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[1] I examine the morphology of ice growth in porous media. Intermolecular forces cause
premelted fluid to migrate and supply segregated ice growth (e.g., lenses) and frost heave.
I account for the net effect of these microscopic interactions in a homogenized model
formulated in terms of fundamental physical properties and characteristics of the porous
medium that can be measured; no ad hoc parameterizations are required. Force
equilibrium constraints yield the rate of fluid migration toward the ice lens boundary and
predict the conditions under which new lenses are initiated. By combining this analysis
with considerations of the heat flow problem in a step-freezing (Stefan) configuration,
I elucidate the boundaries between different regimes of freezing behavior. At higher
overburden pressures and relatively warm surface temperatures, ice lenses cannot form,
and freezing of the available liquid occurs within the pore space, with no accompanying
deformation. When conditions allow a lens to form, water is drawn toward it. If the
fluid supply is sufficiently rapid, the lens grows faster than the latent heat of fusion can be
carried away, and its boundary temperature warms until it reaches a stable steady state
configuration. At lower fluid supply rates, the lens boundary temperature cools until a new
lens can form at a warmer temperature beneath. With subsequent freezing this lens
grows until yet another lens forms and the process repeats. An approximate treatment
leads to estimates of the evolving lens thickness and spacing, as well as the accumulated
total heave.

Citation: Rempel, A. W. (2007), Formation of ice lenses and frost heave, J. Geophys. Res., 112, F02S21,

doi:10.1029/2006JF000525.

1. Introduction

[2] When water is frozen within porous media, interac-
tions between the ice and matrix surfaces produce a diverse
array of behavior, including the growth of needle ice (also
known as pipkrake) at the ground surface, periodic lensing
and heave in sediments, fracture of intact rock, and incor-
poration of sediment bands into the basal reaches of
glaciers. These phenomena are promoted by the influence
of mineral surfaces on the phase behavior of ice. A large
body of experimental and computational (e.g., molecular
dynamics) research confirms theoretical predictions that
premelted liquid films coat ice surfaces in equilibrium at
temperatures that are below the bulk melting temperature
(0�C at atmospheric pressure) [see, e.g., Dash et al., 1995,
2006, and references therein]. These films provide fluid
conduits that supply the growth of segregated ice even as
the intermolecular forces responsible for their presence
generate the substantial heaving pressures that cause frost
damage.
[3] Models aimed at describing the dynamics of ice

formation in porous media are complicated by the need to
incorporate physical interactions that operate on the length

scale of the premelted films, which are dwarfed by typical
grain sizes yet control the macroscopic phenomena. Two
primary approaches have been taken. In the first of these,
attempts are made to account explicitly for the net inter-
actions between the ice and mineral surfaces, with the latter
treated using highly idealized geometries [e.g., Gilpin,
1980]. In part to circumvent the computational difficulties
resulting from such direct calculations, the more common
tact has been to introduce plausible, but nevertheless ad hoc
parameterizations for the ice particle interactions, the choice
of functional form being constrained to some extent by the
empirical macroscopic behavior [e.g., Fowler and Krantz,
1994; Konrad and Morgenstern, 1981; O’Neill and Miller,
1985]. This second strategy, in particular, has enjoyed
considerable success at elucidating the characteristics of
ice growth under different environmental conditions. How-
ever, the force parameterizations frequently tend to obscure
the underlying physics; the driving mechanisms have often
been mistakenly attributed to more passive effects, such as
pressure melting and the Gibbs-Thomson effect. Moreover,
the absence of a firm connection between the microphysical
processes and their macroscopic description produces con-
siderable uncertainty in choosing how best to modify the
model parameters when changing focus from one physical
environment to the next.
[4] A modern understanding of premelting dynamics now

makes it straightforward to formulate rigorous and compu-
tationally efficient treatments for the superposition of inter-
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molecular forces that drive segregated ice growth in natural
porous media [Rempel et al., 2001]. These advances have
been used recently to examine the freezing conditions
within a simplified model that is focused on the dynamics
of solidification under an imposed, steady thermal field
[Rempel et al., 2004]. Here, I extend this work to predict
how different freezing regimes develop within a transient
thermal field, in particular for the case of a step-freezing
configuration in a saturated, noncohesive soil. I derive a set
of governing equations, based on conservation laws, to
predict how the imposed environmental conditions produce
the rich variety of behavior that can be observed within a
single soil. The mechanical conditions that prevail within
partially frozen porous media constrain the style of freezing
that develops, whether it be the multiple lenses that are
responsible for most of the frost damage that occurs within
soils, the single-lens regime of needle ice, or the simple pore
freezing that can occur without accompanying deformation.
I detail these force equilibrium conditions in the next
section, paying particular attention to the interplay between
environmental conditions and the sediment characteristics
that govern how the system responds. The energy balance in
a Stefan, or step-freezing, configuration is examined in
section 3. By considering the heat flow and mechanical
conditions together I produce regime diagrams that delin-
eate the type of freezing behavior expected for given
combinations of overburden and surface temperature. Focus-
ing on the multiple lensing regime, I propose approximate
expressions for the evolution of lens spacing and thickness
over time. The implications of these results and possible
extensions to this work are discussed further in section 4,
before offering a few concluding and summary remarks.

2. Force Equilibrium in Partially Frozen Porous
Media

[5] The process of freezing and melting in natural porous
media is sufficiently gradual that inertia is negligible and the
forces are balanced. To focus on the essential mechanisms
of ice segregation and frost damage, I assume that the pore
space, with volume fraction f, is completely filled with a
combination of liquid water and solid ice, and that no
soluble impurities or gaseous phases are present. The ice
saturation Ss is the volume fraction of the pore space
occupied by ice. Even in the absence of soluble impurities,
liquid water remains in equilibrium with ice at subzero
temperatures because of the combined effects of interfacial
premelting and the Gibbs-Thomson effect [e.g., Cahn et al.,
1992; Dash et al., 2006]. Additional liquid can persist in a
metastable (supercooled) state within isolated pores because
of the nucleation barrier to solidification. There is no
nucleation barrier to melting [e.g., Oxtoby, 1999], so in
general Ss is dependent on the solidification history as well
as the pore space geometry and the in situ temperature [e.g.,
Swainson and Schulson, 2001]. The effects of changes in
pore pressure on Ss are assumed negligible. I am primarily
concerned with examining the system response to mono-
tonic cooling so Ss is treated as a known function of
temperature T alone. To develop intuition I focus on the
case where the porous medium properties are laterally
continuous and the temperature varies only in the vertical
direction z, which is defined to increase with depth. I

examine the force balance conditions beneath the lower
surface of the warmest segregated lens, assuming that any
pore ice beneath this level is attached and able to transmit
forces through skeletal connections to the overlying ice
[Miller, 1978] (see Figure 1).

2.1. Forces Between Mineral Grains and the Ice

[6] The most significant frost damage occurs when seg-
regated ice grows and pushes apart mineral grains to
produce macroscopic deformation of the porous medium.
The ice growth is supplied through premelted liquid films
that disjoin the ice from the mineral grains. It is the
intermolecular interactions across these thin films that are
the driving force for frost damage. The vector sum of the
surface-normal interactions is the net thermomolecular force
[Dash, 1989]. It has been shown that the net thermomolec-
ular force acting on an inclusion surrounded by premelted
ice (or an inclusion of premelted ice within a bounding
substrate) is proportional to the mass of ice that could
occupy the enclosed volume [Rempel et al., 2001], much
as Archimedes’ principle dictates that the net force on a
floating object is proportional to the mass of displaced fluid.
This result is used to calculate the net thermomolecular
force exerted between the ice and the mineral grains that are
found beneath a particular level within the partially frozen
region.
[7] It is worth a brief digression to make note of a

persistent misunderstanding in the frost heave literature
concerning the origin of the force that drives heave. By
analogy with the surface tension effects that lead to capillary
rise in the vadose zone at temperatures above melting, it has
often been suggested that the surface energy of the ice-
liquid interface, which is responsible for the Gibbs-Thom-
son effect, leads to the water migration that supplies ice lens
growth. I emphasize here that this has been proven wrong
[Rempel et al., 2001]. Because premelted water wets parti-
cle surfaces, there are no contacts between the ice and
particle surfaces; this is quite different from the case of
capillary rise, which is driven by the net force produced by
surface tension at the air-water-particle contacts. The Gibbs-
Thomson effect does play an important role in contributing
toward determining the permeability of partially frozen
regions to fluid flow, as well as in setting the depth to the
furthest extent of pore ice. However, the ice particle
interactions that cause interfacial premelting and produce
the net thermomolecular force are responsible for setting up
the fluid pressure gradients that cause unfrozen water to
flow and supply the lens growth that drives heave.
[8] For a porous medium of a given geometry, it is

convenient to define the temperature to which ice can extend
as Tf, and the corresponding depth as zf (see Figure 2). These
are determined primarily by the influence of surface energy
(e.g., the Gibbs-Thomson effect) in limiting the invasion of
ice through restrictions in the pore space as the bulk melting
temperature is approached. I focus on the case where the
porous medium is partially ice saturated beneath the warm-
est lens at temperature Tl < Tf and position zl < zf so that a
frozen fringe is formed. Of prime importance is the net
effect of intermolecular interactions that separate the
mineral grains from the contorted ice surface. Two quanti-
ties are actually needed: first, the net thermomolecular force
that pushes upward on the ice that is beneath any given
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isotherm within the frozen fringe; second, the net thermo-
molecular force that pushes upward on the lens itself, as a
function of the temperature at its boundary. The following
procedure homogenizes the microscopic interactions to
provide a continuum description of these net forces.
[9] First, envision making a horizontal cut through the

pore ice at some position z within the frozen fringe. One can
think of the newly disconnected ice beneath that level as
being completely surrounded by a substrate, with an inter-
vening premelted film. In Figure 2, the volume of ice
between z and the fringe base

R
z
zffSsdz is represented by

the stippled region beneath the dashed line. The principle of
‘‘thermodynamic buoyancy’’ outlined above implies that the
net thermomolecular force per unit area on this ice body
would be [Rempel et al., 2001]

Fd ¼
rL
Tm

Z zf

z

fSsrT dz ¼ rL
Tm

Z Tf

T

fSs dT ẑ;

where r � 920 kg/m3 is the ice density, L � 3.3 � 105 J/kg
is the latent heat per unit mass, and Tm(P) is the bulk
melting temperature at the in situ pressure (e.g., Tm � 273 K
near the ground surface). The temperature gradient must be

vertical for the second equality to hold. Now, since the ice is
actually attached at its upper boundary, we subtract the force
that would have been applied on that imaginary horizontal
surface by the material just above z (as shown in Figure 2,
only a fraction fSs of the horizontal cross section at z is
occupied by ice). This gives us the net force per unit area
exerted by the mineral grains on the ice beneath z as

FT Tð Þ ¼ � rL
Tm

fSsð ÞT¼T� Tm � Tð Þ �
Z Tf

T

fSs dT
� �

ẑ; ð1Þ

where ẑ is a unit vector. This is the vertical force that tends
to separate mineral grains and leads to ice lens formation in
porous media. The notation (fSs)T=T� indicates that fSs
should be evaluated immediately above the level z (e.g., on
the colder side). This distinction becomes important at the
lens boundary, where the ice content fSs jumps discontinu-
ously to unity. Hence equation (1) gives the net force per
unit area over the entire lens boundary as

FT Tlð Þ ¼ � rL
Tm

Tm � Tl �
Z Tf

Tl

fSs dT
� �

ẑ: ð2Þ

Figure 1. Photograph showing ice lenses (dark) that developed in a step-freezing experiment performed
by Taber [1930], reprinted with permission of the University of Chicago Press. The schematic diagram
shows the region of partial ice saturation that develops beneath the lowermost, growing ice lens.
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It may be shown that in the extension to cases where
Tl > Tf, so that there is no ice beneath the lens, FT (Tl) =
�rL(Tm � Tl)/Tmẑ.
[10] An important implication of equations (1) and (2) is

that the net thermomolecular force per unit area does not
depend directly on the details of the temperature profile.
When the temperature dependence of the saturation profile
is known, both the net thermomolecular force on the
lowermost lens and the profile of net force on the connected
pore ice beneath it are readily calculated as a function of
temperature.

2.2. Effective Overburden and Forces That Result
From Fluid Flow

[11] The overburden is defined so that P0 = jFT (Tl)j when
the distribution of fluid pressure on the lens boundary is
hydrostatic. P0 may be regarded as the effective stress at the
furthest extent of connected ice, e.g., on the Tf isotherm (or
the Tl isotherm when no fringe is present); P0 is the force
per unit area supported by particle contacts immediately
beneath the ice.
[12] In the modeling that follows I treat the case of a

constant P0, as is appropriate when changes to the overbur-
den are much slower than the dynamics of lens initiation
and growth. For example, the experimental result shown in
Figure 1 was obtained with an added heavy weight (not
shown) on top of the sediment cylinder. However, one can
easily envision circumstances where the overburden is more
accurately represented as a function of lens position, for
example when the surface load and the depth to the lens

boundary are both small. In cases where the fluid supply
through the unfrozen sediments imposes large hydrodynamic
gradients that influence the fluid pressure on the Tf
isotherm, P0 can be strongly dependent on the rate of lens
growth. I ignore these complications for now to better
focus on the essential mechanical considerations that
determine the freezing morphology under the most ele-
mentary conditions.
[13] In general, P0 and jFT (Tl)j will not be exactly

balanced; indeed, they are controlled by quite different
phenomena, the former by gravity and the latter by heat
flow. To satisfy Newton’s first law, any mismatch must be
compensated by the distribution of fluid pressure that acts
against the ice boundary and produces a net hydrodynamic
force per unit area Fm Because water flows much more
easily than ice, for the purposes of calculating Fm the ice
surface is regarded as rigid. It can support a shear stress. As
in other problems in fluid dynamics that involve a thin film
separated by two rigid surfaces [e.g., Batchelor, 1967,
pp. 219–222], the liquid pressure at a given point cannot
be determined by only considering the local forces on the
bounding solids. Instead, an integral force balance condition
must be satisfied.
[14] I assume that when a fringe is present, flow toward

the lens boundary is adequately described by Darcy’s law
with an effective permeability k that is a known function of
the ice saturation level Ss (or temperature T < Tf, since I
assume ice saturation is a prescribed function of T). The
hydrodynamic force per unit area acting on the ice and
mineral grains beneath level z can be written in terms of the

Figure 2. Schematic diagram of the region beneath a growing ice lens, showing several of the key
interactions that are incorporated within the governing equations.
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surface integral of the liquid pressure Pl over the ice-liquid
interface. Using the divergence theorem, this is more
usefully expressed as

Fm zð Þ ¼
Z zf

z

rPl � rlgð Þ 1� fSsð Þdz

¼ �
Z zf

z

m
k
U 1� fSsð Þdz; ð3Þ

where the volume fraction of liquid in the fringe is (1� fSs),
m � 1.8 � 10�3 Pa s is the liquid viscosity, and U is the
Darcy flow velocity. When no fringe is present a similar
expression arises, with the permeability reinterpreted to
describe the resistance to flow in the films that separate the
ice from the adjacent mineral grains beneath [Worster and
Wettlaufer, 1999]. The continuity condition implies that
rlU + r(1 � fSs)Vl = 0, where Vl is the rate of segregated
ice growth: the heave rate (when Vl is oriented in the
positive ẑ direction, the ground surface is driven upward).
[15] It is useful to express all the forces in the system in

terms of temperature rather than position. I assume that Ss
varies only with temperature and that the permeability k is a
function of Ss. Equation (3) can be written as

Fm ¼ m
r
rl
Vl

Z zf

z

1� fSsð Þ2

k
dz

¼ m
r
rl
Vl

Z Tf

T

1� fSsð Þ2

kjrT j dT ; ð4Þ

where I have used the continuity condition to write Fm in
terms of the heave rate.

2.3. Constraints on Lens Growth and Decay

[16] Over the lens boundary, force equilibrium requires
that the net thermomolecular force balance the effective
overburden and the hydrodynamic forces that result from
fluid flow. Accordingly, the above considerations lead to

P0 þ m
r
rl

Vl � ẑð Þ
Z Tf

Tl

1� fSsð Þ2

kjrT j dT

� rL
Tm

Tm � Tl �
Z Tf

Tl

fSs dT
� �

¼ 0; ð5Þ

which describes the relationship between the overburden,
the heave rate, the thermal field, and the lens temperature.
The lens grows when equation (5) is satisfied with Vl in
the ẑ direction, it melts when P0 is sufficiently large that
Vl � ẑ < 0.
[17] In circumstances where the temperature gradient

through the fringe is nearly uniform, I can approximate
jrTj by the average gradient (Tf � Tl)/(zf � zl). Even when
deviations from a linear temperature gradient are important,
it is useful to write equation (5) as

Vl � ẑð Þ zf � zl
� �

¼ H Tlð Þy zl;Tlð Þ; ð6Þ

where y(z, T) will be defined momentarily, and the capacity
for heaving

H Tlð Þ ¼
rlL Tf � Tl
� �
mTm

� �
Tm � Tl �

R Tf
Tl

fSs dT � P0Tm= rLð ÞR Tf
Tl

1� fSsð Þ2=k
h i

dT
;

with units of diffusivity, depends on pore space character-
istics, the overburden, and material properties. With its
dependence on the product of heave rate Vl and fringe
thickness zf � zl, H can be thought of as describing the
diffusion of water mass toward the ground surface; it is a
measure of the contribution that the fluid pressure
distribution makes toward the force balance on the lens. H
is large when the force balance over the lens boundary
causes a reduction in the fluid pressure that allows water to
be drawn relatively quickly through the frozen fringe to
supply lens growth (e.g., high Vl); when the fringe is thicker
(e.g., high zf � zl), the rate of this fluid supply and the
consequent lens growth is lower than it would be for a
shorter path through the partially frozen sediments. The
details of the temperature profile enter into equation (6)
through the function

y z; Tð Þ ¼ zf � zl

Tf � Tl

� �R Tf
T

1� fSsð Þ2=k
h i

dTR zf
z

1� fSsð Þ2=k
h i

dz
;

which is defined so that the upper integral takes place over
temperature and the lower integral takes place over space,
implying that y(zl, Tl) � 1 when the temperature gradient is
uniform. When the temperature gradient changes appreci-
ably through the fringe, the deviations of y(zl, Tl) from
unity are expected to often be smaller than the uncertainty in
k(Ss), so that their neglect might be justified.
[18] The main advantage of breaking the right side of

equation (6) into two separate terms is that it enables us to
isolate the heaving capacity H, which is independent of the
temperature profile, from a scaling factor y of order unity
that takes proper account of the comparatively minor
variations in behavior that are produced by deviations from
a uniform temperature gradient. Because the value of H is
the primary control on the rate of fluid mass transfer
through the frozen fringe, it gauges the capacity for heave
of a given porous system in a broad range of environmental
conditions. I elaborate on this point momentarily, after first
describing the mechanical constraint on lens initiation.

2.4. Constraints on Lens Initiation

[19] Beneath the lens boundary, force equilibrium requires
that

P0 þ m
r
rl

Vl � ẑð Þ
Z Tf

T

1� fSsð Þ2

kjrT j dT

� rL
Tm

fSs Tm � Tð Þ �
Z Tf

T

fSs dT
� �

¼ Pp; ð7Þ

where Pp is the force per unit area that is borne by
interparticle, or mineral, contacts. Note that the force
balance condition immediately beneath the furthest extent
of pore ice (or the lens boundary when the fringe is absent)
simplifies to P0 = Pp. This emphasizes the connection
between Pp and effective stress. I assume that new lenses
are initiated when Pp = 0, as is appropriate for solidification
in porous materials with negligible cohesion. In the
discussion that follows I treat f as constant. The appropriate
extension to incorporate poroelastic effects would involve
treating f as a function of Pp. The use of empirical relations
between f and Pp, such as those derived from studies on the
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properties of glacial till above the melting transition [e.g.,
Clarke, 1987; Tulaczyk et al., 2000; Fowler, 2003], is the
subject of ongoing experimental research (J. S. Wettlaufer,
personal communication, 2005).
[20] Recalling the definitions for H and y given above,

equation (7) implies that Pp = 0 and new lenses can form
when

Hc T ;Tlð Þ ¼ y zl;Tlð Þ
y z; Tð Þ H Tlð Þ; ð8Þ

where the critical heaving capacity is defined for Tf > T > Tl
as

Hc T ; Tlð Þ �
rlL Tf � Tl
� �
mTm

� �
Tm � Tð ÞfSs �

R Tf
T

fSs dT � P0Tm= rLð ÞR Tf
T

1� fSsð Þ2=k
h i

dT
:

This gives a lens formation criterion that is only a function
of temperature, overburden, and known material properties
and pore space characteristics. Note that the ratio y(zl, Tl)/
y(z, T) = 1 when the temperature gradient through the fringe
is constant and it approaches unity as z approaches zl.
Equation (8) indicates that new lenses can form once the
critical heaving capacity Hc(T, Tl) at a level within the
frozen fringe where the temperature is T has increased
enough to equal the scaled capacity for heaving [y(zl, Tl)/
y(z, T)]H(Tl) at the old lens temperature Tl. This condition
is attained when the fluid pressure distribution on the pore
ice beneath the level z exerts the same net force as the fluid

pressure distribution over the entire lens boundary so that
the particle contacts at z no longer support any weight.
Following a brief description of our choice of model
parameters, I illustrate this balance in Figures 3 and 4.

2.5. Parameter Values

[21] Table 1 summarizes controlling parameter values for
three different porous media, chosen to illustrate a range of
potential solidification behavior. Relevant properties for the
ice-water system are given in the upper portion of Table 1.
For each porous medium, identical values are chosen for the
heat capacity, thermal diffusivity, and porosity. Appreciable
changes to the thermal properties can occur as the ice
saturation level changes, but I neglect these effects to better
focus on the essential mechanical conditions that control the
freezing morphology. Andersland and Ladanyi [2004,
Table 2–6] tabulate parameters that describe the unfrozen
water content as a function of temperature in a variety of
different clays and silts. The manner in which the hydraulic
conductivity depends on temperature is also reported for a
few of these media [Andersland and Ladanyi, 2004, Figure
C-14] (reproduced from Nixon [1991]). These empirical
data indicate that the permeabilities and ice saturation levels
can be written as

k Tð Þ ¼ k0
Tm � Tf

Tm � T

� �a

ð9Þ

Ss Tð Þ ¼ 1� Tm � Tf

Tm � T

� �b

; ð10Þ

Figure 3. Diagnostic diagram for lens formation. The first
lens forms where Hc(T, Tl) = 0 at Tm � T � 0.57�C. Within
the partially frozen fringe beneath the lens, the maximum
value of Hc(T, Tl) increases as the lens temperature drops.
The profile shown here gives Hc(T, Tl) evaluated for a lens
temperature of Tl � Tm � 2.63�C and the parameters
summarized in the first column of Table 1. This is the lens
temperature at which Hc(T, Tl) first meets the horizontal
line, which represents H(Tl) scaled by the ratio y(zl, Tl)/
y(zn, Tn) � 0.93. At this intersection point, where the
temperature is Tn � Tm � 0.68�C, the load borne by particle
contacts vanishes, and a new lens can form.

Figure 4. Plot of H(Tl), which characterizes water
diffusion during segregated ice growth. The first lens forms
at Tm � Tl � 0.57�C, as indicated by the intercept in
Figure 3. When the rate of lens growth is lower than the rate
of heat flow, the temperature at the lens boundary
subsequently decreases, and the force balance is satisfied
with the product of heave rate and fringe thickness equal to
H(Tl), scaled by y, which is of order unity. Once the lens
temperature decreases to the point labeled ‘‘max’’ at Tm �
Tl � 2.63�C, the effective stress borne by particle contacts
disappears, and a new lens can form at the point labeled
‘‘new,’’ where Tm � Tl � 0.68�C. The horizontal lines
pertain to the calculation shown in Figure 9.
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for T < Tf (see Appendix A for further discussion).
Theoretical considerations [e.g., Cahn et al., 1992] suggest
the use of slightly more complicated empirical formulations
that include at least one additional term in each of these
expressions to account for variations in the thermal
responses of different premelting mechanisms; however,
equations (9) and (10) are sufficient for current purposes.
[22] The values of Tf, a and b that characterize Chena silt

and Inuvik clay are given in Table 1. Cahn et al. [1992]
present a model for the effects of surface energy and
interfacial premelting in controlling the ice saturation level
in idealized packings of monodispersed particles. Experi-
mental comparisons support the dominance of the Gibbs-
Thomson effect in controlling Ss at temperatures that
approach Tf, whereas interfacial premelting accounts for a
larger fraction of the unfrozen water at colder temperatures.
The first column in Table 1 gives permeability and ice
saturation parameters that are consistent with the temperature
dependence expected when the dominant water pathways
have effective hydraulic radii controlled by surface-energy
effects. I regard this as a limiting case in that the ice
saturation, in particular, exhibits a much stronger tempera-
ture dependence for the idealized medium than for either of
the other two porous media. The low values of b for the
Chena silt and Inuvik clay suggest that the liquid along
premelted films occupies a much greater volume fraction
than is contained within regions of high surface curvature.
As discussed further by Cahn et al. [1992], the increased
importance of liquid films at temperatures that are suffi-
ciently removed from Tf is expected to be a general
characteristic of the freezing behavior of porous media;
studies focused on the freezing behavior of silts and clays in

the immediate vicinity of Tf would be expected to yield
higher values of b.
[23] One can gain intuition for the frost heaving behavior

by neglecting variations in the fringe temperature gradient
in order to evaluate approximate force balance conditions.
As discussed above, this is equivalent to setting y(z, T) = 1.
More generally, even when latent heat effects cause the
temperature gradient to undergo considerable spatial varia-
tions, the variations in y tend to be much smaller than the
changes that characterize the dependence of H on temper-
ature. For example, using the ‘‘idealized’’ porous media
properties in Table 1, H changes by almost two orders of
magnitude in a step-freezing configuration that sees y
change by less than a factor of two (e.g., see Figure 4 and
Table 2). This gives us confidence that the insight gained
into the dominant characteristics of soil freezing in a
particular heat flow scenario provides a reasonable guide
for evaluating the heaving behavior under other heat flow
scenarios as well. Accordingly, I illustrate the heaving
behavior of the model idealized soil for the step-freezing
configuration that will be detailed further below.
[24] Figures 3 and 4 show the dependance of Hc(T, Tl) on

temperature and the dependence of H(Tl) on lens tempera-
ture, evaluated for the idealized soil. (Appendix A provides
analytical expressions for Hc and the components of H
using the formulas for k and Ss given in equations (9) and
(10).) An examination of equation (7) for the special case
where Vl � 0 leads us to expect that the first lens will form
at the temperature where Hc(T, Tl) = 0; in this case Tm �
T � 0.57�C, as indicated by the x intercept in Figure 3, and
shown with an asterisk on Figure 4. This first lens begins
growing so that H(Tl) � 0.0022 mm2/s, i.e., the product of
the fringe thickness and the heave rate, divided by y. When

Table 1. Parameters That Control Freezing Morphologya

Parameter Idealized Chena Silt Inuvik Clay

r, g/cm3 0.92 0.92 0.92
rl, g/cm

3 1.00 1.00 1.00
L, kJ/kg 334 334 334
Tm, K 273 273 273
m, mPa s 1.8 1.8 1.8
C, kJ/(kg��C) 1.3 1.3 1.3
k, mm2/s 0.7 0.7 0.7
f 0.35 0.35 0.35
Tm � Tf, �C 0.1 0.031 2.81
k0, m

2 10�15 4.1 � 10�17 1.4 � 10�19

a 4 3.1 1.4
b 2 0.531 0.254

aProperties of the ice water system and those common to all
calculations that follow are shown in the top two thirds of the table,
whereas the bottom third lists empirical parameters used in equations (9)
and (10) to characterize Ss and k for each of three model porous media.
The first column corresponds to an idealized case in which Ss and k are
controlled by the presence of fluid channels with effective hydraulic radii
determined by the Gibbs-Thomson effect. The second and third columns
are derived from empirical data compiled by Andersland and Ladanyi
[2004, Table 2-6 and Figure C-14] (originally from Nixon [1991]). For
Chena silt, the data on which the permeability function is based derive
from work by Horiguchi and Miller [1983]. Andersland and Ladanyi
[2004, Table 2-6] reported Smith and Tice [1988] as the source of the
saturation data, but the referenced paper does not appear to contain this
information; it can be found instead in work by Tice et al. [1984]. For the
Inuvik clay, both the saturation and permeability functions derive from the
data of Smith [1985].

Table 2. Lens Temperatures Calculated for Three Different Types

of Porous Media (With Properties Summarized in Table 1) at the

Formation of the First Lens, Subsequent New Lenses, and Lenses

at Their Maximum Extenta

Parameter Idealized Chena Silt Inuvik Clay

Tm � Tf, �C 0.1 0.031 2.81
Tm � Ts, �C 10 10 10
P0, kPa 65 65 65
P0/Pmax(Ts) 0.83 0.34 0.11
Tm � T1st, �C 0.57 1.27 3.48
ll1 0.145 0.071 0.109
lf1 0.207 0.134 0.253
y(zl, Tl) 1.79 4.35 1.00
Tm � Tnew, �C 0.68 1.66 5.06b

lln 0.142 0.018 0.082
lfn 0.157 0.118 0.121
y(zl, Tl) 1.03 4.66 1.00
Tm � Tmax, �C 2.63 4.86 10b

llm 0.113 0.010 0
lfm 0.150 0.050 0.476
y(zl, Tl) 0.96 3.73 1.13

aAlso shown are the corresponding scaled lens coordinates and y(zl, Tl)
from the approximate model discussed in section 3.3 (calculated with Ti =
Tm).

bFor the Inuvik clay, if the surface temperature is sufficiently cold, the
lens continues to grow until its temperature reaches Tm � Tmax � 64.9�C;
only then are new lenses initiated at Tm � Tnew � 5.06�C. When the surface
temperature is warmer than Tmax, the lens temperature tends toward Ts and
ll ! 0 at large times.
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the heat flow is sufficiently rapid that the lens temperature
subsequently decreases, Figure 4 indicates that H(Tl)
decreases until the point labeled with an ‘x’ at Tm � Tl �
2.63�C and H(Tl) � 2.8 � 10�5 mm2/s. This is when the
two solid lines in Figure 3 first intersect, indicating that the
effective stress supported by particle contacts vanishes. A
new lens is expected to form at this point, as labeled with a
plus sign in Figure 3 at Tm � Tl � 0.68�C where H(Tl) �
0.0014 mm2/s.
[25] In circumstances where heat flow is slow enough that

the lens temperature increases, I would expect H(Tl) to
increase and the fringe to disappear once Tl = Tf, e.g., Tm �
Tl = 0.1�C for the case shown. The calculation for Figure 4
did not extend to warmer temperatures, but a maximum in
H(Tl) is reached just before the fringe disappears for this
choice of parameter values. When H(Tl) is generalized
appropriately to treat cases where the fringe is absent,
H(Tl) drops as the lens continues to warm. A steady state
lens temperature can eventually be reached, the value of
which depends on the imposed conditions.

3. Stefan Problem

[26] In addition to the mechanical conditions described
above, the rate and morphology of ice growth is constrained
by the conservation of energy. The temperature profile that
results determines the deviation of y(z, T) from unity. To
give a specific example of the dynamics of periodic lens
formation in a relatively simple configuration, I examine the
Stefan problem [e.g., Wettlaufer, 2001] for ice growth in a
uniform, noncohesive porous medium. Initially, the tem-
perature T (z, 0) = Ti � Tf throughout. The boundary
temperature at z = 0 is dropped at time t = 0+ to T (0, t) =
Ts < Tf and thereafter held constant. Three separate regions
can develop: a lensed region between z = 0 and zl (t), a
partially frozen fringe between z = zl (t) and zf (t), and an
ice-free region for z > zf (t). The fringe boundary temper-
ature at position zf (t) is fixed at Tf by the geometry of the
pore space [Rempel et al., 2004]. The lens boundary position
zl (t) and temperature Tl (t) must be determined as part of the
solution to the problem.
[27] To focus on the essential features of the problem, I

ignore differences between the thermal properties of the
system components (e.g., ice, water, and mineral particles),
and I neglect the effects of density differences between the
components on the heat capacity of the mixture. Consider-
ing only conductive heat transfer, with effective thermal
diffusivity k, the energy conservation requires that

@T

@t
¼ k

@ 2T

@z2
; ð11Þ

both for zl (t) > z > 0 and for z > zf (t). In the fringe, where
zf (t) > z > zl (t), the consumption of latent heat and the net
advection of pore ice that accompanies heave at rate Vl

modify the thermal evolution so that [cf. O’Neill and Miller,
1985, equation (19)]

@T

@t
þ Vl

@T

@z

� �
1� L�

C
dSs

dT

� �
¼ k

@ 2T

@z2
; ð12Þ

where C is heat capacity. Note that the ice saturation level
decreases with temperature so that dSs/dT < 0 and
solidification within the frozen fringe acts to reduce the
rate at which the temperature changes in comparison with
what would be expected if latent heat effects were ignored.
This causes much of the variations in temperature gradient
responsible for the deviations in y from unity. The
advective term in equation (12) neglects the small variations
to the rate of upward ice motion through the fringe that are
related to the density difference between liquid water and
ice.
[28] To solve the second-order partial differential equa-

tions for temperature in each of the three regions, as well as
the positions of the two moving boundaries, I need to
specify a total of eight boundary conditions. In addition to
the fixed temperature conditions at the surface and zf, the
far-field temperature as z ! 1 is also constant, at Ti.
Matching temperature conditions apply across the two
moving boundaries. The heat flux conditions at zf and zl are

@T

@z

����
zþ
l

� @T

@z
jz�

l
¼ � L

kC 1� fSs Tlð Þ½ � Vl � ẑð Þ ð13Þ

@T

@z

����
zþ
f

� @T

@z
jz�

f
¼ � L

kC fSs Tf
� � dzf

dt
; ð14Þ

where Vl � ẑ � dzl/dt, and the superscripts indicate on which
side of the boundaries the temperature gradients are
evaluated. For the saturation profile dictated by
equation (10) Ss(Tf) = 0 and the right side of equation (14)
vanishes. The final condition is supplied by the mechanical
constraint embodied in equation (6). As part of the
solution procedure, equation (8) is used to check whether
the particle pressure Pp reaches zero so that a new lens can
form. I do not examine the dynamics of lens initiation in
detail, but assume that the new lens forms quickly at the
location where Pp first equals zero and acts as an effective
barrier to further fluid supply to the overlying region.
Hence the subsequent heave is determined by fluid supply
only to the newly developed lens.

3.1. Transformation to Stretched Coordinates

[29] For the classic Stefan problem describing the motion
of a solidification front through a uniform half-space, a
similarity solution results in which the position of the
moving phase boundary is expected to increase with the
square root of time [e.g., Wettlaufer, 2001]. For the current
problem, the temperature at zl is not constant, so I do not
expect a straightforward similarity solution with zl /

ffiffi
t

p
.

However, the treatment is simplified by focusing on devia-
tions from the behavior of the classical Stefan problem and
hence it is convenient to make a variable transformation to
something resembling similarity coordinates. Accordingly, I
define x � z/(2

ffiffiffiffiffi
kt

p
) and t � t, and let zl = 2ll(t)

ffiffiffiffiffi
kt

p
and

zf = 2lf(t)
ffiffiffiffiffi
kt

p
, so that the transformed problem becomes

4t
@T

@t
¼ @2T

@x2
þ 2x

@T

@x
;ll tð Þ > x > 0 ð15Þ
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4t
@T

@t
1�L�

C
dSs

dT

� �
¼ @2T

@x2

þ 2x � 2ll � 4t
dll

dt

� �
@T

@x
1� L�

C
dSs

dT

� �
;lf tð Þ > x > ll tð Þ

ð16Þ

4t
@T

@t
¼ @2T

@x2
þ 2x

@T

@x
; x > lf tð Þ ð17Þ

subject to the heat flux conditions implied by equations (13)
and (14), namely,

@T

@x

����
lþ
l

� @T

@x

����
l�
l

¼ �L
C 1� fSs Tlð Þ½ � 4t

dll

dt
þ 2ll

� �
ð18Þ

@T

@x

����
lþ
f

� @T

@x

����
l�f

¼ �L
C fSs Tf

� �
4t

lf

dt
þ 2lf

� �
; ð19Þ

the initial condition T(x, 0) = Ti, boundary conditions T(0,
t) = Ts, T(lf, t) = Tf, T(1, t) = Ti, and continuity in
temperature at x = ll(t) and lf(t). To close the problem, I
transform equation (6) and write the mechanical constraint
on the lens position as

4t
dll

dt
¼ H Tlð Þy ll;Tlð Þ

k lf � ll

� � � 2ll ; ð20Þ

where

y x;Tð Þ ¼ lf � ll

Tf � Tl

� �R Tf
T

1� fSsð Þ2=k
h i

dTR lf
x 1� fSsð Þ2=k
h i

dx
:

The manner in which this system of equations is used to
determine the temperature profile in the stretched coordi-
nates is illustrated in Figure 5.

3.2. Freezing Regimes

[30] Equations (15) through (17), together with the initial
condition and boundary conditions summarized above,
dictate the system evolution between episodes of lens
initiation. To predict the boundary temperature on the first
of these lenses in the step freezing configuration considered
here, I begin by solving a special case of the mechanical
constraint on lens initiation embodied in equation (7). As
with subsequent initiation events, the first lens forms where
Pp = 0. However, as noted earlier, with no preexisting lens
to induce liquid migration, the fluid pressure distribution is
initially hydrostatic; Vl = 0 and the second term in
equation (7) contributes nothing to the force balance.
Accordingly, the lens temperature Tl(0

+) an instant after the
surface temperature is imposed is found as the solution to

P0 ¼
rL
Tm

fSs Tm � Tð Þ �
Z Tf

T

fSs dT
� �

: ð21Þ

This corresponds to the condition that Hc(T, Tl) = 0.

[31] Since the surface temperature Ts � Tl equation (21)
implies that lenses can only form when

P0 � Pmax Tsð Þ � rL
Tm

fSs Tm � Tsð Þ �
Z Tf

Ts

fSsdT
� �

; ð22Þ

where it is understood that the first Ss is evaluated at Ts.
Pmax is identified as the maximum frost heave pressure for a
porous medium with ice saturation profile Ss and porosity f;
this marks one boundary between different freezing
regimes. When P0 > Pmax ice is expected to form only
within the pore space without causing deformation to the
ground surface. The evolution of temperature and the fringe
boundary position in this limit satisfy a subset of the
equations given above, but without a defined ll so that no t
variations occur and lf is constant as a result.
[32] Figure 6 shows the maximum frost heave pressure as

a function of surface temperature for the three different
porous media types characterized in Table 1. A formula for
Pmax that makes use of equations (9) and (10) for k and Ss is
given in Appendix A. The case of the idealized porous
medium that is characterized by melt channels of the size
expected to result from the Gibbs-Thomson effect exhibits a
maximum frost heave pressure that approaches a limiting
value at low surface temperatures that is indicated with the
dotted line. The Chena silt and Inuvik clay both have

Figure 5. Schematic diagram showing the temperature
profile expected in the stretched coordinates for a step-
freezing configuration and the considerations involved in
obtaining its solution.
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predicted maximum frost heave pressures that increase
indefinitely as the surface temperature is decreased. The
use of a more complicated empirical formula for Ss with an
additional temperature-dependent term to account for
changes in the relative importance of the Gibbs-Thomson
effect in comparison with the interactions that lead to
interfacial premelting would be expected to yield quali-
tative behavior that is intermediate between that exhibited
by the solid and dashed curves; the former being more
reliable at warmer temperatures and the latter at colder
temperatures.
[33] With the initial value of Tl determined by (21), I next

solve equations (15) through (17) for the temperature profile
and the positions of the fringe and lens boundaries an
instant after the surface temperature is imposed. In the limit
that t ! 0+, the physical distance over which the temper-
ature increases from Ts at the surface to the initial uniform
soil temperature Ti is infinitesimally small, but the stretched
coordinate x representing this vanishingly small separation
spans the entire range of positive numbers from 0 to 1.
Assuming that the continuum description of heat flow
remains a good approximation for the system behavior at
this early time, I seek the values of x = ll and x = lf at
which the temperatures are Tl and Tf respectively when t =
0+. The temperature profiles above the lens and in the ice
free regions are

T ll > x > 0; 0þð Þ ¼ Tl � Tserfcll

erfll

erfx þ Tserfcx ð23Þ

T x > lf ; 0
þ� �

¼ Tierfx þ
Tf � Tierflf

erfclf

erfcx; ð24Þ

where erf u � (2/
ffiffiffi
p

p
)
R u
0
exp(�v2) d v and erfc u � 1 � erf u

are the error and complementary error functions [e.g.,
Abramowitz and Stegun, 1964]. The temperature profile

through the fringe and the initial values of ll and lf are
found by solving

0 ¼ d2T

dx2
þ 2 x � llð Þ dT

dx
1� L�

C
dSs

dT

� �
; ð25Þ

subject to the heat flux conditions

dT

dx

����
lþ
l

¼ 2ffiffiffi
p

p e�l2
l
Tl � Ts

erfll

�L
C 1� fSs Tlð Þ½ �H Tlð Þy ll; Tlð Þ

k lf � ll

� � ð26Þ

dT

dx

����
l�f

¼ 2ffiffiffi
p

p e�l2
f
Ti � Tf

erfclf

þL
C fSs Tf

� �
2lf : ð27Þ

and the known boundary temperatures T (lf (0
+)) = Tf and

T (ll (0
+)) = Tl (0

+). Equations (18) and (20) have been
combined in equation (26); Ss (Tf) = 0 for saturation profiles
of the form given by equation (10) so the second term on the
right side of (27) is zero. I use a shooting method to solve
for lf (0

+), ll (0
+) and T (lf > x > ll, 0

+), with ll as the
shooting parameter and the convergence criterion requiring
that T (lf) = Tf be satisfied to within a specified tolerance
when the temperature gradient satisfies equation (27).
[34] Having found the starting positions of the lens and

fringe boundaries, I next examine how these evolve through
time. Equation (20) suggests three possibilities for the
motion of the lens, as illustrated with a double-sided
arrow in Figure 5. (1) If H(Tl)y (ll, Tl) > 2kll (lf � ll),
then dll/dt > 0 and the lens advances more rapidly than the
square root of time. I interpret this to mean that the release of
latent heat occurs at a faster rate than it can be conducted away
from the lens boundary so I expect the lens temperature to
increase initially; eventually this can cause the lens temper-
ature to increase beyond Tf so that the fringe disappears and
only the single lens grows, with no further initiation. (2) If
H(Tl)y (ll, Tl) < 2kll (lf � ll), then dll/dt < 0 and I expect
the lens temperature to decrease initially; as the fringe
thickens and the lens migrates toward colder temperatures,
the pore space can become sufficiently filled with ice that a
new lens initiates at a warmer temperature so that periodic
lensing results. 3) If H(Tl)y(ll, Tl) = 2kll(lf � ll),
then dll/dt = 0 and the system satisfies a similarity solution,
which greatly simplifies the mathematics by removing all the
time derivatives in the governing equations. However, this
solution is not stable to perturbations in ll, so it is expected
to eventually relax into the behavior described above for
cases 1 or 2. Instead, this special case is of particular interest
because it is expected to mark the boundary between the
single and multiple lens regimes.
[35] Figure 7 shows the boundary between different

freezing regimes for the idealized porous medium. The
solid curve marks the minimum surface temperature that
permits lenses to be initiated so that heaving can occur.
Within the lensing regime, when the fluid is initially
stagnant the solid line also gives the temperature of the
first lens at its initiation. Using equation (6) to calculate the
capacity for heaving of this first lens H(Tl1), the dash-dotted
curve indicates conditions under which the mechanical
constraint on the lens position given by equation (20) is

Figure 6. Variation in maximum frost heave pressure with
surface temperature for the parameters summarized inTable 1.
Lenses are expected to be initiated only for P0 < Pmax.
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met with a steady value of ll in the stretched coordinate
frame. Below this curve H(Tl)y(ll, Tl1) > 2kll(lf � ll) and
the lens temperature is expected to increase initially before
it reaches a steady configuration that is stable. This is the
regime in which needle ice grows near the ground surface,
typically with ice-free sediments below and the tops of the
ice needles supporting only very small surface loads, such
as pebbles or pieces of bark mulch. Above the dash-dotted
curve the lens temperature decreases and the fringe ice
content grows until a new lens is initiated eventually at a
slightly cooler temperature than the first lens, as illustrated
for P0 = 65 kPa in Figures 3 and 4. This is the regime in
which periodic lensing occurs. For comparison, the dotted
curve corresponds to H(Tl) = 2kll(lf � ll), which would be
expected to mark the boundary between the single and
periodic lensing regimes if the fringe temperature gradient
were uniform (e.g., y(ll, Tl) = 1). The maximum frost heave
pressure depends only on the temperature at the lens
boundary and not the details of the temperature profile
beneath.

[36] In Figure 8, regime diagrams are given for Chena silt
and Inuvik clay. In comparison to the idealized case shown
in Figure 7, in Chena silt the multiple lensing regime
extends to much lower overburden pressures. The single
lens regime is inhibited by lower permeabilities, which
reduce the rate of fluid supply so that the release of latent
heat that accompanies lens growth cannot keep pace with
the rate of heat transport. For Inuvik clay, the single lens
regime is practically absent, with the dash-dotted curve
marking conditions where H(Tl)y(ll, Tl1) = 2kll(lf � ll)
lying just slightly above the solid curve for which P0 =
Pmax, so that the former curve is almost completely
obscured at this scale.
[37] Though our analysis was based on the assumption of

constant overburden P0 and surface temperature Ts, it is
instructive to refer to the regime diagrams in Figures 7 and
8 for intuition into the expected system behavior under
transient conditions. For instance, consider a constant sur-
face temperature of Tm � Ts = 1�C, but an increasing surface
load P0, as would be expected for freezing at the ground
surface with no added weight. For both the idealized porous
medium and the Chena silt, the regime diagrams indicate
that freezing would begin in the single lens regime. As the
overburden increases, the system moves into the multiple
lens regime and then eventually the regime in which no
lenses are initiated. This is the qualitative behavior one
expects. It should be emphasized, however, that transitions
between the single and the multiple lens regimes are
expected to be offset from the regime boundaries shown
here, which derive from a comparison between the rate of
latent heat release from the first lens at its inception with the
rate of heat flow. To go from the single to the multiple lens
regime requires that heat be removed more rapidly than
latent heat is released at the maximum fluid supply rate
possible to the lens boundary; for the idealized porous
medium this coincides with the lens temperature at the peak
in H(Tl) shown in Figure 4 (e.g., Tm � Tl � 0.12�C). To go
from the multiple lens regime to the single lens regime
requires that the rate of latent heat release at the inception of
a new lens exceed the rate of heat removal.
[38] In this section, I have focused on determining the

overall character, or phase of behavior to be expected from a
soil with known characteristics (i.e., Ss and k given as a
function of T) that is subjected to a particular set of
environmental conditions (i.e., fixed surface temperature
Ts, overburden P0). Regime diagrams of the type given in
Figures 7 and 8 can be readily constructed for other porous
media in a step-freezing configuration by following the
procedure presented here. Moreover, the maximum frost
heave pressure, given by equation (22), is insensitive to the
structure of the thermal field beneath the incipient lens and
so can be applied to delineate the requirements for lens
formation under other thermal conditions, in addition to the
step-freezing configuration considered here. The location of
the boundary between the multiple lensing and single
lensing regimes is moderately sensitive to the temperature
field within the fringe, as illustrated by the differences
between the dotted and dash-dotted curves in Figure 7.
However, the heaving capacity H acts as the primary control
on the type of lensing behavior that is expected to arise and
the variations in temperature gradient that cause y to deviate
from unity are of much lesser importance. For the step-

Figure 7. Regime diagram showing conditions under
which different types of freezing behavior are predicted
within a porous medium characterized by the parameters
listed in the first column of Table 1. The solid line shows the
maximum frost heave pressure defined by equation (22),
plotted against the temperature depression from bulk
melting at the surface Tm � Ts. Lens initiation can occur
only when P0 � Pmax. The temperature at the boundary of
the first lens falls on this solid curve, and its capacity for
heaving is given by equation (6). The dash-dotted curve
marks conditions for which H(Tl1)y(ll, Tl1) = 2kll(lf � ll)
and the rate of heat and mass diffusion in the assumed step-
freezing configuration would permit a constant lens
temperature. This is not a stable state, however. Colder
surface temperatures cause the lens temperature to decrease,
and multiple lenses eventually form, whereas warmer
surface temperatures produce an initial period of adjustment
followed by the stable growth of a single lens with a
constant boundary temperature. The vertical dashed line
shows the asymptotic value of Pmax in the low surface
temperature limit. The point labeled with the asterisk
represents the conditions used to generate Figure 9.
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freezing configuration the regime boundary between the
single and multiple-lensing regimes represents a steady
state, albeit an unstable one, in which the governing
equations admit a similarity solution with no contribution
from the terms involving time derivatives in equations (15)
through (20). Having determined where these regime
boundaries lie, in the following section I examine briefly
the more challenging problem of predicting the system
evolution and macroscopic behavior within the multiple-
lensing regime.

3.3. Approximate Solutions for Periodic Lensing

[39] Figure 9 shows the calculated early temperature
profile in the stretched coordinate frame for the parameter
choices summarized in the first column of Table 1, with P0 =
65 kPa. The initial values of lf and ll are marked with the
labeled squares. Temperature conditions were set so that Ti =
Tm, Tm � Ts = 10�C, and H(Tl)y(ll, Tl) < 2kll(lf � ll).
Hence I expect periodic lensing to result, as indicated on the
regime diagram of Figure 7 by the asterisk, which corre-
sponds to the modeled conditions. Either a slight decrease
in the overburden from P0 = 65 kPa to 55 kPa, or an increase
in the surface temperature so that Tm � Ts < 1.9�C, results in
H(Tl)y(ll,Tl) > 2kll(lf � ll). In such circumstances, the
lens temperature is expected to increase with time, leading
eventually to the prolonged growth of a single lens, in this
case without an underlying frozen fringe.
[40] Lens spacing and thickness can be predicted by

solving the mathematical problem described by equations
(15)– (20). However, the time dependence complicates
matters, and here I present only an approximate treatment
instead. Figure 10 shows the lens and fringe coordinates
obtained for the idealized porous medium using a quasi-
static approximation in which I use the initial profile from
equation (23) to describe temperatures above the lens bound-
ary. Since the mechanical constraint given by equation (20)
indicates that tdll/dt is negative, I adjust the lens position by
a small increment toward smaller values and assign the
corresponding lens temperature using equation (23). I use
this temperature and the gradient given by equation (26) as
initial conditions to integrate equation (25) until reaching Tf,

at which point I assign the new fringe coordinate lf. The
value of y(ll, Tl) is then updated before another increment
in ll is taken and the procedure is repeated. Once the
mechanical condition for lens initiation from equation (8)
is satisfied somewhere in the interior of the fringe, I note the
location of the previous lens at its maximum extent and the
location at which the new lens is expected to be formed.

Figure 8. Regime diagrams showing conditions under which different types of freezing behavior are
predicted within (a) Chena silt and (b) Inuvik clay, as characterized by the parameters listed in Table 1.

Figure 9. Early temperature profile, immediately follow-
ing the initiation of the first lens. For the parameters chosen
here, the lens growth condition is 2kll (lf � ll) �
0.012 mm2/s, shown with a dashed line in Figure 4. The
deviation of the fringe temperature profile from a linear
gradient leads to y(ll, Tl) � 1.79 for this case, so that
2kll(lf � ll)/y(ll, Tl) � 0.0070 mm2/s. As shown by the
dotted line in Figure 4, this exceeds H(Tl) � 0.0022 mm2/s
(the asterisk labeled ‘‘1st’’), and I expect the lens temperature
to subsequently decrease so that periodic lensing results. The
conditions used for this calculation correspond to the point
labeled with an asterisk in the regime diagram of Figure 7.
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These are labeled in Figure 10, where I also show the scaled
rate of motion for the lens coordinate �tdll/dt.
[41] The approximate spacing between lenses is given by

the difference between the position at which a new lens
would be initiated at time t and the position of the previous
lens at its maximum extent. This is simply calculated as

spacing tð Þ � 2 lln � llmð Þ
ffiffiffiffiffiffi
kt

p
;

where the lens positions in stretched coordinates are lln and
llm at initiation and maximum extent. The approximate lens
thickness is calculated as the difference between the lens
position at its maximum extent, and the lens position a time
Dt earlier, when it was first initiated. Using equation (20), I
approximate this time difference as

Dt � t 1� exp

Z llm

lln

�4k lf � ll

� �
H Tlð Þy ll ;Tlð Þ � 2llk lf � ll

� � dll

 !" #
;

where the integrand is simply f (ll) = (�tdll/dt)
�1. Figure 10

indicates that f (ll) does not change appreciably over the
course of lens growth, so I could also write Dt � t �
t exp[(llm� lln)f ], where f is the average value of f (ll). The
thickness of a lens that has just stopped growing at time t is

thickness tð Þ � 2lm

ffiffiffiffiffiffi
kt

p
� 2ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k t �Dtð Þ

p
:

The approximate depth to the base of the lowermost active
lens is

depth tð Þ � lln þ llmð Þ
ffiffiffiffiffiffi
kt

p
:

I approximate the total extent of heave by weighting this
depth with the ratio of the lens thickness to the sum of the lens
thickness and spacing so that

heave tð Þ � depth tð Þ thickness tð Þ
thickness tð Þ þ spacing tð Þ :

Heave dimensions calculated in this way are shown in
Figure 11 for the idealized medium.
[42] Table 2 summarizes the predicted boundary positions

for all three porous media using the same surface temper-
ature, initial temperature, and overburden. For the Chena
silt, the lens and fringe positions reported in Table 2 are
considerably different from those for the idealized medium.
The arguments given above lead to predicted lens spacings
that are greater than those for the idealized medium, but the
thicknesses of these lenses are smaller so the accumulated
heave is less than a millimeter, even after 100 hours under
these conditions. For the Inuvik clay, as shown in Figure 8b,
with P0 = 65 kPa a surface temperature of Ts = �10�C is
sufficiently cold that the rate of heat flow exceeds the rate of
fluid supply once the first lens forms; this is the condition
that I use to delineate the boundary between the single and
multiple lensing regimes. The lens temperature is expected
to decrease thereafter, but for this case the surface temper-
ature is still too warm to allow the fringe to cool sufficiently
that a new lens can be initiated. Neglecting the effects of
nonlinearities in the temperature profile, I can find the
temperature Tnew at which a new lens is initiated once the
old lens reaches temperature Tmax by seeking the solution to
Hc(Tnew, Tmax) = H(Tmax), where Hc(T = Tnew, Tmax) is at a
maximum with respect to variations in T. I find that new
lenses are expected to form with Tm � Tnew � 5.06�C only
once the temperature at the old lens reaches Tm � Tmax �
64.9�C. The lens positions and value of y reported in
Table 2 for Tm � Tl = 5.06�C are those expected when

Figure 10. Lens ll and fringe lf coordinates in the
stretched reference frame and the scaled rate of lens
boundary motion �tdll/dt. The conditions used for this
calculation correspond to the point labeled with an asterisk
in the regime diagram of Figure 7.

Figure 11. Approximate lens spacing, thickness, and
accumulated heave as a function of time. Parameter values
are summarized in the first column of Table 1, while the
boundary locations and temperatures are given in Table 2.
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the surface temperature is Tm � Ts = 10�C and the first lens
reaches an undercooling of 5.06�C. Over time this lens
continues to cool until it approaches the surface temperature
of Tm � Ts = 10�C, as ll decreases toward zero and lf tends
to a long-term limit of lf � 0.476.

4. Discussion

[43] I have presented what might be considered as a
minimal model for the dynamics of ice formation within
porous media subjected to transient freezing. I have included
only those effects that are essential to determining how the
solidification morphology develops, whether the system
attains the single lens, multiple lensing, or pore freezing
regimes. Though I expect the predictions to be robust in a
qualitative sense, there are many additional complicating
factors that can significantly modify the behavior of natural
systems. Some of these, such as differences between the
thermal properties of the system components, would require
little further effort to incorporate within a more complete
description, but are neglected here primarily to avoid dis-
tracting attention from the dominant physical effects.
Similarly, with the availability of sufficient empirical con-
straints, it would be straightforward to use more sophisti-
cated ice saturation and permeability parameterizations that
are designed to reflect the effect of temperature decreases on
the relative importance to the fluid network of surface energy
and interfacial premelting. Several other physical effects that
have been neglected here could be included within the
framework of a revised model that would be considerably
more complex. I briefly outline a few of these here, then
comment on the effects of a couple of the approximations
made in the present model, before concluding.
[44] The effect of freeze-thaw cycles in altering the

susceptibility to lens formation and heave of pristine porous
media is a common practical consideration in engineering
studies [e.g., Andersland and Ladanyi, 2004]. More gener-
ally, such changes to the ice saturation behavior of soils is
expected to occur in large part as a result of poroelastic
effects and inelastic dilatancy. Indeed, anecdotal reports of
sediment compaction near the lens boundary (J. S.
Wettlaufer, personal communication, 2000) are consistent
with large increases in interparticle pressures close to the
growing lens predicted by equation (7). As noted in section
2.4, one approach to generalizing the analysis to include
poroelastic effects would be to treat the porosity f as a
function of effective stress Pp, as is commonly observed in
studies of fluid-infiltrated porous media that are above the
melting temperature. I expect further experimental efforts to
soon yield much better constraints on the manner in which
to proceed on this front. Inelastic effects that cause perma-
nent changes to soil microstructures are somewhat more
challenging to quantify. In some cases these may be related
to the chemical changes in clays that are known to occur
upon freezing on the basis of the observed degradation to
the surface properties that are necessary for the fabrication
of ceramics (G. Ngan, personal communication, 2005). The
movement and concentration of solutes in the unfrozen pore
water is likely to play a large role in these changes.
[45] Recent attention has been drawn to the potential for

segregated ice growth as a contributing mechanism to the

incorporation of sediments in the basal regions of glaciers
[Christoffersen and Tulaczyk, 2003]. This intriguing possi-
bility has been bolstered by borehole photographs of sed-
iment bands beneath an Antarctic ice stream [Carsey et al.,
2002]. Interest is driven primarily by the recognition that
glacier motion in these fast-flowing regions is largely
accomplished by till deformation beneath the ice front and
the expectation that the shear resistance in these sediments
is dependent on the effective stress. In the formulation
presented here I have treated the case where the effective
stress at the furthest extent of pore ice P0 is constant. This
may not be at all appropriate beneath glaciers, where the
hydrological systems that operate are notoriously complex.
Moreover, the thermal regime beneath a thick insulating
layer of glacial ice will typically be characterized by much
more shallow temperature gradients than those considered
here, and the importance of deformational heating does
complicate the heat balance. Nevertheless, even with these
considerations, the formulation of a rigorous predictive
model for the characteristics of basal freeze-on beneath
glacial ice should not represent an overly ambitious exten-
sion to the present work.
[46] Textbook descriptions of the weathering of cohesive

materials by frost action commonly focus on the modest
volumetric expansion that accompanies the phase transition.
Persuasive arguments byWalder and Hallet [1986], together
with laboratory [Hallet et al., 1991;Murton et al., 2006] and
field studies [Matsuoka, 2001; Hales and Roering, 2005]
suggest that most frost damage actually occurs as a result of
the same premelting dynamics as control the segregated ice
growth described here. Walder and Hallet [1985] present a
model that examines the extension of preexisting cracks in
cohesive materials, based on the frost heave formulation of
Gilpin [1980]. A more complete description of landscape
evolution driven by frost weathering must account for
environmental controls on the fluid supply through fractures
and joints to the freezing centers, as well as the likely
importance in many field situations of partial air saturation.
Moreover, the anisotropic stress distributions that character-
ize steep slope exposures and the potential insulating effects
of snow accumulations on shallow exposures also need to be
considered.
[47] I have chosen a system in which the properties and

environmental forcing are assumed to be laterally continu-
ous. Differential frost heave in nature occurs where lateral
variations are significant, whether they are initially imposed
or develop spontaneously in response to feedback mecha-
nisms. Much has been learned about these systems from
studies [Kessler and Werner, 2003; Peterson and Krantz,
2003; Plug and Werner, 2001, 2002; Sletten et al., 2003]
that are grounded in parameterizations of the type used by
O’Neill and Miller [1985]. Further analysis of the control-
ling mechanical conditions following the procedure devel-
oped here can be used to interpret phenomenological rules
for the ice-sediment interactions in these systems in terms of
fundamental physical quantities that can be measured.
Turning this around, one might hope to use observations
of freezing behavior in nature to infer the physical proper-
ties and environmental forcings that have produced peri-
glacial landforms.
[48] The crude approximations used to obtain lens spac-

ings and thicknesses in section 3.3 should be improved
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upon. The effects of thermal inertia, particularly at the onset
of lens growth are expected to produce deviations in the
precise values of lln, lfn, llm and lfm from those reported in
Table 2. A more rigorous treatment of this dual moving-
boundary problem is in progress.
[49] At the onset of freezing, I have assumed that the

first lens forms at a temperature such that the mechanical
condition embodied in equation (21) is satisfied. It is
important to recognize that this is an idealization. Implicit
in any continuum description of porous media behavior is
the assumption that average properties can be meaning-
fully defined over a small volume that contains a repre-
sentative distribution of pores and particles. Clearly this is
not the case at the initial time for the current problem.
One might choose to instead regard the initial lens
position as being controlled by the soil microstructure,
for example, beginning once the freezing front extends
down a particle diameter to the centroidal location of the
first pores. Another alternative would be to postulate that
freezing begins immediately at the ground surface with an
initial lens temperature equal to the imposed surface
temperature. Indeed, when macroscopic ponding occurs
at the ground surface, the temperature at the base of the
first lens should be largely controlled by heat flow
through the puddle depth. Having a preexisting lens, such
as a frozen puddle, effectively removes the need for
considering a maximum frost heave pressure; the regime
boundaries shown in Figure 6 would be compromised
since some slow rate of heave could occur no matter
what the overburden pressure. In these circumstances, the
potential for steady growth of a single lens or the growth
of multiple lenses still remain, though the precise loca-
tions of these regime boundaries would be adjusted from
those calculated here.

5. Conclusions

[50] By examining the force balance conditions over an
ice lens, in equation (6) I have shown that the product of the
lens growth rate with the thickness of the partially frozen
fringe that lies beneath it is equal to (Vl � ẑ)(zf � zl) =
H(Tl)y(zl, Tl). The first of these functions H(Tl) can be
thought of as measuring the capacity of the lens to draw
water through the underlying soil to cause heave; it is
defined in terms of measurable characteristics of the
porous medium, material properties, and the overburden
(see, e.g., Figure 4). All dependence on the temperature
profile is contained within the second function y(zl, Tl),
which reflects deviations from a linear temperature gradient
within the partially frozen fringe (e.g., see Figure 9).
Having determined the mechanical conditions that dictate
how lenses grow, an examination of the force balance
conditions in the partially frozen fringe beneath the lens
leads to equation (8) as a description of the location and
temperature at which the effective stress borne by particle
contacts vanishes and a new lens can grow (e.g., Pp = 0).
This introduces the concept of a critical heaving capacity
Hc (T, Tl), which is a second function of temperature,
overburden, material properties, and measurable pore space
characteristics that is defined to equal H(Tl) at the point
where a new lens is initiated when the temperature gradient

in the fringe is linear (see, e.g., Figure 3). When the
temperature gradient is not linear, the lens initiation condi-
tion generalizes to H(Tl)y(zl, Tl) = Hc(T, Tl)y(z, T), which
accounts for temperature-dependent changes to the hydrau-
lic resistance at different levels within the fringe.
[51] To illustrate how these mechanical conditions pro-

duce different regimes of freezing behavior during tran-
sient solidification, I analyzed the step-freezing problem
in a uniform porous medium. This allowed us to identify
regimes in which lenses can (P0 < Pmax) or cannot (P0 >
Pmax) be initiated, depending on the size of the overbur-
den P0 in comparison with the maximum frost heave
pressure Pmax defined by equation (22). Once the first
lens forms, water begins to flow, and depending on
whether the rate of fluid supply to the lens allows
freezing and latent heat release that keeps pace with the
rate of heat flow to the ground surface, the lens will
either grow toward warmer temperatures or migrate
toward colder temperatures. In the former case, the lens
temperature adjusts until a stable steady state is reached
and no further lens initiation occurs. In the latter case, the
lens cools and the fringe thickens until eventually a new
lens forms at a warmer temperature; subsequent freezing
occurs along its contorted boundary until it cools suffi-
ciently for yet another lens to form and the process
repeats. These considerations led us to generate the
regime diagrams in Figures 7 and 8 that delineate
between the single lens, multiple lensing, and pore
freezing regimes for three different model porous media.
Approximations to the solution for the thermal problem
described in equations (15)–(20). allow us to produce
estimates for the lens thickness and spacing, as well as
the accumulated total heave, as shown in Figure 11. I
have discussed some of the ways in which this model can
be modified and extended to consider several other geo-
physical phenomena beyond the simple one-dimensional
freezing considered here. Efforts are in progress to apply
similar methodologies to develop models that accurately
homogenize the underlying microscopic interactions that
produce the observed macroscopic behavior in several of
these contexts.

Appendix A: Formulae for Power Law
Porous Media

[52] The parameters listed in the lower third of Table 1
are chosen to represent the porous media solidification
behavior in the form of the power law relations given in
equations (9) and (10). In Table 2-6 of Andersland and
Ladanyi [2004], ratios of water mass to dry mass of a range
of porous media are reported in the form wu = A/(Tm � T)b,
where A is chosen to fit the empirical data when Tm � T is
measured in degrees centigrade. To convert to the form used
in equation (10) I define Tf so that (Tm � Tf)

b = [(1 � f)/
f](rp/rl) A, where the particle density is taken as rp =
2.65rl. Figure C-14 of Andersland and Ladanyi [2004]
contains a log-log plot of hydraulic conductivity K as a
function of Tm � T. Straight line fits to the data are used to
obtain power law relations of the form used in equation (9),
while noting that the permeability is defined so that k = Km/
(rl jgj), where g is the acceleration of gravity.
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[53] Using the power law representations given in equa-
tions (9) and (10) I can write

Z Tf

T

fSsdT ¼ f Tf � T þ Tm � Tf

b � 1

Tm � Tf

Tm � T

� �b�1

�1

 !" #
;

Z Tf

T

1� fSsð Þ2

k
dT ¼ Tm � Tf

k0

1� fð Þ2

aþ 1

Tm � T

Tm � Tf

� �aþ1

�1

 !"

þ 2 1� fð Þf
a� b þ 1

Tm � T

Tm � Tf

� �a�bþ1

�1

 !

þ f2

a� 2b þ 1

Tm � T

Tm � Tf

� �a�2bþ1

�1

 !#
;

where I assume that b 6¼ 1, a 6¼ �1, a 6¼ b � 1 and a 6¼
2b � 1. These can be substituted into the expressions for
H(Tl) following (6) and Hc(T, Tl) following equation (8).
In the latter case, simple algebraic manipulation yields

Hc T ; Tlð Þ ¼ rlLk0
mTm

Tf � Tl

Tm � Tf

� �

�
f

b
b � 1

Tm � Tf
� �

1� q1�b� �
� P0Tm= rLð Þ

1� fð Þ2

aþ 1
qaþ1 � 1
� �

þ 2 1� fð Þf
a� b þ 1

qa�bþ1 � 1
� �

þ f2

a� 2b þ 1
qa�2bþ1 � 1
� � ;

where q � (Tm � T) / (Tm � Tf). Noting that the first lens
forms at the temperature that Hc(T, Tl) = 0, I find that this
occurs at

T1st ¼ Tm � Tm � Tf
� �

1� P0Tm

rLfb
b � 1

Tm � Tf

� �1= 1�bð Þ
:

For this reason, as indicated by equation (22), I do not
expect any lenses to form when the overburden exceeds

Pmax Tsð Þ ¼ rLfb
Tm

Tm � Tf

b � 1
1� Tm � Tf

Tm � Ts

� �b�1
" #

:
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