent in the power law 
Γ Liquidus slope 
Δceq Change in methane solubility [kg/kg] 
λ Film thickness [m] 
κ  Curvature of the phase boundary [m-1] 
ρg Hydrate density [kg/m3] 
ρh Hydrate density [kg/m3] 
Φ Porosity [m2/m2] 
γ sl Surface energy [J/m2] 
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INTRODUCTION 
The sophistication of efforts to understand the 
global hydrate reservoir volume and distribution 
continue to mature. Economic and environmental 
factors driving these developments include the 
propensity of gas hydrates to accumulate in deep-
sea pipelines (flow assurance problems) [1], their 
ability to increase the likelihood for offshore 
sediment failure and landslides [2], their 
increasing viability as a "clean" energy resource 
[3], and their potential capacity to act as a 
powerful source of greenhouse gases [4]. 
 
Although efforts to determine the total volume of 
global hydrate reservoirs remain a prominent 
research goal [5], concentrated hydrate anomalies 
are increasingly recognized for their 
disproportionate importance to the economic and 
environmental issues that drive hydrate research  
[3]. The formation and behavior of these 
anomalies cannot be described without 
understanding the micro scale effects and 
interactions between the hydrate and the 
surrounding porous media that determine whether 
methane precipitates to form hydrate or remains 
dissolved in solution. This study considers the 
influence of surface energy and wetting 
interactions on the solubility of methane in a 
model porous medium. We build upon the 
successful results of similar efforts that describe 
the residual liquid saturation in partially frozen 
sediments below the bulk melting temperature [6]. 
 
HYDRATE GEOMETRY AND SOLUBILITY  
Our immediate goal is to expand upon the results 
of previous 2-D calculations [7] and determine 
how micro scale effects perturb the methane 
solubility in more realistic 3-D particle packing. 
The change in chemical potential imposed by 
surface energy and wetting effects can be 
expressed in terms of the deviation from a 
reference equilibrium temperature Tm. In the 
absence of impurities we have that  
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where all symbols are defined in the nomenclature 
above, with surface energy effects proportional to 
the curvature κ  and wetting effects approximated 
using a power law in film thickness d. This offset 
to the chemical potential modifies the phase 

behavior so that the equilibrium solubility can be 
written as  
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where the approximation is valid as long as 

, which is true for most cases of 
interest. The fractional change in methane 
solubility Δceq  defined by the difference between 

solubility in the pore space and bulk solubility, 
normalized by the bulk solubility is 
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where α = 14 oC is typical of conditions where 
natural gas hydrates are found [8]. 
 
To use equation (3) to predict the effects of pore 
geometry on the gas solubility, we need to 
determine the geometry of the hydrate-liquid 
surface, as defined by κ and d. Below, we describe 
how we produce synthetic pore geometries with a 
simple algorithm that packs together a specified 
distribution of spherical particles.  The key 
problems to be solved for a given randomly 
generated point within the porous medium are 
conceptually simple. 1) Is the point within a pore? 
2) What perturbation to the chemical potential 
would be required to place the point within a pore 
on the edge of a wetting film? 3) If possible, what 
perturbation to the chemical potential would be 
required to place the point within a pore on a 
constant-curvature hydrate–liquid surface? 4) If 
possible, what perturbation to the chemical 
potential would be required to place the point 
within the largest hydrate crystal that could 
nucleate within the pore? By finding the smallest 
chemical potential perturbation that is needed for 
hydrate–liquid equilibrium at a large number of 
points, we can effectively determine the solubility 
perturbation that is required and how this varies 
with hydrate saturation level. Next, we describe 
our method for assembling realistic particle 
packings, and how we predict the methane 
solubility perturbations that result. 
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ASSEMBLING A 3-D POROUS MEDIUM  
The 3D pore geometry differs from 2D 
approximations of pore geometries in two 
important ways. First, there is the fact that the void 
space itself is three-dimensional and so surfaces 
within it have two principle radii of curvature 
rather than just one. Second, there is the difference 
in geometry that arises from off-plane particle 
contacts in three-dimensional packing. To develop 
a realistic, three-dimensional treatment with 
particles that vary in diameter, we model the pore 
geometry by simulating the sphere-packing 
process in Matlab. We designed our program so 
that we can input any given particle size 
distribution, as illustrated here by the example 
shown in Figure 1. 
 

 
Figure 1. This probability distribution function 
describes a lognormal particle size distribution. 
Our sphere-packing algorithm is designed to 
handle arbitrary distributions that are chosen to 
match field or laboratory observations.  
 
  
The probability distribution function is used to 
create a cumulative distribution function. The 
cumulative distribution function can be used to 
create an assortment consisting of any desired 
number of particles n. The process used to sample 
the cumulative distribution function is illustrated 
in Figure 2.   
  

 
 
Figure 2. This figure illustrates how a cumulative 
distribution function can be sampled to create a 
data set that consists of n particles with diverse 
radii. As shown, n is chosen to equal five so that 
the divisions are visually accessible. The solid red 
lines correspond to the divisions of equally spaced 
probability. The dashed red line links each 
probability to its corresponding radius. 
 
After we have chosen the desired number of 
particles n, with a distribution of radii that satisfies 
the given probability distribution function, we 
randomize the order of the particles. This allows 
us to then begin the simulation of dropping 
individual sediment particles, represented by 
spheres of variable diameter. The spheres go 
through a sequence of steps to calculate what 
happens as they are “dropped”. We begin by 
choosing random x and y coordinates down which 
to drop each sphere from an initial arbitrary height 
z. If the sphere does not contact another sphere on 
its way down, it becomes tangent with the floor 
(Fig. 3a).  
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Figure 3. This cartoon simplifies some of the 
actions that are occurring in the sphere-packing 
program. (a) The yellow sphere is dropped and 
does not contact another sphere so it falls to the 
floor at z = 0. (b) The blue sphere is dropped and 
first becomes tangent to the yellow sphere; it 
subsequently rolls to the floor. (c) The blue sphere 
is dropped and again becomes tangent to the 
yellow sphere. This time the blue sphere contacts 
the green sphere on its roll downwards, now the 
blue sphere is tangent to both the yellow and the 
green sphere. (d) After the blue sphere becomes 
tangent to both the yellow and green spheres as in 
(c), the blue sphere will repeat a number of 
rotations that allow it to roll downwards while 
fitting tangentially between the yellow and green 
spheres.    
 
If the dropped sphere contacts another sphere 
during its fall, the two spheres become tangent to 
each other. Next, the dropped sphere begins to 
tangentially roll down the contacted sphere as can 
be seen in (Fig. 3b). If the dropped sphere rolls 
until it has hit the equator of the contacted sphere, 
it is dropped again and the process is repeated. If 
the dropped sphere makes contact with the floor it 
stops. If the dropped sphere makes contact with a 
second sphere it then tries to “fit” itself between 
the two spheres (Fig. 3c – d). 
 
The fitting process involves multiple steps. The 
dropped sphere rotates laterally away from the 
second sphere that it has contacted, then the 
dropped sphere rolls downward longitudinally 
until it contacts the second sphere again and this 

process continues to repeat itself. The movement 
of the dropped sphere stops if it contacts i) a third 
sphere, ii) the floor, or iii) it has reached a 
specified maximum number of rotations. The 
result of this process is a synthetic three-
dimensional porous medium, like that illustrated in 
Figure 4.  

 
 
Figure 4. An example packing of heterogeneously 
sized spheres. The pink lines show the location of 
the plane that defines the cross section shown in 
Figure 5. 
 
As an initial step in developing our solubility 
calculations and testing the particle-packing 
algorithm, we select cross-sections through our 
synthetic porous media, such as that shown by the 
pink lines midway up in Figure 4. The spheres 
sampled in this way are shown in Figure 5. 
Calculations of porosity compare favorably against 
known behavior of random close-packed uniform 
spheres, and give reasonable results for more 
realistic polydispersed media. Two-dimensional 
treatments of solubility perturbations will next be 
applied to the synthetic cross sections from our 
three-dimensional packing codes. These are 
expected to do a faithful job at predicting the 
influence of wetting interactions on solubility. 
However, the validity of the resulting 
approximation for surface energy effects is less 
certain since the surface curvature normal to the 
cross section is not properly accounted for and 
could vary between arbitrarily large negative and 
positive values. The two-dimensional 
approximation effectively amounts to setting this 
second principle radius of curvature to equal to the 
first, which we expect to act as a reasonable 
compromise between these limits. The testing of 



 

these ideas awaits the full three-dimensional 
calculations that are currently under development. 
 
SURFACE AND WETTING EFFECTS 

Figure 5. A cross section taken from the sphere 
packing shown in Figure 4. Pink circles represent 
the solid particles. Blue crosses show points where 
residual liquid remains until the hydrate-liquid 
interface can overcome curvature effects. Red 
crosses show locations where liquid remains in a 
thin film surrounding a particle until the 
undercooling increases sufficiently. The test 
region shown includes 20,000 test points. 
 
A cross-section (Fig. 5a) is chosen from the 3-D 
packing of spheres (Fig. 4) and the resulting 
circular intersections are used to approximate 
representative pore geometries. We next choose a 
large number of test points that are randomly 
distributed within a test area that contains a large 
number of particles and pores within the chosen 
plane. The porosity is determined simply as the 
fraction of the points that land outside of all the 
model particles within the test region. The more 
challenging problem is to use similar Monte Carlo 
integration techniques to calculate the 
undercooling required for hydrate to form at each 
of these test points.  
 
For each test point that does not land within a solid 
particle, we seek the minimum undercooling from 
Eq. 1 required for hydrate to form. First, we 
calculate the distance d to the nearest particle to 
determine the undercooling that would be required 
for the point to be at the edge of a premelted film, 
which satisfies 
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where κ = −2/R is the curvature along the surface 
of the nearest particle. The geometry of the pore 
space may allow for hydrate to form before this 
undercooling is achieved if the test point is far 
enough from all particle surfaces for curvature 
effects to determine the perturbation to the phase 
behavior (i.e.   d ≫ λ ). Two different cases are 
examined: i) the undercooling that would be 
necessary to place the test point on the surface of 
the largest sphere that would fit within the pore 
space; ii) the undercooling that would be necessary 
to place the point within the largest sphere that 
would fit within the pore space. Each of these 
curvature-controlled undercoolings satisfies 
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where Rh will be the same for both cases when the 
test point is close to a constriction between 
particles, but only case ii) will be compatible with 
the geometrical constraints when the test point is 
close to the center of a pore. As noted above, the 
undercooling approximated by equation (5) does 
not account for the off-plane geometry that may 
cause the second principle radius of curvature to 
be significantly larger or smaller than Rh. The 
approximate treatment explored here will be tested 
further in future work. 
 
By determining the minimum value of Tm−T from 
equations (4) and (5) at each of the test points, we 
can effectively determine how the residual liquid 
saturation (i.e. one minus the hydrate saturation) 
changes with undercooling. At any particular 
undercooling, we simply compare the fraction of 
the test points that remain within the liquid to the 
total number of test points within the pores of the 
test region. Figure 6 shows how the liquid 
saturation level changes with undercooling in the 
example packing illustrated in Figures 4 and 5. 
The dominant effect that allows methane to stay in 
solution beyond the bulk equilibrium temperature 
of hydrate changes with the amount of residual 
liquid saturation. Close to the bulk equilibrium 
temperature, curvature effects are responsible for 
the majority of the residual liquid. In the example 
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shown in Figure 6, curvature effects dominate the 
perturbations to the phase behavior until hydrate 
fills almost 90% of the pore space.  As the 
temperature continues to cool, premelted films are 
responsible for an increasing proportion of the 
remaining liquid. This is consistent with findings 
for two-dimensional packings, however, two-
dimensional particle packings underestimate the 
amount of pore space by creating an unrealistic 
degree of tangency between the circles in cross-
section. Further efforts to account for the influence 
of off-plane obstructions on the value of the mean 
curvature Rh in equation (4) are ongoing. 
 
INFLUENCE OF SALT 
Many methane hydrate deposits are found along 
continental margins in ocean sediments. Salt is 
excluded from the hydrate structure as it forms, 
and colligative effects can become important for 
altering methane solubility (Fig. 6b). Assuming a 
linear liquidus, the local bulk equilibrium 
temperature Tm is related to the bulk equilibrium 
temperature of the pure system by 
 
𝑇! ≈ 𝑇!! − Γ𝑐.   (6) 
 
If the pore space contains salt with bulk 
concentration cB and the salt is completely 
excluded from the hydrate structure, then its 
dissolved concentration in the residual liquid is 
simply 
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Together, Eqs. (6) and (7) imply that the local bulk 
equilibrium temperature can be written as 
 
𝑇! ≈ 𝑇!! − Γ
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 .  (8) 
 
Since wetting interactions and surface energy 
effects continue to perturb the chemical potential, 
as described by Eq. (1), we have already 
performed the calculations necessary to evaluate 
how the hydrate and liquid saturations change in 
our model pore space. Assigning a constant value 
for cB, Figure 6b) shows how liquid saturation 
varies with the absolute undercooling, defined as 
the difference between the bulk equilibrium 
temperature for the salt-free system Tm0 and the 
local temperature T. As liquid saturation falls, 
increases to the local solute concentration c cause 
the saturation dependence on absolute 

undercooling to change. However, we should note 
that these simple calculations do not account for 
any affects that solute concentration might have on 
the strength or nature of the wetting interactions 
themselves. 
 
 

 
 
Figure 6. Illustrates the liquid fraction of water as 
it cools below the bulk freezing temperature using 
20,000 test points. The blue lines represent the 
liquid fraction induced by pore space geometry. 
The red lines represent the liquid fraction that 
remains due to the thin premelted films on the 
surface of particles. The thin black lines represent 
the total remaining liquid fraction as the 
temperature continues to drop. First we consider 
methane as the only solvent in the water (a). Then 
colligative effects are added to simulate the 
impurities of ocean water in sediment (b). Notice 
that for both cases a power-law approximation of 
liquid saturation with respect to undercooling 
becomes less valid after the wetting interactions 
become dominant. 
 
SUMMARY  
We have developed a tool for packing a 
heterogeneous medium that is capable of using 
input particle-size distributions from field-
collected data. This tool will improve our 
understanding of the specific geometries and 
locations of hydrate precipitation in nature. 



 

Although the surface curvature effects on hydrate 
precipitation within the pore space differ between 
two- and three-dimensional cases, we suspect that 
positive and negative curvatures in the direction 
perpendicular to a particular cross-section may 
tend to largely cancel and we plan to test this 
hypothesis as we continue with model 
development.  
 
We can use our packing-tool to create particle size 
distributions from field-collected data. Once our 
solubility parameterizations have been developed 
and tested, they will be used in models to predict 
the development of hydrate anomalies in synthetic 
deposits chosen to match characteristics at known 
hydrate-bearing localities.  
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