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It is proposed that the spoiling of high Q whispering gallery modes in deformed dielectric
spheres can be understood as a transition to chaotic ray dynamics which can no longer
be confined by total internal reflection. This is a KAM/Lazutkin transition for light.
The theory is applied to explain the lasing properties of droplets.
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The highest Q optical resonators known are di-
electric microspheres in which the high Q modes
are created by total internal reflection of light cir-
culating just inside the surface of the sphere[1, 2].
These high Q modes are referred to as “whis-
pering gallery” (WG) modes or alternatively as
“morphology-dependent resonances” (MDR’s) [2].
If the dielectric is a liquid droplet containing an
appropriate dye then the droplet acts as a high
Q micro-resonator to support lasing action of
the dye when optically pumped [3]. The reso-
nance properties of an ideal spherical dielectric,
for which the wave equation separates, are de-
scribed by Mie theory where the quasi-modes are
the product of spherical Bessel functions jl(nkr)
(n is the index of refraction) and vector spherical
harmonics [4]. The radial equation then contains
a repulsive term l(l + 1)/r2 which is the ana-
logue of the angular momentum barrier for light
rays and an effectively attractive term associated
with the higher index of refraction in the liquid.
The combination of the attractive “well” repre-
sented by the dielectric and the repulsive angu-
lar momentum barrier gives rise to quasi-bound
states of the effective potential near the rim of
the droplets[4] for certain ratios of l to kR (k is
the wavevector in vacuum, R the radius of the
spherical droplet). In the ideal sphere these reso-
nances are only broadened by evanescent leakage
(“tunneling”), hence their enormous Q values.

Because these resonances arise from angular mo-

mentum conservation, deviations of the dielectric
from spherical symmetry should ultimately lead
to spoiling of these high-Q modes. However per-
turbative treatments [5] valid for small deforma-
tions (< .001R ) of the sphere just mix nearby
modes and do not find a large degradation of
their Q. At larger deformations (≥ .01R) many
hundreds of modes are mixed and although nu-
merical solution of the wave equation is possible,
no qualitative understanding of the Q-spoiling
behavior had been proposed in the literature.
Recently several of the authors [6] developed a
ray-optics model to describe the physics when
kR� 1 and the fractional deformation is larger
than 1%; and applied it to two-dimensional or
cylindrically symmetric dielectrics. The basic
idea is that if a ray starting nearly tangent to
the interior surface (i.e. in a WG trajectory)
can escape refractively after multiple reflections
then the Q of the corresponding modes will be
strongly degraded. The onset of this “classi-
cal escape” will be precisely the KAM/Lazutkin
transition [7, 8] in the ray dynamics; a very fun-
damental phenomenon in the theory of the tran-
sition to chaos in Hamiltonian systems. This
phenomenon, which is analogous to a second or-
der phase transition in phase-space [9], has only
been measured experimentally in a few contexts
(e.g. advection of a passive scalar in fluid me-
chanics). Hence the Q-spoiling of these modes
will be a signature of the Hamiltonian transition
to chaos. In this Letter we apply our ray-optics
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model to three-dimensional axially symmetric di-
electrics and show how the model can explain
naturally the lasing intensity profile of deformed
liquid droplets, which was not previously under-
stood. Thus we address (for the first time, to
our knowledge) the properties of a laser with a
partially chaotic closed resonator.

For a uniform dielectric body the ray dynam-
ics is just the Hamiltonian dynamics of a point
mass moving freely within a three-dimensional
“billiard” and specularly reflecting from the sur-
face, with the condition that if the angle of inci-
dence with respect to the normal to the surface,
χ, falls below the critical angle, sinχc = 1/n,
then the ray escapes the dielectric according to
Snell’s law. A WG mode of angular momen-
tum l in the undeformed sphere can be associ-
ated with a particular value of sin χ within the
eikonal approximation; one finds [10] sin χ ≈
l/nkR (where the lowest mode of a given l has
l/kR ≈ n). In order to estimate the Q of this
mode within the deformed sphere we propagate
a uniform phase space distribution of rays with
this value of sinχ forward in time, compute nu-
merically the mean escape rate 1/τ , and eval-
uate Q = ckτ . The droplets studied are pro-
duced with rotational symmetry around the flow
direction (z-axis) so we describe their shape in
cylindrical coordinates (ρ, φ, z) by the equation
ρ = ρb(z) (independent of φ). ρb(z) describes
volume-preserving convex deformations of a sphere
of radius R; hence the maximum ρm = ρb(0) and
ρb(z) is monotonically decreasing until it reaches
zero at the “pole” of the droplet (we shall as-
sume ρb(z) = ρb(−z) for simplicity). Although
deformations which do not generate ray chaos
are possible (e.g. ellipsoidal deformations [11])
generic deformations reduce the number of con-
stants of motion by one and lead at least to
the formation of chaotic layers in phase-space.
Again generically these layers grow and fill all
of phase space as the deformation increases; for
example we find a simple quadrupolar deforma-
tion of roughly 25% of the radius is sufficient. A
pure quadrupole is not however an ideal model
for highly deformed droplets since a quadrupole

becomes non-convex when the ratio of the long
to short axes is larger than 1.42 whereas the
deformed droplets are observed to remain con-
vex up to larger deformations. Therefore in this
work we study a family of shapes of the form
r(θ) = 1+ε[cos2 θ+(3/2) cos4 θ]. ε parameterizes
the size of the deformation which is prolate with
the long/short axis ratio equal to 1+(5/2)ε (the
oblate shape is obtained by changing cos θ →
sin θ).

Because of the axial symmetry, Lz is conserved
in the ray dynamics, hence phase-space motion is
four-dimensional and parameterized by the con-
served value of Lz. At zero deformation the to-
tal angular momentum L is also conserved but
as just noted generic smooth deformations will
cause a two-dimensional KAM/Lazutkin transi-
tion to chaos. This means that rays describing
WG modes corresponding to initial sin χ0 ≈ 1
will remain trapped indefinitely for small defor-
mations because the unbroken KAM tori will
partition phase space into non-communicating
regions and prevent initially tangent rays (WG
orbits) from reaching the critical value for es-
cape, sinχc. The unbroken tori will manifest
themselves as caustics in the real-space ray dy-
namics [8, 6]. Therefore Q will be infinite within
our model (which neglects tunneling) up to a
threshold deformation εc at which the last in-
tervening KAM torus breaks. For deformations
larger than εc, Q will decrease, initially as (ε −
εc)−α where α ≈ 3 [6]. Numerical solutions of
the wave equation for such systems at kR ≈ 25
confirm the existence of a Q-spoiling threshold
as predicted by this model[12], although detailed
quantitative agreement is not expected for such
small values of kR (in our experimental systems
kR ≈ 500).

The droplets studied are produced by a Berglund-
Liu vibrating orifice generator which produces a
monodispersed stream of ethanol droplets con-
taining Rhodamine B dye[3]. Although far from
the orifice the droplets become quite spherical
due to surface tension, near the orifice they are
highly deformed and oscillate between oblate and
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Figure 1: Shadow graphs (a) and simultaneous
total-intensity images (b) of three lasing droplets
falling in air taken at different phases of oscilla-
tion: prolate (top), spherical (middle) and oblate
(bottom). Light regions in (b) indicate lasing.

prolate shapes with as much as a factor of two be-
tween their long and short axes. These damped
oscillations occur on time scales which are long
compared to the other relevant time constants of
the experiment so droplets of varying deforma-
tions can be imaged simply by strobing at the ap-
propriate phase of these oscillations. The basic
observations (see Fig. 1) are: 1) Laser emission
is always suppressed around the polar regions of
the deformed droplets. 2) The region of sup-
pressed lasing is typically much larger for oblate
shapes as compared with prolate shapes of the
same degree of deformation. 3) In the prolate
shapes the equatorial region is more weakly las-
ing, with the highest lasing intensity coming for
arcs centered roughly at ±45◦ from the equator.

These qualitative features can be explained from
an analysis of the non-linear ray dynamics. These
dynamics correspond to two degrees of freedom
so it is convenient to project the motion onto a
2D cartesian coordinate system with axes z, ρ.
We choose units for which E = 1/2, Lz = ρ2φ̇
and φ(t) is completely determined by ρ(t). The z
motion is free between collisions with the bound-
ary. The ρ motion between collisions is deter-
mined by energy conservation and the Lz angu-
lar momentum barrier: ρ̇2 = 1 − ż2 − L2

z/ρ2.
This means that between each collision ρ2(t) de-
scribes a parabola with minimum value equal to
the classical turning point in the centrifugal po-
tential. For all Lz 6= 0 the rays are repelled from
the z−axis and satisfy the inequality ρ(t) ≥ Lz.
Specular reflection of the ray reverses the nor-
mal component of the three-dimensional veloc-
ity vector; due to the axial symmetry the normal
to the droplet has no azimuthal component and
thus collisions are specular in the z − ρ plane as
well. Thus the problem is equivalent to a new
kind of billiard (which we refer to as a centrifu-
gal billiard) with free motion in one direction and
the centrifugal force determining motion in the
orthogonal direction (see inset, Fig. (2a)).

Since the physical coordinates of most interest
to us are the polar angle of each collision tan θ =
ρ/z and the 3D Snell angle sin χ (which is sim-
ply related to the angle of incidence in the z − ρ
plane) we will plot the Poincaré surfaces of sec-
tion (SOS) for these billiards using the coordi-
nates θ, sinχ. Results for ε = 0.3 and decreasing
Lz are shown in Figs. 2(a)-2(d). The empty re-
gion of the SOS represent the portion of phase
space forbidden by the Lz barrier. It is easily
shown that the boundary of this forbidden region
satifies sin χmin(θ) = Lz/ρb(θ) implying that the
global minimum value of the Snell angle occurs
when the ray bounces at the equator and is given
by sinχmin = Lz/ρm. Thus Q-spoiling by ray es-
cape is completely forbidden by the Lz angular
momentum barrier for Lz ≥ ρm sinχc (Fig. 2a).
Since the high Lz orbits are near the equato-
rial plane the WG modes corresponding to these
orbits will always remain high enough in Q to
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exceed the lasing threshold and the equatorial
regions will always provide some degree of laser
emission.

However, if Lz < ρm sinχc and rays are allowed
to reach sin χc the occurence of Q-spoiling de-
pends not just on Lz but on the degree of chaos
present in the dynamics. Note that increasing Lz

(for a fixed deformation) not only increases the
forbidden regions of the SOS but also decreases
the amount of chaos. That is because high Lz

orbits are forced to stay close to the equatorial
plane. Orbits in the equatorial plane initially
(z = 0, ż = 0) remain there forever and are just
the integrable orbits of a circular billiard due to
the axial symmetry. Near-equatorial orbits ex-
perience a much smaller effective deformation of
the droplet than do the near-polar orbits and
hence exhibit much less chaos for the same de-
formation. So classical escape may be allowed by
Lz conservation but forbidden due to the pres-
ence of an unbroken torus preventing phase space
diffusion to sinχc(see Fig 2(b)). For deforma-
tions less than roughly 5% this situation holds
all the way down to Lz = 0 so that Q remains
relatively high for all orbits and lasing occurs
everywhere on the rim of the droplet. However
for deformations greater than 5% the effective
non-linearity at sufficiently low Lz = Lzc will be
strong enough to break the relevant KAM tori
and WG orbits will become chaotic. This means
that chaotic regions in the SOS will extend from
sinχ0 to sinχc and classical Q-spoiling occurs
(see Fig. 2c). For all Lz < Lzc, the Q of the
associated WG modes will decrease steeply with
Lz and fall below the lasing threshold (see Fig.
3(c)). All orbits of non-zero Lz are excluded from
the polar region and the region of exclusion in-
creases with increasing Lz (for Lz = ρm the orbit
must remain at the equator). Thus if Lzc 6= 0
for a given deformation then Lzc determines a
minimum allowed value of the polar angle, θmin,
which divides the high Q modes from the low Q
modes [13]. Therefore an arc around the poles
of angular size ≈ 2θmin will not lase for large de-
formations. This explains why the polar regions
of the deformed lasing droplets are dark.

Figure 2: Poincare surfaces of section for prolate
droplets with deformation of ε = 0.3 for Lz =
0.735 (a), Lz = 0.65 (b), Lz = 0.43 (c) and Lz =
0 (d). The arrow to the left indicates the angle
of incidence at which the ray bundle is launched,
sinχ0 ≈ 0.9, dash-dotted line denotes sin χc =
1/n = .735 for the droplets of Fig. 1. Inset in (a)
shows the droplet shape in the z - ρ plane and
typical trajectories for Lz = 0.735 (solid line)
and Lz = 0.2 (dashed line).
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Figure 3: Comparison of prolate (a) versus
oblate (b) droplets of the same deformation,
ε = 0.3, and at the same angular momentum,
Lz = 0.41. The arrow and dash-dotted line have
the same meaning as in Fig. 2. For the prolate
shape, only two thin chaotic channels cross the
line at sin χc, whereas chaos is fully developed
around sinχc in the oblate case. Phase-space dif-
fusion is thus expected to lead to faster escape
from the oblate droplet. In (c), the resulting Q
factor (assuming nkR = 700) is recorded while
Lz is varied. We plot Q as a function of the min-
imum polar angle (closest approach to the pole)
allowed for the given Lz, for prolate (dashed)
and oblate (solid) shape of ε = 0.3. Inset to (c)
gives the histogram of polar angle at which es-
cape occurs for prolate (dark) and oblate (light)
shapes.

The ray-optics model can also explain the ob-
served difference between prolate and oblate drop-
lets. In the prolate droplets the short axis is
in the equatorial plane whereas in the oblate
droplets it connects the poles. For all smooth
convex shapes there is associated with the short
axis a stable two-bounce orbit[14] which appears
as the island centered on θ = π/2 in the SOS
for the prolate shape (Figs. 2(a)-(d), only one
island appears because the two bounces occur at
θ = π/2, displaced by π in the azimuthal an-
gle). For the oblate shape this stable orbit con-
nects the poles and for Lz = 0 would be visible
as islands at θ = 0, π; however this orbit is un-
reachable due to the Lz barrier for Lz 6= 0 and
is no longer visible in Fig. 3(b). While the short
axes are associated with stable islands which pro-
vide barriers to phase space diffusion, the long
axes are associated with unstable periodic orbits
which generate chaos in their vicinity. Hence in
the oblate shape this unstable orbit generates
chaos in the equatorial region, whereas in the
prolate shape it generates chaos in the polar re-
gions which are typically inaccessible due to the
Lz barrier. Therefore, for the same ratio of semi-
minor to semi-major axes and the same Lz the
oblate shape has more unstable WG orbits and
lower Q associated modes in the polar regions
(Figs. 3a-b). Thus just on the basis of their
Q we expect the oblate droplets to have larger
dark (non-lasing) regions near the poles than the
prolate droplets, as observed. As noted above,
once classical ray escape is allowed we can calcu-
late [6] the Q-value of modes associated with a
given Lz or equivalently a given value of θmin;
comparison of Q vs. θmin for the oblate and
prolate shapes is shown in Fig. 3c confirming
this qualitative reasoning. However Fig. 3c in-
dicates that for reasonable deformations the Q-
values alone do not explain the large difference
between the lasing intensity profile of the oblate
and prolate droplets (since the θmin at which the
lasing threshold is crossed only differs by 30◦).
Nonetheless Fig. 3c also shows that there is a
significant range of Lz for which Q exceeds the
lasing threshold but classical escape is possible.
In this case we expect highly non-uniform emis-
sion [6] in the polar angle θ since escape will oc-
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cur for these modes primarily in the intervals of θ
where chaos extends down to sinχc. These inter-
vals are very different for the prolate and oblate
shapes. In Fig. 3a for the prolate shape they
are roughly at θ = 45◦, 135◦ where the angular
momentum boundary intersects sinχc, whereas
in Fig. 3b for the oblate shape they are cen-
tered on the equator. This is the generic behav-
ior over a large range of deformations. Thus for
the oblate shape, although emission is allowed
up to θmin, in fact it occurs over a much nar-
rower angular interval for these modes; whereas
in the prolate shape the most intense emission
occurs at well-defined polar angles well separated
from the equator, which remains relatively dim.
An angular intensity profile shown in the inset
to Fig. 3c confirms this reasoning for the clas-
sically escaping modes above the lasing thresh-
old. Very recent results using the wave equation
[12] indicate that even modes which do not es-
cape classically still have an enhanced tunneling
probability in the regions where classical escape
occurs (because here they approach most closely
sinχc). We conjecture that the experimental las-
ing intensity profile arises from both effects. This
issue goes beyond the pure ray-optics model and
will require further study.
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