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We consider the wave and ray dynamics of the electromagnetic field in a
parabolic dome microcavity. The structure of the fundamental s-wave involves
a main lobe in which the electromagnetic field is confined around the focal point
in an effective volume of the order of a cubic wavelength, while the modes with
finite angular momentum have a structure that avoids the focal area and have
correspondingly larger effective volume.

The ray dynamics indicate that the fundamental s-wave is robust with respect
to small geometrical deformations of the cavity, while the higher order modes
are unstable giving rise to optical chaos. We discuss the incidence of these
results on the modification of the spontaneous emission dynamics of an emitter
placed in such a parabolic dome microcavity.
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1 Introduction

The miniaturization of optoelectronic devices such as light emitting diodes or semiconduc-
tor lasers, is expected to lead to an improvement of their energy efficiency and to a lowering
of the lasing threshold. This tendency towards miniaturization has led to the exploration
of optical microcavities whose dimensions are of the order of a few wavelengths [1]. In such
microcavities the extreme confinement of the electromagnetic field modifies the interaction
of the active medium with the radiation field so that the process of spontaneous emission is
altered both in its spatial and its dynamical characteristics. Spontaneous emission can thus
be redirected, enhanced or inhibited in a way that may be exploited for the operation of
light-emitting diodes or lasers. A modification of the characteristics of spontaneous emis-
sion, such as its directionality or the emission rate, has been shown for several microcavity
designs such as for the traditional Fabry-Perot planar cavities [2] and for disk-shaped [3]
or spherical [4] cavities displaying whispering gallery modes.

One of the key requirements for enhancing the dynamics of spontaneous emission and
reducing the laser threshold is that the electromagnetic field at the site of the emitting
dipole should be enhanced inside the cavity with respect to its value in free space. A
class of resonators for which this can be achieved very efficiently are confocal cavities:
A few experiments with spherical confocal cavities [5], or semi-confocal microcavities [6]
have been reported already, in which significant spontaneous emission modification or ex-
tremely low laser thresholds have been observed. Among the different designs of concave
mirrors, parabolic mirrors have an important advantage in that their focal point displays
no astigmatism and is free from spherical aberrations. Basic geometric optic thus leads us
to expect that double-parabolic confocal cavities or plano-parabolic semi-confocal cavities
should display a strong enhancement of the electromagnetic field in the vicinity of the focal
point, and a concomitant modification of the emission characteristics of an active medium
placed there.

This paper presents a theoretical analysis of microcavities formed by a parabolic mirror
at or close to the confocal condition. The study is motivated by experimental work in which
such a system has in fact been fabricated. The experimental characterization of the modal
structure and dynamics, being now in progress, will be given in a separate publication [7].
Here, we briefly describe the experimental structure, in order to define the system for which
our model calculations are intended. We have fabricated a semi-confocal plano-parabolic
semiconductor microcavity (see Fig. 1) by etching an appropriately-prepared GaAs wafer
by a Focused Ion Beam [8] to produce a“hill”of cylindrical symmetry and parabolic vertical
cross-section having a diameter of 7.2 µm and a height of 1.8 µm (corresponding to optical
lengths of respectively 27 λ and 6.75 λ for a wavelength (in vacuo) of 960 nm) which
was subsequently covered with a thin metallic layer of gold. This gold dome constituted
thus a concave parabolic mirror with its focal point inside the GaAs substrate. At the
base of the parabolic hill, the wafer had a 6-period GaAs/AlAs Bragg mirror, closing the
semi-confocal cavity (see Fig. 2). This cavity is expected to possess a mode in which the
electric field is strongly enhanced in the vicinity of the focal point, so that a localized
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Figure 1: Atomic Force Microscope image of a “hill” of diameter 7.2 µm and parabolic
cross-section of height 1.8 µm, etched on a GaAs substrate by a Focused Ion
Beam apparatus. When covered with gold it constitutes a concave parabolic
mirror with its focal point inside the GaAs substrate.

semiconductor emitter, such as a quantum box or quantum well, emitting at a wavelength
near 960 nm, will have its spontaneous emission greatly enhanced when placed there. The
use of a dielectric mirror with lower refractive index rather than a metallic mirror at
the focal plane is important because it introduces a boundary condition that requires the
tangential electric field to be maximal at the focal plane. This condition cannot be fulfilled
on a metallic mirror, on which the tangential electric field should vanish, producing thus a
vanishing field at the focal point of the parabola.

In order to understand the operation of such a cavity and to assess its performance
in modifying spontaneous emission, in this paper, we examine first the modal structure
of an ideal confocal double-parabolic, or semi-confocal plano-parabolic microcavity. We
then investigate the stability of these modes with respect to geometric deformations of the
cavity that correspond to deviations from confocality; this condition is inevitably violated
in a realistic cavity due to fabrication defects. The discussion of this case provides the
conceptual and theoretical background for the experimental analysis to be presented in a
subsequent paper.

The calculation of the modal structure of the parabolic dome microresonators cannot be
treated within the paraxial approximation of conventional [11] resonator theory, because
of the very large aperture displayed by the parabola and because the cavity dimensions
are comparable with the optical wavelength. Extensions of the paraxial approximation
to the highly convergent (or divergent) beams produced by parabolic mirrors are cumber-
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Figure 2: Schematic cross-section of a semiconfocal parabolic dome cavity, consisting of
parabolic gold mirror and a planar Bragg mirror placed at the focal plane of the
parabola. The cavity spacer is made of GaAs, and the light emitter is a quantum
well placed in the vicinity of the focal plane.

some even in macroscopic resonators [9] where the optical axis is long compared with the
wavelength – in microresonators, the latter breaks down as well. However, there are other
approximate techniques which are well-suited to the problem we consider. As a valuable
tool for simplifying the exact solution of Maxwell’s equations for the cavity modes, we em-
ploy a short-wavelength approximation leading to simple WKB quantization conditions.
The assumption that wavelengths are much shorter than the relevant cavity dimensions
is common to both WKB and paraxial approximation, and it is therefore at first sight
surprising that the WKB approach yields excellent quantitative agreement with the exact
cavity spectrum even for the longest-wavelength modes of the parabolic cavity. We show
how this arises by discussing in detail the structure of the classical ray dynamics in the
resonator which makes the WKB approximation possible. As a result, we shall then also be
able to assess the stability of the modal structure with regard to fabrication imperfections,
based on a ray analysis for parabolic cavities in cases where confocality is violated. To
characterize the modes of the parabolic resonator, the internal caustic structure formed by
the rays turns out to be of crucial importance. These considerations establish a connection
between the the microcavity optics of the paraboloic dome and the field of quantum chaos:
even minute deviations from confocality introduce chaos into the ray dynamics, and we
have to address the significance of this effect for the relevant cavity modes.

The paper is organized as follows: Section 2, introduces the mathematical model that
describes confocal parabolic cavities, while Section 3 presents the wave equation for the
electromagnetic field in cylindrical and parabolic coordinates and discusses its exact vecto-
rial and scalar solutions. Section 4 presents the WKB approximation of the wave equations
for the parabolic cavity, an approach that will permit us in Section 6 to make the connection
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with ray optics, while Section 5 compares the numerical solutions of the wave equations in
the parabolic microcavity with those of the WKB approximation. Section 6 introduces the
main concepts of ray optics applied to our parabolic cavities with cylindrical symmetry,
while Section 7 analyzes the stability of the ray trajectories in a parabolic cavity in which
there is a slight deviation from confocality. Section 8 discusses the problem of the finite
acceptance angle of Bragg mirrors, a feature that limits the lifetime of modes in semicon-
focal cavities bounded by such mirrors. Finally, Section 9 summarizes the results of this
study and gives its conclusions.

2 The model

We consider a model structure for an ideal semi-confocal cavity which is bounded by a
metallic concave parabolic mirror on one side and a planar dielectric mirror on the other
side, placed at the focal plane of the parabola.

In cylindrical coordinates (ρ,z,φ) the parabolic mirror is given by

z= f − ρ2

4 f
(1)

where f is the focal distance of the parabola, while the focal plane (and the planar mirror)
corresponds to

z= 0 (2)

It is convenient to describe this cavity in parabolic coordinates (ξ ,η ,φ), whose properties
are summarized in the Appendix. For reference, we reproduce here the transformation to
cylindrical coordinates as given in Eq. (99):{

ρ =
√

ξ η

z= 1
2(ξ −η)

(3)

To illustrate this coordinate system, we show in Fig. 3 (a) how the intersection of the
coordinate surfaces defines a point A in the plane z versus ρ . Also shown is the cavity
shape itself: the parabolic mirror corresponds to

ξ = 2 f , (4)

and the planar dielectric mirror is at

ξ = η . (5)

In an ideal cavity, the parabolic metallic mirror can be assumed to be lossless, displaying
an amplitude reflectivity r = -1. This produces a π phase change upon reflection so that

6



Figure 3: (a) Representation of parabolic cylinder coordinates in the z - ρ plane of a cylin-
drical coordinate system (z is the vertical axis). The third dimension is obtained
by rotating the figure around ẑ by the angle φ . The point A is specified by
ξ = 1.3 f , η = 0.9 f and φ = 0. The focus of all parabolas is at the origin. (b) By
unfolding the parabolic dome into a double paraboloid, the boundary conditions
on the common focal plane can be restated as simple parity requirement under
reflection at this plane (z= 0). For TE modes, the electric field must be even
under this reflection. The unfolded cavity is shown in side view with meridians
which make 90◦-corners at the focal plane. The latter is also the equatorial plane
of the cavity.

it corresponds to a boundary condition in which the tangential electric field vanishes. In
parabolic coordinates this can be expressed as

Eη(ξ = 2 f ) = 0 Eφ (ξ = 2 f ) = 0 Bξ (ξ = 2 f ) = 0 (6)

Similarly, the planar dielectric mirror can be assumed to have a reflectivity of r = +1,
producing no phase change upon reflection so that the tangential magnetic field vanishes
on the focal plane of the cavity. In cylindrical coordinates, this can be expressed as

Bρ(z= 0) = Bφ (z= 0) = 0 and Ez(z= 0) = 0 (7)

Alternatively, this implies that the tangential electric field is maximum on the focal plane
and is symmetric under reflection of the whole cavity at the z= 0 plane. Thus, instead of
considering this plane as an additional boundary with the properties (7), one can unfold
the cavity across this plane by reflection, to obtain a confocal double paraboloid shown
in Fig. 3 (b). This extended cavity requires only the metallic boundary conditions on its
parabolic walls, that is Eq. (6) and its equivalent in which ξ and η are interchanged. It will
support modes that can be either symmetric or antisymmetric under reflection at the focal
plane. If we restrict ourselves to modes in which Eρ and Eφ are symmetric, this subset is
identical to the modes of the original dome with the conditions of Eqs. (6) and (7).

The advantage of considering the unfolded cavity is that the focal plane as a physical
boundary drops out of the discussion; this will considerably simplify the interpretation in
terms of the ray picture later on. Therefore, in the remainder of this paper, we can refer
to Fig. 3 (b) as our model system.

7



3 Wave equation

The electric field ~E obeys the vectorial wave equation

∇×∇×~E + µε
∂ 2~E
∂ t2 = 0 (8)

under the additional constraint that its divergence must vanish

∇ ·~E = 0. (9)

The boundary conditions and the constraint of zero divergence imposed on the electro-
magnetic field in general will lead to a coupling between the various vectorial components
of the electric and magnetic fields. In simpler geometries such as cylinders, spheres or
rectangular cavities, a suitable choice of polarizations reduces the problem to finding the
eigensolutions of a scalar Helmholtz equation [10]. However, in our case the three polar-
izations and the intersecting parabolic surfaces forming the resonator cannot be labeled by
the coordinate lines of a single orthogonal coordinate system, as is possible in the textbook
systems mentioned. We discuss now the implications of this complication.

3.1 Vector field components in cylindrical coordinates

After combining Eqs. (8) and (9) to the wave equation,

∇2~E−µε
∂ 2~E
∂ t2 = 0, (10)

we can take advantage of the cylindrical symmetry of the problem by expressing the wave
equation for a time-harmonic electric field oscillating at frequency ω in cylindrical coordi-
nates (ρ,z,φ), as 

∇2Eρ − 1
ρ2Eρ − 2

ρ2
∂Eφ

∂φ
+ µεω2Eρ = 0 (a)

∇2Eφ − 1
ρ2Eρ + 2

ρ2
∂Eρ

∂φ
+ µεω2Eφ = 0 (b)

∇2Ez+ µεω2Ez = 0 (c)

(11)

We note that the wave equation couples the radial and angular components of the electric
field (Eρ and Eφ ), while the equation for the axial component Ez is scalar. One can achieve
a further simplification in this system of equations as follows:

The rotational symmetry around the z axis permits us to assume a φ -dependence of all
components of the field of the form

Q(ρ,z) ·eimφ . (12)
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With this ansatz, Eqs. (11 a,b) can be written as
ρ2

[
∇2 +k2

]
Eρ −Eρ = 2imEφ (a)

ρ2
[
∇2 +k2

]
Eφ −Eφ =−2imEρ (b)

(13)

where k =
√

µεω is the wavenumber inside the parabolic dome. If the azimuthal quantum
number m= 0, this reduces to two identical equations. If, on the other hand, m 6= 0, we
can form a suitable linear combination of Eρ and Eφ which decouples these two equations.
Naively setting Eφ = 0 would not achieve this goal because it forces both field components
to vanish.

The proper linear combination in which to decouple this system of differential equations
is obtained with the definition 

Eρ ≡ i√
2
(E+−E−)

Eφ ≡ 1√
2
(E+ +E−).

(14)

Then E± are the solutions of the equations

ρ
2[

∇2 +k2]E± = (1±2m)E± (15)

This definition again makes use of the azimuthal symmetry of the resonator, which implies
that the circular polarizations σ̂± = ∓ i√

2

(
ρ̂± iφ̂

)
are decoupled in the cylindrical wave

equation. In this way, we have therefore formally decoupled the original system of equations
Eq. (11) for the vector field components. In the special case m= 0, case E+ and E− will
moreover be linearly dependent because their respective equations again coincide.

However, this decoupling of polarizations in the wave equation does not reduce the
problem to a truly scalar one because the field components are still coupled by the boundary
conditions and by the condition of zero divergence. On the “top” parabolic mirror, the
conditions (6) in terms of the cylindrical components of the electric field now read:

at ξ = 2 f


i
√

f (E+−E−)+
√

ηEz = 0

E+ +E− = 0

∂

∂η
(E+ +E−) = 0.

(16)

The first line expresses the condition Eη = 0, the second and third lines represent Eφ = 0
and Bξ = 0, respectively (in fact, the third condition is already implied by the second one).
On the “bottom” parabolic mirror the boundary conditions are the same as in Eq. (16)
with ξ and η interchanged.
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3.2 The absence of longitudinal electromagnetic modes

Unfortunately, the set of boundary conditions Eq. (16) is not yet a complete list of con-
straints that we have to satisfy. An additional requirement is that the field at every point
in the resonator has to have zero divergence, which in parabolic coordinates reads

E+−E−+m(E+ +E−)+
2ξ η

ξ +η
·
(

∂

∂ξ
+

∂

∂η

)
(E+−E−)

+
2i

√
2ξ η

ξ +η
·
(

ξ
∂

∂ξ
+η

∂

∂η

)
Ez = 0 (17)

This assumption already entered the derivation of the system of wave equation, Eq. (10),
from the original Maxwell equations in the form of Eq. (8). However, this does not guar-
antee that all solutions of Eq. (10) or Eq. (11) satisfy Eq. (17). The latter is just the
well-known statement that the electromagnetic field is purely transverse, ruling out longi-
tudinal modes: the transverse electric field ~E⊥ is related to the curl of the magnetic field
by the Maxwell equation

∇×~B =
1
c

∂~B
∂ t

= ik ~E⊥, (18)

and hence satisfies ∇ ·~E⊥ = 0; the longitudinal field ~E‖, which can be written as the gradient
of a potential Φ, is responsible for violations of Eq. (17).

In view of the constraints imposed by the boundary conditions (16) and by the zero
divergence condition (17) it is not possible (except for the case m= 0, as we shall see later)
to set one (or two) of the vector components to zero without setting the full electric field
identically to zero, and thus it is not possible to reduce in a rigorous manner the vector
problem into a scalar one.

The problem can in principle be solved by converting Eq. (17) from a condition in the
cavity volume to a boundary condition which can then be treated on the same footing as
Eq. (16). One way of achieving this [12] is by noting that if

~E0≡ ~E⊥+~E‖ (19)

fulfills Eq. (10), then so does

~E ≡ k2∇×∇×~E0 = k2∇×∇×~E⊥. (20)

The latter is automatically divergence-free. In order for ~E to satisfy the boundary condition
~Et = 0, we require for ~E0 (

~E0

)
t
= 0 and∇ ·~E0 = 0 (21)

on the surface. Then one has indeed

~Et = k2
(

∇×∇×~E0

)
t

= k2
(
~E0 +∇(∇ ·~E0)

)
t
= k2

(
~E0

)
t
= 0. (22)
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on the boundary. The problem is therefore reduced to finding the auxiliary field ~E0 and
then deducing the transverse field from Eq. (21). This leads to a system of three second-
order differential equations for each vector component of ~E0, given by Eq. (11), all of which
are coupled by boundary conditions that are, however, quite complex.

The next step is then to write the field components as linear combinations of independent
general solutions of Eq. (11) and determine the unknown coefficients in that expansion
from the matching conditions at the boundary. The solution proceeds in an analogous but
much less tedious way if we neglect the additional divergence condition. The important
simplification is that we are then able to consider the E+ and E− components of the
electric field independently, by setting all except for one component to zero. The boundary
conditions (16) are then decoupled as well. More precisely, it will be shown that the wave
equations are then not only scalar but also separable, i.e., reducible to the solution of
ordinary differential equations.

We therefore would like to neglect the coupling that results from the condition of zero
divergence, provided that this can be justified in the context of the present study. There
are various reasons why this approximation will provide us with useful results. Foremost,
it will turn out below that the most important modes we find in this way in fact conspire to
satisfy Eq. (17) a posteriori, cf. Section 3.5: the modes that provide the best confinement
of the field in a tightly focused region around the focal point are the ones with m= 0. For
these, the different vector components decouple rigorously and the scalar program is exact.
These m= 0 modes are particularly significant because they provide the best confinement
of the field in a tight focal volume. This is the paramount aim of the experimental dome
structure.

In addition to this exact result, the more transparent simplified problem allows us to
evaluate the stability of the stationary states of the field in the parabolic cavity with respect
to deviations from the confocality condition – a deformation that can readily occur in the
course fabrication. This will be addressed with the help of the ray picture in Section 7,
and the ray trajectories themselves are independent of whether a vectorial or scalar field is
considered. Since the exact nature of the deformation is unknown, it is necessary to make
model assumptions and parametrize the deformation in some way. Although the range of
possible behaviors explored within our model can be argued to be generic, we lose at that
point the ability to predict accuratey all the individual modes of the specific sample. The
error incurred by this fundamental uncertainty about the precise boundary shape is larger
than the error made by adopting the simplified boundary conditions, and hence the latter
are warranted on physical grounds.

The consistency of these arguments is proven in Section 7 where we find that the only
modes which can in fact be reliably predicted for a large range of possible deformations
(because they are structurally stable against the emergence of chaos) are the ones with low
m (or angular momentum in the classical picture), concentrated strongly near the z-axis.
For these modes one can set approximately m≈ 0, E+ = E− and Ez = 0 so that Eq. (17)
becomes valid.
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3.3 The wave equation in parabolic coordinates

Having discussed the boundary conditions, we now provide the solutions to Eq. (15). In
order to find a system of general solutions to the formally scalar differential equations, Eqs.
(11 c) or (15), we express the scalar Laplacian appearing there in parabolic coordinates
(ξ ,η ,φ), leading to the form

4
ξ +η

·
[

∂

∂ξ

(
ξ · ∂Q

∂ξ

)
+

∂

∂η

(
η · ∂Q

∂η

)]
+k2Q =

n2

ξ η
·Q (23)

where 
n = m+1 f or Q = E+
n = m−1 f or Q = E−
n = m f or Q= Ez

(24)

Here we have used the fact that the derivative ∂ 2/∂φ2 appearing in the Laplacian ∇2 pulls
down a factor −m2 due to the ansatz Eq. (12). Although the righthand side is the analog of
the centrifugal barrier in cylindrical problems, it thus depends not on angular momentum
m directly but on a modified azimuthal mode number n. This occurs due to the additional
φ derivatives introduced when we transformed the vector field components to cylindrical
coordinates in Eq. (11).

At this point we introduce the approximation of discarding the divergence condition so
that we merely have to consider the boundary conditions (16) with one and only one of the
three field components nonzero. Then, Eq. (23) is separable in η and ξ . We shall return to
the details of the solution procedure in Section 4; for now it is sufficient to give the result:
Denoting the separation constant by β , the solution can be written in the form

Q = F(k,β ,ξ ) ·F(k,−β ,η) (25)

where F(k,β ,ξ ) obeys

ξF ′′+F ′+
(
−n2/4

ξ
+

k2

4
ξ +β

)
F = 0 (26)

The functions F(k,β ,ξ ) and F(k,−β ,η) appearing here are solutions of this differential
equation with the same k and n, but with sign-reversed β , and hence their functional
dependence on ξ and η will be different unless β = 0. Without loss of generality, we can
assume n to be nonnegative, because it appears in the above equation only as n2. The
solutions that do not diverge at ξ = 0 are of the form

F(k,β ,ξ ) = eikξ/2
ξ

n
2M

(
n+1

2
− iβ

k
;n+1;−ikξ

)
(27)

where M(a,b,z) is Kummer’s confluent hypergeometric function. The function F as written
here is in fact real, because of the Kummer transformation [13]

M(
b
2
−a,b,−z) = e−zM(

b
2

+a,b,z), (28)
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where we set a= iβ/k, b= n+1 and z= ikξ . Appplying the theorem then yields F(k,β ,ξ ) =
F(k,β ,ξ )∗.

The separation constant β and the wavenumber k at which to find the mode are still
unknowns of the problem that have to be determined from the boundary conditions. The
first constraint we can write down is

F(k,β ,2 f )≡ 0 (29)

to enforce vanishing tangential field on the parabolic surface. In the two-dimensional plane
spanned by the unknowns β and k, this single equation defines a set of curves. The
boundary condition on the focal plane requires that E± be symmetric under reflection,
i.e., invariant under ξ ↔ η . For Ez, on the other hand, one needs odd parity. In order to
construct such solutions with a well-defined parity, we have to form linear combinations

E = F(k,β ,ξ )F(k,−β ,η)±F(k,−β ,ξ )F(k,β ,η), (30)

where in addition
F(k,−β ,2 f )≡ 0. (31)

The set of curves parametrized by this constraint will intersect the curves defined by Eq.
(29) at certain isolated points in the β - k plane. By finding these intersection points, we
determine the quantized values of β and k corresponding to solutions of Eq. (23) which
satisfy the boundary conditions. It is not clear at this stage of the discussion how many
intersections there are, or even how the curves defined by each equation separately will
look. Before we analyze the different branches of these equations and identify their inter-
sections based on asymptotic methods in Section 4, it is useful to discuss in more detail
the consistency of the fields thus obtained.

3.4 Behavior at the focal point

The main experimental purpose of the cavity is to concentrate the field near the focus as
much as possible. Since one always has Ez = 0 there, it remains to discuss the behavior of
E± in the focal region. Because of the “angular-momentum-barrier” on the righthand side
of Eq. (23), the solutions F given in Eq. (27) attain a factor ξ n/2 which suppresses the field
near the origin ξ = 0 when n 6= 0. The Kummer function itself goes to M = 1 at ξ = 0, so
that the only way of getting a nonvanishing field at the origin is to set n = 0 in Eq. (26).
This means that the angular momentum quantum number must in fact satisfy m= 1 for
E− or m=−1 for E+ according to Eq. (24). But this leads to a contradiction: if the field is
nonzero at the origin, then because of the azimuthal factor exp(±iφ) one faces a singularity
at ξ = η = 0 in which the field is indeterminate. Therefore, there is no possibility to obtain
a nonzero field precisely at the focus of the cavity.

For m= ±1 there are still solutions of Eq. (23), but they must involve solutions of Eq.
(23) in suitable linear combinations such as to yield a vanishing field at ξ = η = 0. We have
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the freedom to linearly combine eigenstates of the wave equation at the same wavenumber
k (yielding a stationary state with monochromatic time dependence). First we use the
real-valued solutions in Eq. (27) to form a superposition of the type Eq. (30) with a plus
sign. Despite its symmetry it can also be made to vanish at ξ = η = 0, if one or both of
the functions F(k,β ,ξ ) and F(k,−β ,η) are zero at the origin.

Although we can hence find solutions for arbitrary m with a tangential electric field
that is symmetric under reflection at the focal plane, we can only attempt to concentrate
the field near the focus, always with a node at the focal point, dictated for m 6= 0 by
the phase singularity at the origin. For m= 0, there is the residual angular momentum
barrier due to n 6= 0, and thus even in this simple case – contrary to our expectation from
quantum mechanical analogues – the “s-wave” solutions have vanishing field at the focus,
as a consequence of the vector nature of the field.

3.5 Particular case: the fundamental s-wave

The case m= 0 can be discussed in more detail because it permits simple analytical ex-
pressions for the wave solution, if we specialize further to β = 0. In this case, the solutions
in Eq. (27) simplify to

F(k,0,ξ ) ∝ I(
n
2
,

i
2

kξ ) in/2, (32)

dropping prefactors that are absorbed in the normalization. Here, I is the modified Bessel
function.

As was already noted below Eq. (15), E± linearly dependent in the special case m= 0,
so that we can in particular choose E+ = E−. Then Eρ = 0 and E+ = E− = Eφ/

√
2. We

thus obtain the TE field by setting

Eφ = Q = F(k,0,ξ )F(k,0,η) (33)

as in Eq. (25). This already satisfies the condition of symmetry with respect to the focal
plane, without having to form a superposition of the type (30). Moreover, it satisfies the
condition of vanishing divergence, as can be checked with Eq. (17).

With n = 1 (for E+ at m= 0), Eq. (32) can be rewritten to obtain

~E =


Eξ = 0
Eη = 0
Eφ = E0 · 1

k
√

ξ η
·sin(kξ/2)sin(kη/2)

(34)

and

~B =


Bξ =−iE0 ·

√
µε

k ·
√

1
ξ+η

· 1√
ξ

sin(kξ/2)cos(kη/2)

Bη = +iE0 ·
√

µε

k ·
√

1
ξ+η

· 1√
η

cos(kξ/2)sin(kη/2)

Bφ = 0

(35)
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The resonance condition is obtained from the boundary condition Eq. (6) on the parabolic
dome at ξ = 2 f as

kN = N
π

f
, N = 1,2, . . . (36)

A relatively simple visualization of these modes can be obtained by expressing the electric
and magnetic fields in cylindrical and spherical coordinates which are more familiar. It can
be verified using the relations between these coordinates to the parabolic variables that
Eq. (34) then takes the form

~E =


Eρ = 0
Ez = 0
Eφ = E0 · 1

kρ
· (cos(kz)−cos(kr)) ,

(37)

and the corresponding magnetic field is

~B =


Bρ = iE0 ·

√
µε

k · 1
rρ

(zsin(kr)− r sin(kz))

Bz = iE0 ·
√

µε

k
sin(kr)

r
Bφ = 0

(38)

By splitting the various terms appearing here into two contributions, the electromagnetic
field can then be considered as the superposition of two fields:

The first field is polarized along Eφ and Bρ and can be expressed in cylindrical coordinates
as

E(1)
φ

=
E0

kNρ
cos(kNz) and B(1)

ρ = i
√

µε
E0

kNρ
sin(kNz) (39)

The second field is polarized in spherical coordinates (r, φ , θ ) along the directions of the
azimuthal and polar angles, φ and θ , according to

E(2)
φ

=
E0

sinθ

cos(kNr)
kNr

and B(2)
θ

= i
√

µε
E0

sinθ

sin(kNr)
kNr

(40)

Here, we have used the substitution ρ = r sinθ in the denominators.
The first field, Eq. (39), corresponds to cylindrical standing waves with a phase variation

along the z direction, while the second field, Eq. (40), corresponds to spherical standing
waves with a phase variation along the radial direction. This configuration is reminiscent of
what is expected from a simple geometrical optics argument in which a ray bundle emerging
from the focal point can propagate outwards as a spherical wave, upon reflection on the
parabola it gets converted into a cylindrical wave, which in turn can counter-propagate
back to the focal point after being reflected on the planar mirror and a second time on
the parabola. In the unfolded double-paraboloid, the ray trajectories are of the type
shown in Fig. 4. It should be noted that these two partial waves are not physical when
taken individually, because in both cases the electric field diverges along the axis of the
parabola. The divergence, however, cancels out when the superposition of the two partial
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Figure 4: Cross-sectional view of the unfolded cavity with two closed, bowtie-shaped ray
paths going through the common focus of the bounding parabolas. Families of
such rays can be thought of as constituents of the s-wave in Eq. (34).

waves is considered. We have so far only drawn this ray interpretation from a particular
decomposition of the exact solution; the question is how arbitrary that decomposition is
and what we can learn from it. This will be pursued in the following section. The actual
intensity distribution of these n= 1 states in the cavity will be plotted in Section 5.2 where
we can compare their spatial patterns with those obtained for larger n, in order to justify
our claim that the s-wave modes provide the best focussing.

4 Finding the modes within the short-wavelength
approximation

Having seen that even the long-wavenlength s-wave in our cavity can be interpreted as
standing waves arising from counterpropagating ray bundles and their accompanying wave-
fronts, we now turn to a more quantitative eikonal analysis. Such an analysis can provide
accurate starting points for a numerical search of the exact wave solutions, which are de-
termined by finding intersection points between the families of curves (29) and (31) in
the plane of β vs. k. Such semiclassical considerations based on the short-wavelength ap-
proximation are an important first step because there are, as we shall see, infinitely many
intesections between the sets of curves determining the exact solutions, and one desires a
means of finding them in a systematic way, labeling them by “quantum numbers”, giving
the number of nodes in the field along the coordinate lines for ξ and η . Beyond this very
practical use of the short-wavelength limit, we also want to establish a physical under-
standing of the resonator modes that allows us to predict how they depend on changes in
the cavity shape. This aspect of the ray picture will be expounded in the last section.
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4.1 WKB approximation and effective potential

The equation to be solved is Eq. (26), an ordinary second-order differential equation, where
the angular momentum m enters as a parameter trough the constant n. We are looking
for solutions F(ξ ) which satisfy the boundary condition F(2 f ) = 0 and are not singular
at ξ = 0. The standard short-wavelength approach to be employed here is the WKB
approximation[14]. After division by ξ , Eq. (26) takes the form

d2 f
dξ 2 +

1
ξ

d f
dξ

+
1
4

(
k2 +

4β

ξ
− n2

ξ 2

)
f (ξ ) = 0. (41)

For the subsequent analysis it is convenient to introduce a dimensionless coordinate

u =
√

kξ . (42)

Dividing Eq. (41) by k2 and defining a rescaled separation constant

Z≡ 4β

k
, (43)

the following equation is obtained:

−d2 f
du2 −

1
u

d f
du

+
1
4

(
n2

u2 −u2
)

f (u) = Z f(u). (44)

This has a form similar to the one-dimensional Schrödinger equation of quantum mechan-
ics, except for the first u-derivative which makes the kinetic energy operator non-selfadjoint.
This term appears in the radial equation of cylindrically symmetric problems but does not
affect the applicability of the WKB approximation [15].

The WKB solution requires us to find the classical turning points in the potential appear-
ing in this equation, with Z playing the role of the total energy. This effective potential,

V(u) =
1
4

(
n2

u2 −u2
)

, (45)

is a superposition of an inverted parabola and the centrifugal potential determined by n,
giving rise to the solid line in Fig. 5. Using this together with the ansatz

f (u)≈ 1
p(u)

ei
∫

p(u)du, p(u) =
√

Z−V(u), (46)

the approximate solutions are found by imposing the boundary conditions at the turning
points.

There is only one possible turning point corresponding to the closest approach to the
origin u = 0, which is given by

V(u0) = Z⇒ u0 =

√√
n2 +

Z2

4
− Z

2
. (47)
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Figure 5: Solid curve: the effective potential V(u) for n = 3, showing the classical turning
points u0 (v0) where Z (−Z) intersects the effective potential V, cf. the dashed
lines. The ranges of classically allowed motion for the two degrees of freedom u
and v with energies Z and −Z are indicated by the shaded bars (dark for u, light
for v). The outer turning points at u, v=

√
2k f act as a hard wall whose position

depends on k.

If Z > 0 and n= 0, then no inner turning point exists. This inner turning point, in classical
mechanics, is the point where the momentum in the x-direction smoothly goes through
zero as it changes sign, and hence the probability per unit time of finding the particle
becomes infinite. In the ray dynamics, this phenomenon gives rise to a caustic. This will
be discussed further in Section 6.

The outer turning point of this classical picture is determined by the Dirichlet boundary
condition at the parabolic mirror, which in the new coordinate is located at

ξ1 = 2 f ⇒ u1 =
√

2k f . (48)

It is the boundary condition f (u1) = f (
√

2k f) = 0 in which the short-wavelength condition
is contained: we assume that at the outer boundary the wavefunction has the WKB form,
Eq. (46), which requires that the dimensionless size parameter satisfies

x≡ 2k f � 1, (49)

i.e. this additional boundary is far away from the classical turning point u0 of the effective
potential. All steps discussed above for f (ξ ) apply analogously to the variable η appearing
in the product ansatz Q, Eq. (25), if we reverse the sign of Z everywhere and replace u by
the variable

v =
√

kη . (50)
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Then the inner turning point v0 for this second degree of freedom is obtained as

V(v0) =−Z⇒ v0 =

√√
n2 +

Z2

4
+

Z
2
. (51)

The values of u0 and v0 determine the distance of closest approach to the z axis

4.2 Quantization conditions

Under this condition, the semiclassical determination of the eigenfrequencies proceeds by
applying the Bohr-Sommerfeld quantization to the action integral for one period of the
motion in the effective potential. One round trip consists of the path from u0 to u1 and
back to u0. The quantized action is therefore

J(Z,x;n,ν)≡ 2

u1∫
u0

√
Z−V(u)du≡ 2π

(
ν +

3
4

)
. (52)

The integer ν = 0, 1 . . . is the number of nodes of the wavefunction in the potential, and the
constant 3/4 takes into account the phase shifts of π and π/2, at the outer and inner turning
points, respectively. In other words, the above quantization condition is an approximate
way of writing the phase-shift requirements that hold at boundaries and caustics, using the
approximation that the wave propagation itself is described by a wavefront whose phase
advance in x is given by the function J.

The result of the integration is found to be

J(Z,x;n,ν) =
√

x2 +Z x−n2

+
Z
2

ln

√
x2 +Z x−n2 +x+Z/2√

n2 +Z2/4

−n

(
arcsin

Z x−2n2

x
√

Z2 +4n2
+

π

2

)
= 2π

(
ν +

3
4

)
. (53)

This is an equation for the two unknowns Z and x, i.e. for the rescaled separation constant
and size parameter. It is therefore analogous to Eq. (29). The integer ν uniquely labels
all the allowed solutions fν of Eq. (44). This is an important difference to Eq. (29): there,
the function F in fact has infinitely many branches that satisfy the equation, which are
however not labeled explicitly. The great advantage of Eq. (53) is that these branches are
explicitly enumerated by ν , so that fixing this index selects exactly one curve in the Z-x
plane instead of an infinte family.
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As in Eq. (25), the field consists of products of the form

Q = fν(x,Z,u) fµ(x,−Z,v) (54)

with v defined as in Eq. (50). The two function fν and fµ have their analog in the exact
solutions F of Eq. (26), corresponding to the branches of F labeled by ν and µ , respectively.

We then form combinations the form of Eq. (30) to enforce the required symmetry with
respect to the focal plane. The semiclassical WKB quantization for the function fµ(x,−Z,v)
provides a second equation of the form (53),

J(−Z,x;n,µ) = 2π

(
µ +

3
4

)
. (55)

These two quantization conditions play the same role as Eqs. (29) and (31): the inter-
sections of the curves parametrized by them determine the quantized values of Z and x.
However, the WKB method affords a great simplification: by fixing the branches ν and
µ , the intersection of the two resulting curves is uniquely determined. To illustrate this
situation, we show in Fig. 6 how the lines defined by the above two equations traverse the
Z-x plane. Only a small portion of this plane is shown, emphasizing the behavior of the
semiclassical results at small x where their accuracy should be at a minimum. Comparison
with the exact families of curves shows, however, that the WKB results are excellent even
in this long-wavelength limit. Note that by symmetry, intersections occurring at Z = 0
are always between curves with the same branch index ν = µ . All curves shift to larger x
with increasing n because of the larger centrifugal barrier, pushing the classically allowed
regions of the effective potential in Fig. 5 outward.

5 Exact solution for the modes and their field distribution

Once the allowed combinations of Z and x – or equivalently β and k – at which the boundary
conditions are satisfied have been found, the problem of finding the modes is solved. For
example, we can now plot the intensity distribution of each mode by using the quantized
values of β and k in Eq. (27) and forming the proper linear combinations of the form Eq.
(30).

5.1 Mode profiles

This will now be carried out for the lowest-lying modes as obtained from the intersections
in Fig. 6. Any given value of n can have a different meaning for the intensity distribution
in the azimuthal direction, depending on which case in Eq. (24) we choose to consider:
n = m±1 for the modes. Since the azimuthal field variation is trivial, ∝ exp(imφ), we wish
to restrict our attention to the mode profile in the plane spanned by ρ and z in cylindrical
coordinates. The variable governing this property is n, not m. Therefore, n is used here to
classify the mode profiles.
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Figure 6: For the first six values of n, the graphical solution of the simultaneous equations
(53) and (55) can be read off from the intersections of the red curves. The dashed
black curves show the analogous graphical solution of Eqs. (29) and (31). The
exact and semiclassical curves are almost indistinguishable (except for n = 0),
attesting to the striking accuracy of the former even at the smallest possible
size parameters x. All plots can be continued to Z > 0 by reflecting at the axis
Z = 0. The WKB curves with positive slope belong to Eq. (55), the falling
lines are created by Eq. (53). They are labeled starting from the leftmost by
µ, ν = 0, 1, 2. . ..
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Figure 7: Four states with n= 1. Grayscale indicates the magnitude of the electric field for
the modes (E±) of the confocal double paraboloid, highest fields shown in black.
The vertical axis is z, the horizontal axis the axial distance ρ . Increasing x means
shorter wavelength and hence more nodal lines (white). The size parameter is
quantized according to Eq. (56) with N = 1, 2 in the top row, and N = 7, 14 at
the bottom.

As has been done in the previous sections, we shall take the focal plane to be the
symmetry plane of a double paraboloid, and plot the wave fields in this unfolded cavity.
This is done in view of the subsequent discussion, where we shall establish the connection
between these modes and the ray dynamics. Some wave plots are shown in Figs. 7 and
8. Note that the case n = 0 does not appear among the solutions listed here because it
corresponds to wave fields that do not vanish on the z-axis and hence are irreconcilable
with the finite angular momentum m=±1, as discussed in section 3.4).

If we look at only the left column of Figs. 7 and 8, it is apparent that all states with
Z = 0 look similar, as do all states with Z 6= 0. A similar observation can be made in the
right columns of the figures. Comparison to the intersecting lines in the graphical solution,
Fig. 6, shows that states with the same nodal pattern indeed result from the crossing of
the same pair of lines – labeled by the same µ and ν , only for different n which pushes the
intersecting lines to higher x. However, the interpretation of µ , ν as the number of nodes
in the parabolic coordinate directions cannot be carried through in all of the plots. We
will return to this problem in Section 5.3.

In order to achieve the best possible concentration of fields near the focus, the most
promising candidates are the modes with n = 1. Among these, the patterns shown in
Fig. 7 indicate that the states at Z = 0 in turn show the highest intensity near the focal
plane. These are precisely the fundamental s-waves we discussed in Section 3.5, with the
wavenumbers quantized according to Eq. (36), which for the size parameter reads

xN = 2kn f = 2π N. (56)

This is an exact result which can be compared to the WKB quantization condition in Eq.
(53) with Z = 0, n = 1. The latter actually has a more complicated form,√

x2−1+arcsin
1
x

= 2π (ν +1), (57)
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Figure 8: The modes shown here do not follow the simple law of Eq. (56) but were obtained
numerically. With increasing centrifugal barrier, labeled by n, the forbidden
region around the z-axis grows outward.
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but to second order in the small quantity 1/x this is identical to Eq. (56) with N = ν +1.
This confirms the observation made in Fig. 6 that the numerical agreement between exact
and semiclassical solutions is good even for small quantum numbers.

5.2 Focussing and the effective mode volume

In order to evaluate the field enhancement that is achieved in the fundamental TE modes
discussed in Section 3.5 and shown in Fig. 7, it is necessary to examine the distribution of
the electromagnetic energy in that mode. The energy in a parabolic cavity of focal length
f is

U =
1
4

∫
ξ=2 f

ξ=0

∫
η=2 f

η=0

∫
φ=2π

φ=0(
ε

2
(
∣∣Eξ

∣∣2 +
∣∣Eη

∣∣2 +
∣∣Eφ

∣∣2)+
1

2µ
(
∣∣Bξ

∣∣2 +
∣∣Bη

∣∣2 +
∣∣Bφ

∣∣2))
ξ +η

4
dξ dη dφ (58)

which gives, for the fundamental (s-wave) TE modes, Eq. (34),

U = εE2
0

π f
4k2

∫ k f

0

sin2(x)
x

dx (59)

where the value of the integral can be evaluated numerically.
For the experimentally realized cavity described in Section 1, k f = 14π so that the

value of the integral is 2.527. The intensity distribution for this mode is shown at the
bottom right of Fig. 7 (note x = 2k f). To examine the energy distribution in the cavity,
we can evaluate the energy that is contained at each lobe of the standing wave of parabolic
wavefront that corresponds to the mode. We note then that the first lobe, corresponding
to a parabolic wavefront of focal length f1 = λ/2, contains 48% of the total energy; to see
this, replace the integration limit in Eq. (59) by π. This lobe occupies a physical volume
of V0≡ πλ 3/4 whereas the volume of the overall cavity, V = 2π f 3, is 2744times larger.

This underscores the very large confinement of the field that occurs in the vicinity of
the focal point and points to the possibility of observing a very large enhancement of
spontaneous emission into this mode. The fraction of the total energy contained in the
first lobe of course reaches 100% if the smallest possible cavity with k f = π is considered.
However, the size achieved in our present sample already approaches the optimal conditions
if one takes into account that enhancement of spontaneous emission requires not only a
small effective mode volume but most of all a small local density of states [16]. The
average density of modes in an arbitrarily-shaped electromagnetic resonator of volume V is
a fundamental quantity in the theory of blackbody radiation and was derived by H. Weyl
[19]:

ρWeyl(k)≈
k2

π2 V. (60)
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Note that this can also be written in the physically intuitive form

ρWeyl(k)≈
2
3

π
2 d

dk

(
V
V0

)
, (61)

indicating that the number of modes in the interval dk is proportional to the number of
additional volume quanta V0 that fit into the given volume V when k increases to k+dk.
The local density of states in the focal volume V0 can therefore be interpreted to be the
same as the total density of states in a small cavity of volume V = V0. This, in turn, is
roughly the effective mode volume for the fundamental s-wave in our structure. >From this
we conclude that the spontaneous emission enhancement should be close to the maximum
possible value even though our cavity is not of the minimum possible size. This is one of
the central advantages we were looking for in the parabolic cavity design. In this discussion
we have assumed for simplicity that the Q-factor of the modes under consideration is fixed,
independent of size and quantum numbers. This severe simplification will be removed in
Section 8.

In the higher order modes with m> 0, the centrifugal barrier prevents the field from ap-
proaching the focal point. This implies that these modes will have a larger effective volume
and, correspondingly, a smaller enhancement of the spontaneous emission rate. An added
difficulty concerning the higher order modes arises from the limited experimental control
over the exact cavity shape. As discussed in Section 7, small deformations of the cavity
(modeled as deviations from confocality), result in chaos, leading to a loss of constraints
on the possible regions of phase space which can be explored. This further increases the
effective volume of these modes. The enhanced spontaneous emission into the fundamental
s-wave implies that this mode will also exhibit a large gain and, correspondingly, a low las-
ing threshold. The preliminary conclusion of this section is therefore that a mode with low
angular momentum and small Z (or β ) will be the dominant mode in a laser of parabolic
geometry.

5.3 Caustic structure in the wave solutions

In order to arrive at the solutions shown in Fig. 8, we started from the semiclassical (short-
wavelength) approximation and then refined the quantized Z and k further by applying the
exact modal conditions. However, the question arises how the quantum numbers µ and ν

which label the semiclassical solutions can be visualized in Fig. 8. The answer is that the
symmetrization procedure obscures this identification. What happens can be understood
if we ignore the parity requirement and plot the wave fields in the simple product form of
Eq. (25).

The symmetrization performed according to Eq. (30) with A = B introduces no change
whatsoever if the separation constant is β = 0. Therefore, the intensity profiles of all
modes with Z = 0 in Fig. 8 are the same before and after symmetrization. However, the
wave patterns acquire a qualitatively different and simpler form if we desymmetrize the
remaining states. This is shown in Fig. 9. The nodal patterns now appear in a regular
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Figure 9: Mode intensities as in Fig. 8, but without performing the symmetrization pre-
scribed by the focal plane boundary condition. The WKB quantum numbers
µ (and ν) can be read off by counting the number of wavefunction nodes par-
allel (and perpendicular) to the reference line γ . Modes in the first three rows
correspond to the symmetrized versions of Fig. 8. In order to illustrate the ap-
proach to the short-wavelength limit, additional modes are shown for which the
formation of caustics is apparent in the high-intensity ridges (black) bordering
the classically forbidden regions (white).
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fashion along the coordinate lines for u and v (or ξ and η), and their number along these
lines is uniquely determined by µ and ν .

By symmetrizing a state such as the one shown for n = 3, k = 18.59 and Z = −2.54 in
Fig. 9, the field shown in the desymmetrized plot is added to its reflection at the focal
plane, thus allowing some nodal lines to be “filled in”, as seen in the corresponding state at
the bottom right of Fig. 8. The desymmetrized waves in Fig. 9 exhibit nodal lines precisely
along lines of η = const or ξ = const. In addition to the simple nodal structure, we also
observe a clear segregation between regions of negligible intensity and regions of oscillatory
field, with dividing lines between them that become more and more pronounced as the
size parameter x = 2k f increases. These are the caustics, which in fact accumulate an
increasing amount of intensity as the short-wavelength limit is approached. The caustics
follow parabolic coordinate lines as well, as is apparent from the last row of Fig. 9. The field
at n = 3, x = 34.16, Z = −8.72 is bounded from below by a broad inverted parabola, and
excluded from the z-axis by a steep upright parabola. The intersection of both parabolas
forms the caustic. In the mode at n = 4, x = 73.73, Z = 0, both the upright and inverted
bounding parabolas are symmetric as we expect for Z = 0.

6 Caustic structure in the ray picture

In this section we will elaborate on the relation between mode structure and ray dynamics,
as a basis on which we can predict the effect of shape perturbations on the mode structure.
The caustic patterns revealed in the last section by the decomposition into the product
states as in Eq. (25) is a direct consequence of the classical turning points in the effective
potential V, Eq. (45), for the motion along the ξ and η directions. The distinction between
classically allowed and forbidden regions gives rise to the regions of oscillatory and vanish-
ing fields in Fig. 9. The effective potential has, so far, been discussed only as an auxiliary
concept that proved convenient in the WKB treatment; its relation to the behavior of the
rays of geometric optics is, however, well-known. For the sake of a self-contained presenta-
tion, we convey here the idea behind the general eikonal theory by showing how to derive
ray equations from the one-dimensional separated wave equations, Eq. (26). The argu-
ment is non-standard in the sense that Eq. (26) is based on the full vectorial wave equation
(i.e. with polarization), and we therefore shall find that for a given angular momentum m,
slightly different ray trajectories have to be considered depending on polarization. This is
because the quantity entering Eq. (26) is n, not m.

6.1 Ray equations from the WKB approximation

Inserting the WKB ansatz, Eq. (46), into the wave equation for the separated variables,
Eq. (26), one finds to leading semiclassical order that p must satisfy the equation

p2
u +V(u) = Z, similarly p2

v +V(v) =−Z. (62)
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We can interpret this as the Hamiltonians of two decoupled linear systems, and add them
to obtain the Hamiltonian for the combined system,

H̃ = p2
u + p2

v +V(u)+V(v) (63)

The trajectories we are looking for then satisfy the equation H̃(pu, pv,u,v) = Z−Z = 0, or
written out:

p2
u + p2

v +
1
4

(
n2

u2 +
n2

v2 −u2−v2
)

= 0. (64)

If we divide this by (u2 +v2), the result is

p2
u + p2

v

u2 +v2 +
1
4

(
n2

u2v2 −1

)
= 0. (65)

this can also be interpreted as arising from a new Hamiltonian

H ≡ p2
u + p2

v

u2 +v2 +
1
4

n2

u2v2 (66)

by requiring

H(pu, pv,u,v) =
1
4
. (67)

The Hamiltonian in this form is analogous to the wave equation in parabolic coordinates,
Eq. (23), where the Laplacian is divided by the same scale factor (u2+v2) that accompanies
the conjugate momenta here. One can now use Hamilton’s equation of motion to replace
momenta by “velocities”, the definition being

u̇ =
∂H
∂ pu

, v̇ =
∂H
∂ pv

. (68)

This leads to the substitution

pu =
1
2

(u2 +v2) u̇, pv =
1
2

(u2 +v2) v̇, (69)

which brings Eq. (67) into the form

(u2 +v2)(u̇2 + v̇2)+
n2

u2v2 = 1. (70)

Reverting to cylinder coordinates, the above equation becomes

k2(ρ̇2 + ż2)+
n2

k2ρ
= 1. (71)

Here we used the definitions of the coordinates in Eqs. (3) and (42). To examine what this
equation has to do with the ray dynamics, we take the ray-picture point of view now.
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6.2 Geometric optics in cylindrical coordinates

If we consider the three-dimensional motion of rays in a double paraboloid of the shape
in Fig. 3 (b), their propagation between reflections at the parabolic walls will of course
follow straight lines, and hence there is no place for any coordinate-dependent potential
V. However, in order to compare the ray dynamics to wavefunction plots in the z-ρ plane
as shown in Fig. 9, we must project the ray motion onto this plane as well. In the wave
analysis, this projection was achieved by using the rotational symmetry of the cavity around
the z axis to eliminate the azimuthal coordinate φ from the problem in favor of the angular
momentum quantum number m.

In ray optics, we can do the same: rays can be classified by an angular momentum Lz

because of the axial symmetry. To see this, we first define Lz. A ray trajectory is a curve
consisting of straight line segments between each reflection. If we parametrize this curve
as r(l), where l is the path length along the ray from some arbitrary starting point, then
|ṙ(l)|= 1. Here and in the following, the dot represents the differentiation with respect to
arc length, d/dl. In cylinder coordinates ρ, φ , z, we can decompose this as

ṙ = ρ̇ eρ + żez+ r φ̇ eφ . (72)

Between any two reflections, this is a constant unit vector in the direction of the ray. With
this, the equation for a straight line segment can be written in general as

r × ṙ ≡ L , (73)

where L is a constant analogous to the angular momentum of classical mechanics.
Because of the rotational symmetry around the z-axis, the azimuthal unit vector eφ at

the point of reflection is always tangent to the surface. Therefore, a reflection does not
change the component of ṙ along eφ , so that ρ φ̇ is continuous. Since the ray curve is itself
continuous everywhere, so is ρ(l). Hence the quantity

Lz≡ ρ
2

φ̇ (74)

is also continuous at each reflection. But this is just the z-component of L in Eq. (73),
as can be verified by performing the cross product there. Thus, Lz is a constant between
reflections, which together with its overall continuity implies that it is a conserved quantity
for the whole ray trajectory.

Using Eq. (74), the fact that ṙ is a unit vector, Eq. (72), can be recast as

ρ̇
2 + ż2 +

L2
z

ρ2 = 1. (75)

>From the ray approach we have thus obtained an equation almost identical to Eq. (71).
We only have to re-define the path length variable l to make it dimensionless, by introducing

s= k l, (76)
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to obtain for the derivatives
dρ

dl
= k

dρ

ds
, (77)

and interpret furthermore

Lz =
n
k
. (78)

Then Eqs. (71) and (75) become identical, if we interpret the dot in Eq. (71) to mean
d/ds. The scale factor of the “time” variable parametrizing our trajectories is irrelevant
for the shape of the paths, so that we can conclude that the ray picture introduced here
is equivalent to the motion described by the WKB effective potential, with the important
identification of Eq. (78).

Besides Eq. (75), the only other equation that is needed to completely determine any
ray trajectory from its initial conditions is the law of specular reflection, which can be
formulated with the help of the outward normal unit vector u at the reflection point as

ṙ re f lected= ṙ −2u(u · ṙ). (79)

This corresponds to a reversal of the normal component of ṙ . Here we can see explicitly
that reflections do not affect the component of ṙ in the direction of eφ , since the normal u
has no eφ -component as a consequence of the axial symmetry.

This latter fact also means that we can simply drop the eφ -component from Eq. (79)
altogether. Therefore, we now define the two-component vectors in the z - ρ plane by
dropping the eφ -components from the corresponding three-component vectors. Thus, ṙ
becomes

v≡ ρ̇ eρ + żez≡
(

ρ̇

ż

)
, (80)

and similarly
u = uρ eρ +uzez. (81)

In this two-dimensional space, the specular-reflection condition retains the form of Eq.
(79),

vre f lected= v−2u(u ·v). (82)

This is the reason why we can call the motion in the z - ρ plane a billiard problem.

6.3 Curved ray paths in the centrifugal billiard

We know that the trajectories between reflections are straight lines, so that the components
of ṙ in the cartesian coordinate frame are constant for each segment. In our new z - ρ frame
of reference, the z-axis is the same as the cartesian one, so that we still have vz = ż= const
between reflections in Eq. (80). However, the same does not hold for the ρ-component of
v. Instead, we obtain from Eq. (75)

ρ̇
2 +

L2
z

ρ2 = 1− ż2 = const. (83)
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Figure 10: All starting conditions for the rays in (a), (b) and (c) amount to the same angular
momentum, Lz = 0.1 f , but prescribe different angles of incidence with respect
to the boundary, and different positions of impact. (a) shows two different orbits
in the same plot, both are periodic and symmetric in this projection onto the z -
ρ plane, differing only in their starting points. (b) shows a single path, which is
quasi-periodic because it does not close on itself even in this projection. Instead,
it densely fills a region of space delimited by a caustic whose shape is given by
the parabolas (blue). The caustic becomes more asymmetric in (c) and (d),
each of which shows a quasiperiodic orbit. The angular momentum in (d) is
Lz = 0.6 f , leading to a larger forbidden zone around the z - axis.

If we multiply this by 4ρ2, it can be written as a differential equation for ρ2:(
d
dl

ρ
2
)2

= 4ρ
2

ρ̇
2 = 4(1− ż2)ρ2−4L2

z. (84)

The solution is that ρ2(l) describes a shifted parabola,

ρ
2(l) = ρ

2
0 +2(l − l i)

√
(1− ż2)ρ2

i −L2
z +(l − l i)2(1− ż2), (85)

where ρ2
i is the integration constant and specifies the value of ρ2(l i) at the starting point l i

of the ray. Since furthermore z is a linear function of l (ż= const), we can for definiteness
fix the initial point is to lie on the focal plane and substitute

l = l(z) = z/ż (86)

to find that Eq. (85) describes a curved path ρ(z) in the z -ρ plane. The curved nature
of this trajectory is a direct consequence of the centrifugal potential L2

z/ρ2 in Eq. (75),
and we would recover straight lines, i.e. linear variation of ρ(l) for Lz = 0. This is why
we refer to this problem as a centrifugal billiard [17]. For a visual example of how curved
traces arise from stright-line trajectories, the reader is referred to Fig. 13 (e) which will be
discussed in Section 7.
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An example of the ray motion in the special case Lz = 0 is already displayed in Fig. 4,
showing no curved trajectories because there the z - ρ plane is indistinguishable from the
cartesian z - x plane. For Lz 6= 0, curved ray trajectories in the z - ρ plane are shown in
Fig. 10 for four different initial conditions under which the ray is launched. Note that the
parameter Lz as given in the plot has dimensions of length, cf. Eq. (75). This reduced
two-dimensional problem can be analyzed completely without reference to the original
three-dimensional ray tracing, with Lz as a parameter that encapsulates the third degree
of freedom φ which has been eliminated. We have, broadly speaking, converted to a
co-rotating frame of reference (with rotation speed always matching the varying angular
velocity of the ray), and thus obtained a planar problem in which we now look for the
classical orbits. The simplification is considerable because the three-dimensional ray motion
in the cavity is rather difficult to visualize, compared to the motion in the z - ρ plane.

The two periodic orbits in Fig. 10 (a) exemplify this situation: after the trajectory
completes one round-trip in the z - ρ plane, it returns to its initial position with the initial
orientation – but in the original three-dimensional cavity there has also been a motion in φ

which does not necessarily amount to a full rotation around the z axis. Hence, this periodic
orbit of the centrifugal billiard is not in general a true periodic orbit of the parabolic dome,
cf. Fig. 13 (e). However, we can reverse this statement and conclude that any periodic orbit
of the three-dimensional problem must also be periodic in the z - ρ plane. This cautionary
remark concerning the interpretation of Fig. 10 is relevant if we attempt to interpret the
actual modes of the original cavity in terms of a naive physical optics approach: one might
think that a quantized mode has to be associated with ray paths that form a closed loop
and in that way “reproduce” themselves. However, a comparison between Figs. 9 and 10
reveals that periodic orbits seem to play no special role for the mode structure.

What shapes the modes is not any single periodic ray orbit, but the caustics as they
appear in Fig. 10 (b) - (d). The spatial distribution of the ray trajectories exhibits a clear
correspondence with the modal intensities shown in Fig. 9, particularly in the shape of the
caustics. This is most convincing for the two examples in the bottom row of Fig. 9 where
the wavelength is shortest: The state at n = 3, x = 34.16, Z =−8.72 should be compared
to Fig. 10 (c), and the reflection-symmetric mode with n = 4, x = 73.73, Z = 0 finds its
counterpart in Fig. 10 (d).

Caustics are immediately generated when we follow a single quasiperiodic orbit, but
not so for a periodic one. However, periodic orbits occur in infinte families which, when
plotted together, again fill a region of space bounded by a caustic curve. The two members
of the family shown in Fig. 10 (a) are obtained by launching a ray from the focal plane,
perpendicular to it, differing only in the radial distance ρ of the launch. All other siblings
of the examples in Fig. 10 (a) combined, would create a picture almost identical to the one
generated by the single quasiperiodic orbit in Fig. 10 (b) – the latter is in fact the result of
only a slight deviation from the initial conditions chosen in Fig. 10 (a), with the result that
the orbit almost, but not quite, closes on itself after one round trip, and continues to fall
short of closing itself after each subsequent round trip as well. The conclusion is that from
the point of view of the caustic structure in our system, there is no qualitative difference
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between periodic and quasiperiodic orbits.
The fact that all orbits can be characterized by a particular caustic which they touch, and

that moreover all periodic orbits come in infinite families, is a general property of integrable
Hamiltonian systems, to which the special centrifugal billiard defined here belongs. That
the paraboloid billiard is integrable, can already be concluded from the existence of a
separation ansatz for the wave equation, which we discussed in Section 3. However, we
have not yet completed our program of connecting the ray and wave approaches, and
in particular we have not addressed the question of how to determine quantitatively the
type of ray trajectories that correspond to a given mode. So far, the correspondence
was established by visual inspection alone. The quantitative connection is obtained by
comparing the ray patterns of Fig. 10 with the effective potential V of Eq. (45). We shall
see that for an integrable system, we can in fact uniquely connect a particular caustic with
a given mode.

As a final remark concerning the periodic orbits in this integrable system, it is worth
comparing the patterns of Fig. 10 (a) and especially Fig. (4) with the “bowtie laser” of Ref.
[18]. There, a semiconductor cavity was designed in such a way as to obtain lasing from a
bowtie-shaped mode with highly desirable properties, foremost among them its focussing
action in the center of the cavity. The focussing patterns of Fig. (4) are very similar, but
the main difference is that in our case these orbits occur in families whose members can
cross the z= 0 plane with all possible axial displacements ρ . In the semiconductor cavity,
most rays move on chaotic trajectories, and only a small range of initial conditions for the
rays lead to a stable bowtie pattern, leading to modes which are strongly concentrated near
a unique bowtie path, and hence even less spread out in space than the examples shown in
Fig. 7. This leads us to anticipate that the beneficial properties of the n = 1 modes found
for our integrable system can in fact be enhanced if we allow for the possibility of chaos in
the ray dynamics.

6.4 Connection with the effective potential in parabolic coordinates

The classical turning points for the two degrees of freedom u and v in the potential of
Eq. (45) determine the parabolas which describe the caustics in Fig. 10. We notice that
the caustics (and also the quasiperiodic rays that generate the caustics we show) have a
well-defined distance of closest approach ρ0 with respect to the z axis, given by the corner
at which the two bounding parabolas meet. Describing this in parabolic coordinates, we
find that ρ0 is approached if both ξ and η simultaneously reach their inner turning points.
Expressing this condition in terms of Eqs. (47) and (51), we obtain the simple semiclassical
relation

ρ0 =
n
k
. (87)

Here, we have used the coordinate transformation ρ =
√

ξ η , cf. Eq. (3), and the definition
of the rescaled variables, Eq. (42).

33



The distance of closest approach for individual periodic orbits is not given by this ex-
pression, but the minimal ρ over the whole family of such orbits does follow this law. The
caustics in Figs. 10 (b-d) exhibit cusp singularities at ρ0 because in that extreme point the
z motion has zero velocity: it is clear from Eq. (75) that the smallest ρ will be achieved
when ρ̇ = ż = 0. But from the same equation we immediately obtain that the angular
momentum then equals the axial distance, and with Eq. (87) this reproduces Eq. (78). We
have therefore established that the ray’s “angular momentum” is directly proportional to
the modified angular momentum quantum number n of the mode under consideration. In
the semiclassical limit of large k, the difference between n= m±1 and m becomes negligible
in this expression, so that we recover the intuitively expected proportionality

Lz = ρ0≈
m
k

. (88)

This approximation means that we can neglect the effect of polarization on the ray-wave
correspondence in the semiclassical limit – however, we shall make use of this only later,
in the ray analysis of Section 7. Since we have been interested in states at rather small k
and in particular n≥ 1, we have plotted in Fig. 10 only trajectories with Lz 6= 0.

A second semiclassical relation follows from Eqs. (47) and (51) if we ask for the value z0

of z corresponding to the point u0, v0 at which the caustics have their singularities. The
whole caustic is uniquely determined by its singular point at radial distance ρ0 and height
z0, cf. Fig. 10. According to Eq. (3), we get

z0 =
Z
2k

. (89)

This identifies the meaning of the separation constant Z, also quantifying the earlier ob-
servation that for E = 0 both the wave and ray patterns are symmetric with respect to the
focal plane: in that case, the cusp occurs on this mirror plane, as in Fig. 10 (b).

With Eqs. (78) and (89), we have completed the bridge from the exact wave equation
via semiclassical WKB quantization to the ray caustics. By specifying the quantized n, Z
and k of a given mode, we uniquely determine a caustic and with it a particular family of
ray paths. Now we can use additional properties of the ray picture to better understand
the cavity modes. This is especially promising in this system because we have seen that
the semiclassical approximation is extremely accurate here. The reason for this somewhat
surprising accuracy lies itself in the properties of the ray dynamics, but in order to make
this clearer we need to introduce the concept of a phase space in which the ray dynamics
can be described.

6.5 Families of rays and Poincaré sections

A phase-space description is often used in classical mechanics because it carries more
information about the possible trajectories than mere real-space diagrams. This approach
has recently been applied to the analysis of ray dynamics in optical cavities as well [26, 27],
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with the goal of providing insights that are not revealed by ray tracing in real space. In
particular for the treatment of non-integrable resonator geometries, it has proved valuable
to represent the phase space of the rays in terms of Poincaré Surfaces of Section (SOS).
For our purposes, the following SOS will be chosen:

It is easy to convince ourselves by recalling Fig. 3 that any ray trajectory in the cavity
has to encounter the focal plane infinitely many times as it propagates. However, the radial
distance of these crossings, as well as the value of ρ̇ may vary from one crossing of this
plane to the next. Now we can consider

ρ and pρ ≡ ρ̇ (90)

as a pair of canonically conjugate position and momentum variables, and attempt to image
the subset of phase space spanned by them. In order to do that, we launch a ray trajectory
and follow it for many crossings of z= 0, each time recording the instantaneous values of
ρ, pρ as a point in a two-dimensional graph. The result is shown in Fig. 11. A typical
trajectory is – as mentioned above – quasiperiodic, and in the SOS generates a dense set
of points that all lie on a smooth curve. Several trajectories have been followed in this way
and are represented in Fig. 11 by the different individual curves. Each curve exhibits some
minimal axial distance ρmin > ρ0; this is a true inequality because quasiperiodic orbits do
not reach their point of closest approach to the z axis precisely on the focal plane. Since
the SOS records the instantaneous ρ upon crossing the focal plane, the resulting curves
have their turning points at larger ρ .

The only orbits which have their real turning points exactly at the focal plane are the
periodic orbits. A periodic orbit as displayed in Fig. 10 (a) generates exactly two discrete
points in the SOS, corresponding to the two distinct values of the radial distance ρ at
which the axis z= 0 is crossed. Both points in the SOS lie at pρ = 0 for the periodic orbit,
as can be verified from the trajectory in the z - ρ plane which always crosses the z axis
perpendicularly. The quasiperiodic trajectory of Fig. 10 (b) corresponds to the leftmost
curve in Fig. 11, which has its turning point almost at ρ0 in the SOS. The caustic is almost
on the focal plane but still offset from it by an amount that is not discernible in Fig. 10
(b).

The distinction between the periodic orbit and its closely neighboring quasiperiodic
relative in the SOS of Fig. 11 is appreciable – a pair of points generated by the former,
versus a one-dimensional curve for the latter. But exactly on the line pρ = 0, there exists
an infinite number of other pairs of points, belonging to the periodic orbits of the same
family.

The SOS in these coordinates allows us to see directly in which places the focal plane
comes into contact with the rays under consideration. This is a central piece of information
when it comes to estimating the focussing at this plane where the quantum well is assumed
to be. The forbidden regions around the z axis induced by the angular momentum barrier
show up as inaccessible portions of the SOS toward small ρ .
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Figure 11: Poincaré surface of section of the ray dynamics for Lz = 0.1 f as in Fig. 10 (a-c).
The minimum distance ρ0 from the z axis, given by Eq. (87), is indicated by the
dashed line. All quasiperiodic trajectories fill smooth curves extending between
some minimum ρmin ≥ ρ0 and ρ = 2 f . The two gray dots are the crossings of
the focal plane generated by a periodic orbit as shown in Fig. 10 (a). The plot
uses 2 f as the length unit.

6.6 Accuracy of the semiclassical approximation

We can also comment on the striking accuracy of the semiclassical approach in this system.
The Poincaré section shows that almost all trajectories (with the exception of the periodic
paths) generate curves with the same topology: they begin and end at ρ = 2 f , with
one turning point inbetween. There are other integrable systems for which the Poincaré
section has a more complicated structure, one closely related example being the ellipsoidal
cavity[22] or its two-dimensional counterpart, the ellipse billiard[25]. In that case, the phase
space consists of two components in which the topology of the trajectories is different: One
type of motion consists of rays circulating around the perimeter as so-called whispering-
gallery orbits, the other is a bouncing-ball oscillation across the short diameter[20]. There
is a division between these two types of trajectories, similar to that between oscillation and
rotation in a pendulum – called the separatrix. The WKB approximation or its higher-
dimensional generalization, named after Einstein, Brillouin and Keller (EBK), cannot be
applied without severe corrections in the vicinity of such a separatrix in phase space [21,
22, 25]. In our case, this breakdown never occurs, and semiclassical results are thus of high
accuracy. Being a conic section, the parabola can of course be considered as a limiting
case of the ellipse, with one of its foci moved to infinity. This leaves no possibility for
bouncing-ball trajectories, which leads to the absence of a separatrix.

Finally, it is worth asking why the sharp corners at the intersection between the paraboloid
and the focal plane do not cause any corrections to our semiclassical treatment, even though
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the surface curvature at these points is clearly much shorter than the wavelength. It is
known that in such cases diffraction can occur which makes it impossible to explain the
mode structure purely based on classical orbits[23, 24]. However, this phenomenon is ab-
sent for certain special angles subtended by the corners. One of these “benign” angles is
precisely the 90◦ angle we encounter at the corners of the double paraboloid, cf. Fig. 3.
When the confocal condition is violated so that deviations from a right angle occur at the
corners, we have to expect diffractive corrections to the semiclassical analysis, resulting
from classical rays that hit the corners and are reflected in an arbitrary direction because
the law of specular reflection is undefined in that instance. Fortunately, we shall see in
Section 7 that such orbits are far removed from the regions of phase space where we expect
the important focussing modes to lie.

In this section, we have discussed how the ray dynamics develops caustic structure,
and how the latter can be represented with the help of the Poincaré section. We have also
observed that the high-intensity regions in the wave solutions correspond to the ray caustics,
because there the density of rays is high - in fact divergent if we recall the discussion of
the classical turning points in the effective potential below Eq. (47). Therefore, even
in situations where we cannot obtain the wave solutions easily, their possible intensity
distribution can be inferred by investigating the ray dynamics first. This will now be
carried out for a cavity that deviates from the ideal model shape.

7 The non-confocal double paraboloid

Having obtained an overview of the types of ray motion that can be encounterd in the
parabolic dome, and established the connection to the mode structure of the full vectorial
wave equations via the short-wavelength approximation, we now want to introduce a model
cavity for which the wave solutions cannot be obtained by separation of variables. The
variety of possible deviations from the ideal model geometry of Fig. 3 is enormous, so we
have to restrict attention to certain special distortions that can be expected to be generic
in some sense.

7.1 The model deformation

The distortions we choose are obtained by pulling the two intersecting paraboloids in Fig. 3
apart or pushing them together along the z axis by an amount 2ε . Specifically, in spherical
coordinates as a function of polar angle θ , the shape is given by

r(θ) =
2 f

1+cosθ
+

2ε

1+
√

1+ ε (1−cos2θ)
. (91)

The respective foci, which coincide in the integrable model, then move off the ρ axis. This
non-confocal arrangement of the parabolic walls can be viewed as a model for fabrication-
induced deviations from the ideal cavity shape – where the dome could be slightly too
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flat or too pointed. It can also be interpreted in a different way, taking into account the
possibility that the boundary condition at the base of the dome is not exactly given by
Eq. (7), if some penetration of the field through the dielectric mirror on the quantum well
is taken into account. This is of course a realistic expectation, and its effect on the wave
solutions would be that the TE electric field no longer needs to be strictly symmetric under
reflection at the focal plane. If one maintains that the dome has indeed been fabricated
with its base in the focal plane, this“soft”boundary condition on the mirror can be modeled
by assuming that our solutions should correspond to waves reflected at a plane removed
from the dielectric interface by some amount ε .

Therefore, the non-confocal double paraboloid is a way of taking into account the cu-
mulative effects of fabrication uncertainty and soft boundary conditions at the dielectric
mirror with a single model parameter ε , denoting half the distance between the foci of the
top and bottom parabolic wall in the unfolded cavity. One could think that a perturbation
theory in ε could allow us to use the solutions obtained so far and smoothly extend them to
the non-confocal situation. This is the traditional approach in physics and it is the reason
why only simple, integrable systems are treated in textbooks on quantum mechanics or
classical mechanics alike. However, perturbation approaches become tedious and even im-
possible for wave equations whose short-wavelength limit (i.e. ray picture) exhibits chaotic
dynamics. The difficulties that arise can already be seen without introducing chaos, if we
try to obtain the wave functions of an ellpsoid-shaped resonator as a perturbative expan-
sion starting from the eigenfunctions of a spherical cavity. This poses no problems as long
as one is interested only in modes of the ellipsoid whose topology is analogous to that found
in the circle [28]. However, as mentioned earlier, the ellipsoid exhibits separatrix structure
in phase space because there exists a type of motion that the sphere does not possess: the
bouncing-ball trajectories.

Analogous nonperturbative effects arise in the present model, because the distortion can
lead to new types of trajectories that are not present in the confocal cavity, in a process
known as bifurcation [29, 30]. The first consequence of the deformation ε is that the infinite
families of periodic orbits break up, leaving only a distrete number of periodic orbits of
the same topology, which can be divided in an equal number of stable and unstable paths.
Stable paths have the property that rays with slightly different initial conditions remain
close to the given periodic path for all times, while unstable periodic orbits are surrounded
in their immediate neighborhood by chaos – trajectories deviate from such a periodic orbit
at an exponential rate if the initial condition is only infinitesimally varied. For more
quantitative statements and further background on the transition to chaos, the reader is
referred to the literature [29, 31, 17].

7.2 Unstable and stable ray motion in the deformed cavity

The Poincaré section is very suitable as a diagnostic tool to identify this process of emerging
chaos on on hand, and the stabilization of certain periodic orbits on the other hand. This
is illustrated in Fig. 12. The perturbation consists of pulling the foci of the walls apart
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Figure 12: Surface of section at Lz = 0.1 f of a non-confocal double-paraboloid, with foci
pulled apart by ε = 0.02 f . This destabilizes the cavity, leading to chaotic ray
dynamics which generates an irregular cloud of points filling almost the whole
region that is accessible for this Lz. A special point is encountered on the line
pρ = 0 where the irregularity gives way to a confluence of hyperbolic traces
whose vertices are centered on a single, unstable periodic orbit. The spatial
pattern of this new periodic orbit is shown in Fig. 13 (a).

by ε = 0.02 f along the z - axis. Since this preserves the axial symmetry of the cavity, Lz

is still a conserved quantity – the arguments of Section 6.3 rely on no other symmetries
of the problem. We chose Lz = 0.1 f in the plot. The small distortion of one percent is
already sufficient to change the phase space portrait significantly, compared to Fig. 11).
The unstable periodic orbit appearing prominently in Fig. 12) as a so-called hyperbolic
point, is shown in its spatial pattern in Fig. 13 (a). It is a self-retracing periodic orbit
because it reflects from the boundary at normal incidence (in the z - ρ plane).

The effects that chaos can have on the ray motion are illustrated in Fig. 13 (b). Shown
there is a single ray trajectory which superficially has some similarity to Fig. 10 (b).
However, the path does not trace out a well-defined caustic in Fig. 13 (b). What looks like
a caustic here is in fact better described as two caustics of the type in Fig. 10, arranged
almost symmetrically with respect to the focal plane. Note in particular the symmetric
occurrence of cusps both below and above the line z = 0. Recall that in the integrable
case the position ρ0, z0 of the caustic singularity is uniquely given by the turning points
ξ0 and η0 (or equivalently u0, v0), in the effective potential. Reversing the sign of the cusp
coordinate z0 corresponds to exchanging the role of ξ and η . The significance of Fig. 13 (b)
is therefore that the degrees of freedom ξ and η are no longer decoupled, because during a
single ray trajectory both the cusps at z0 and −z0 are reached. By virtue of Eq. (89), the
quantity Z is thus not conserved anymore. A trajectory is able to exhibit multiple points
of closest approach to the z axis and is not strictly guided by caustics.
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Figure 13: Trajectories in the non-confocal cavity. (a) shows the unstable periodic orbit
arising at ε = 0.02 f , Lz = 0.1 f , cf. Fig. 12. For the same parameter, a chaotic
trajectory is seen in (b). Oscillatory motion around stable periodic orbits occurs
in (c) and (d), where ε =−0.02 f and Lz = 0.1 f as in the SOS of Fig. 14. The
patterns of type (a) and (c) derive from the periodic motion of Fig. 10 (a) as a
result of the shape perturbation. In real three-dimensional cartesian space, (e)
shows the straight-line ray motion (arrows) giving rise to the curved “envelope”
surface whose cross section we see in (a).

Under these circumstances, it is not clear what to expect for the mode structure of
the cavity because we lose the possibility of labeling the eigenstates by a complete set of
quantum numbers. This does not imply there are no modes associated with chaotic rays,
but one requires additional techniques to perform a semiclassical quantization [31, 32].
The destruction of the conserved quantity Z means that there is one less constraint which
the ray trajectories have to satisfy; this allows them to fill two-dimensional areas instead
of one-dimensional curves in the SOS. Since the SOS gives us a picture of how the rays
intersect the plane z= 0, chaotic rays can be seen to show less concentrated overlap with
that plane. We anticipate that the presence of true caustics is required to create the best
focussing action. With this hypothesis, the goal must be to identify ray orbits that exhibit
caustics. This occurs in the vicinity of stable periodic orbits, due to the fact that perturbed
trajectories execute an oscillatory and in general quasi-periodic motion around such stable
orbits. In Fig. 12, however, no stable periodic orbits can be identified, telling us that for
the deformation chosen ther, no stable modes with Lz = 0.1 f should exist.

The situation changes if we consider Fig. 14, in which Lz is the same but the sign of
the non-confocal displacement ε is reversed. The walls of the double paraboloid are hence
pushed together instead of being pulled apart. The resulting phase space structure in the
SOS differs markedly from Fig. 12: many trajectories trace out one-dimensional curves in
the SOS which organize as closed loops, forming island chains that proliferate with various
sizes. All these islands are centered around stable periodic orbits – the biggest island of
stability lies symmetrically around the line z= 0 and corresponds to oscillatory motion of
the type shown in Fig. 13 (c). The center of the island is in fact formed by a periodic orbit
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Figure 14: Surface of section at Lz = 0.1 f with ε =−0.02 f . The cavity develops a multi-
tude of stable periodic orbits surrounded by elliptical islands. The most promi-
nent island of stability is centerd on the the line pρ = 0 where a small circle
indicates the location of the corresponding periodic orbit around which other
trajectories can oscillate. Shown in the inset is the central stable periodic orbit.
The next innermost closed line in the SOS belongs to the trajectory shown in
Fig. 13 (c).

similar to Fig. 13 (a) – the only difference being, that small perturbations of its initial
conditions do not lead to chaos as in Fig. 12, but to the motion of Fig. 13 (c).

Another oscillatory ray path centered at a stable periodic orbit is shown in Fig. 13 (d).
The pattern should be compared to Fig. 10 (c) which has the same Lz. The similarity is
apparent, except for the fact that the path in Fig. 10 (c) will eventually fill the remaining
gaps in that plot, if one follows it longer. The path in Fig. 13 (d), on the other hand,
is truly restricted to the vicinity of a self-retracing orbit which reverses its propagation
direction at one end due to perpendicular reflection at the wall, and at the other end by
running up the centrifugal barrier perpendicular to the z axis.

All islands of stability in Fig. 14 generate their own caustics, which are topologically
different from the ones in the integrable system. The caustic created by the orbit in Fig.
13 (c) is simply the boundary of the regions into which the ray never penetrates. The
difference between the absence and presence of caustics in Figs. 13 (b) and (c) is not easily
appreciated if we consider only the real-space plots. Here, the usefulness of the Poincaré
section as a diagnostic tool is again to be noted – showing two-dimensional clouds of points
versus one-dimensional curves, respectively, for trajectories without and with caustics.

It follows from the preceding discussion that a negative ε leaves us with a cavity that is in
many respects similar to the unperturbed double paraboloid, cf. the ray pattern of Fig. 13
(d). However, the qualitative and important difference is that some periodic orbits are now
more stabilized than at ε = 0. In particular, there are simple ray bundles such as Fig. 13 (c)
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Figure 15: For the same deformation ε = 0.02 f as in Fig. 12, this surface of section at
the smaller angular momentum Lz = 0.03 f shows that a stable orbit exists in
addition to the unstable hyperbolic one. This is indicated by the elliptic (lens-
shaped) island structure. The hyperbolic point is located to the right of the
island. The ray pattern near the stable periodic orbit is shown in the inset. The
small corresponding mode volume is apparent.

that promise reasonable focusing close to the center of the unfolded cavity. The physical
explanation for the general stabilizing effect that we achieved by moving the paraboloids
closer together lies in the well-known fact that a two-mirror resonator configuration has a a
focusing action when the mirrors are separated less than the sum of their radii of curvature.
Conversely, mirrors that are further apart than this criterium act in a defocusing way. This
is consistent with the observation of a large chaotic domain in Fig. 12.

These simple arguments, and the chaotic picture of Fig. 12, seem to suggest that stable
ray motion is not to be expected in the supposedly defocusing configuration with ε =
0.02 f . However, when applying the standard criteria for focusing and defocusing resonator
geometries, we have to bear in mind that we are dealing with a centrifugal billiard whose
ray trajectories are curved. The effect of the centrifugal barrier is to push the regions of
allowed ray motion outwards until only a small patch surrounding the equatorial corners
of the cavity is accessible. At large Lz the motion is then so confined that chaos does
not develop. This is just the whispering-gallery phenomenon[17]. On the other hand, at
Lz = 0.1 f we certainly found chaos with no remaining islands of stability. Small Lz are
what we must be interested in if concentration near the focal points is to be achieved.

In view of this, it is all the more surprising that the same cavity does in fact support
stable orbits at even smaller angular momenta than in Fig. 12. This is shown in Fig. 15
for Lz = 0.03 f . The periodic orbit responsible for the single stable island in that SOS is
again almost identical to the one shown in Fig. 13 (a), and its oscillatory neighborhood
is analogous to Fig. 13 (c); the inset of Fig. 15 shows this similarity. This stable orbit
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exists only at sufficiently small Lz; its associated island in the SOS shrinks to a point
when Lz ≈ 0.038 f . The conclusion is that both the nominally focusing and defocusing
configurations ε =±0.02 f permit the formation of ray bundles with a spatial distribution
as in Fig. 13 (c), and hence the stable modes associated with this pattern should be robust.
This is also confirmed by analogous Poincaré sections for larger displacements of the foci.
At larger |ε|, the motion of type Fig. 13 (c) and the inset of Fig. 15 is in fact stabilized
further – for both directions of displacements alike.

The modes corresponding to this particular ray pattern are closely related to the fun-
damental s-waves we discussed in Section 3.5, because both arise from ray bundles in the
immediate vicinity of the shortest periodic orbits in the cavity. For ε = 0 this was the
family of paths in Fig. 10 (a), members of which can be smoothly deformed into Fig. 13 (a)
without changing the topology – i.e., the number and sequence of reflections and turning
points. We shall therefore call all these orbits the fundamental orbits of the cavity. The
mode spacing of the corresponding eigenstates should be comparable as well for the per-
turbed and unperturbed case. However, we have to defer a detailed analysis of the wave
solutions and their semiclassical correspondence to a future paper. Here, the goal has been
to introduce the ray dynamics and its phase space as the backbone on which the mode
structure is built.

Assuming that the deformation is ε = 0.02 f , we have the peculiar situation that the
fundamental orbit is unstable if Lz > 0.038 f , cf. Fig. 12. Therefore, the most desirable
modes will be those with smaller Lz. According to Eq. (78), we have to choose modes with
low n and high k to achieve this. For the experimental cavity we have k f ≈ 14π. Taking
n = 1 as in Section 3.5, we arrive at the semiclassical value

Lz =
f

14π
≈ 0.023 f (92)

which is close to the situation depicted in Fig. 15. The difference in the SOS is insignificant.
We have no accurate way of determining the actual value of ε most closely describing the
real structure, but these considerations give us considerable confidence that modes with a
spatial pattern as in Fig. 13 (c) or Fig. 15 will be found in the cavity, because the relevant
Lz estimated above is in a range where this fundamental orbit is stable – irrespective of the
sign of ε and moreover largely independent of its magnitude.

8 Bragg mirror as an escape window in phase space

The internal ray dynamics of the dome resonator has up to this point been evaluated under
the assumption that the cavity is a perfect resonator. There are two physical mechanisms
that invalidate this viewpoint: absorption in the gold mirror and transmission through
the Bragg grating. The trade-off between the comparatively large absorption of a metal
on the one hand and its ability to reflect omnidirectionally have been discussed in Ref.
[33]. In our context, metallic absorption will always degrade the Q factor because the

43



gold layer provides only an estimated 95% reflectivity [33]. However, the reflectivity of the
Bragg mirror can be significantly lower for certain modes and in that case constitutes the
dominant mechanism for Q-spoiling. The variable that determines the reflectivity of the
Bragg mirror (at the fixed operating frequency) is the angle of incidence χ with respect to
the z-axis. For the purposes of a qualitative analysis, we assume that the Bragg reflectivity
is unity for χ < 22◦ ≡ χc but drops to ≈ 20% outside this cone of incidence [33]. In other
words, χc is the boundary between absorption-dominated and leakage-dominated Q factors.
A second window of high reflectivity opens for rays at very oblique incidence on the grating
surface, more specifically for χ > 60◦. This second window will be discussed further below.

The ray picture allows us to use this rough transmission criterion as a guide in order to
separate long-lived cavity modes from short-lived ones. The angle χ between z-axis and a
trajectory is, according to Eq. (72), given by

cosχ = ṙ ·ez = ż, (93)

so that
1− ż2 = sin2

χ. (94)

One can substitute this as the righthand side of Eq. (83) and obtains an equation for a
curve in the plane ρ̇, ρ (ρ̇ = pρ) spanning the Poincaré section:

|pρ |=

√
sin2

χ−
L2

z

ρ2 . (95)

Using the critical value of χc in this equation specifies the escape condition in the Poincaré
section: the Bragg mirror becomes ineffective when

|pρ |>

√
sin2

χc−
L2

z

ρ2 . (96)

In order to get a feeling for the type of ray orbits that can remain in the cavity under
this escape condition, we plot in Fig. 16 the resulting curves in the surface of section for
the two different values of Lz appearing in Figs. 11, 12, 14 and 15. The plot should be
superimposed on these plots to decide which parts of the respective phase space falls within
the high-reflectivity range of the DBR grating. Note that the critical lines for ray escape
are independent of deformation because they rely only on Eq. (83).

As a result of this comparison, we find first of all that low angular momenta are required
by the escape criterion, because the phase-space area enclosed by the critical curves in
Fig. 16 shrinks with increasing Lz. This is understandable because the ray motion in this
case has a strong azimuthal component contributing to the tilt angle with respect to the
z-axis. Let us turn our attention to the stable periodic orbits arising in the chaotic Poincaré
sections. The case Lz = 0.1 f shown previously for illustrative purposes turns out now to
be roughly the maximum angular momentum at which the stable orbit of Fig. 14 is still
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Figure 16: Assuming that the Bragg mirror stack at the plane z= 0 yields high reflectivity
only for waves within χc = 22◦ from the surface normal or for, the regions of
high reflectivity in the Poincaré section are bounded by Eq. (96). The resulting
curves bounded by |pρ < 0.374are shown for Lz = 0.03 (solid line) and Lz = 0.1
(dashed). A second high-reflectivity window exists for rays falling between the
boundary of this plot and the solid line near the boundary. It becomes relevant
only for the integrable confocal cavity because the perturbed shapes have no
stable orbits in this second window.

confined by Bragg reflection. The lower angula momentum Lz = 0.03 f coming close to the
estimated value for the s-waves of our experimental cavity, on the other hand, places the
stable periodic orbit well inside the high-reflectivity range of the DBR. For the case of a
defocusing deformation this is illustrated in Fig. 15. The peridic point is at ρ ≈ 0.086.
For a focusing deformation of the same magnitude, ε = −0.02, the periodic point lies at
ρ ≈ 0.99. Both values are to the right of the solid line in Fig. 16, corresponding to high
reflectivity.

For the chaotic orbits, we observe that they spread out over the Poincaré section in such
a way as to yield significant overlap with the low-reflectivity regions of Fig. 16. This is true
for all Poincaré sections shown in this paper. Therefore, we conclude that cavity modes
associated with the chaotic phase space regions are short-lived, and the corresponding broad
resonances will not affect the spontaneous emission enhancement of the parabolic dome.
A quantitative estimate of the resonance lifetimes could be obtained by measuring the
time that a chaotic trajectory spends, on average, in the high-reflectivity region without
excursions beyond the critical line. However, we shall not attempt quantitative predictions
at this stage of our investigation, and defer it to future work.

A quantitative analysis would also be necessary to determine the modal lifetimes in the
marginal case of the ideal confocal cavity. The reason is that the ray picture alone does not
allow a clear distinction between classically confined and unconfined orbits, because the
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classification according to stable and unstable trajectories does not apply in the integrable
parabolic dome. All the solid curves in the Poincaré section of Fig. 11 cross into the
low-reflectivity region of Fig. 16 at some point, but the time spent in the high-reflectivity
range can be very long classically. To illustrate this, we show in Fig. 17 a particular ray
trajectory for Lz = 0.1 f in the confocal paraboliod, which for almost 500 crossings of the
focal plane remains inside the regions of high reflectivity. This time, the second window
of high reflectivity close to the border of the SOS is important because the ray alternates
between the low- and high-χ windows from one crossing of the focal plane to the next. The
regular nature of this motion makes long lifetimes possible because it strictly prevents the
ray from entering the low-reflectivity region for long times, whereas a chaotic orbit would
quickly explore this domain in a quasi-random way.

The trajectory shown in Fig. 17 is practically identical to the one shown in Fig. 10
(b). The alternating way of intersecting the focal plane can be understood from that
figure, or from Fig. 10 (a) which shows periodic orbits closely neighboring the quasiperiodic
trajectory of plot (b). Note that the ray model allows us in addition to predict the spatial
location where the mode corresponding to this ray bundle will preferentially be coupled out
through the Bragg mirror. As can be seen in Fig. 17, the low-reflectivity region is reached
for the first time when, after many reflections, the trajectory departs from the immediate
neighborhood of the focal region, i.e. intersects the focal plane with a ρ that is slightly too
large.

The subtle balance of parameters that prevents chaos from appearing will, in all experi-
mental realizations, be shifted to either the defocusing or the focusing side. Therefore, the
above ray analysis of the mixed phase spaces for these two situations above is our main
concern. However, as in the previous sections the integrable case is a useful starting point
to illustrate our strategy. The advantage of the ray approach is that it provides fast and
intuitive predictions, but further studies are required in order to determine how this model
succeeds in characterizing the cavity quantitatively. Paradoxically, we can already conclude
that the existence of chaos and islands of stability makes it easier to obtain results from
a ray analysis, because there is a sharper separation between long lifetimes for the stable
modes discussed above and short lifetimes for modes associated with the chaotic portions
of the SOS.

9 Conclusion

In this paper we have examined the modal structure of the electromagnetic field in a semi-
confocal plano-parabolic cavity (or, equivalently, in a double-paraboloid confocal cavity)
in view of our recent fabrication of semiconductor microcavities having that geometry. In
order to account for the effects of the inevitable fabrication defects we also considered the
stability of the modes with respect to deformations consisting of deviations with respect
confocality. This theoretical analysis was thus motivated by our ongoing experiments on
these structures, and feeds back into this experimental work by opening a novel perspective
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Figure 17: The Poincaré section combined with the escape conditions can be used to
extract information about the lifetime and escape locations. This is illustrated
here for a single ray orbit (black trace), followed for 500 crossings of the focal
plane. The gray area is the region which has to be avoided by the ray in order
to remain in the cavity.

in terms of investigating the chaotic structure and dynamics of some of the modes of cavity.
Regarding the structure of the modes in the parabolic cavity, we note that the scalar

wave equation is solvable analytically by separation of variables. However, the vectorial
boundary conditions for the electromagnetic field destroy this property, leaving only the
cylindrical symmetry. Nevertheless, the fundamental series of s-waves (free of azimuthal
nodes) in a confocal electromagnetic cavity can be solved rigorously. It has its energy
concentrated in a small volume (of order λ 3) around the focal point, even though at the
focal point itself the electric field is zero due to the vectorial nature of the field. The
higher order modes cannot be solved as readily in the full three-dimensional model, but it
is possible to appreciate their features by reducing the problem to scalar form. In these
higher order modes, the energy is concentrated in lobes that surround the focal point but
avoid it because of the centrifugal barrier that arises from the cylindrical symmetry. Indeed,
these modes correspond to non-zero values of the angular momentum (m 6= 0) and for large
values of m tend towards a type of whispering-gallery modes with intensity concentrated
in a ring along the focal plane, [cf. Fig. 10 (d)].

The stability of the modes of the parabolic cavity with respect to geometrical deforma-
tions can be assessed by examining the ray trajectories that correspond to each mode. For
a deformation that corresponds to a small deviation from confocality, chaotic ray patterns
emerge. However, we also find stable ray orbits concentrated in a small part of the cavity
volume. Independent of deformation, the most important stable orbits being those which
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in cylinder coordinates ρ and z follow the shortest possible periodic trajectory. This gen-
eral topology is the same for a range of deformations (including the ideal confocal cavity)
and corresponds to a ray returning to the same ρ and z after two reflections, missing the
focal point by a small amount because the field there has to vanish. The generic shape of
this orbit is represented in Fig.13, and its special modification in the confocal case with
its marginal stability is shown in Fig.10. The topological equivalence between the stable
orbits of the distorted cavity on one hand and of the confocal system on the other indicates
that the structure of the fundamental s-wave is stable with respect to deformations.

From the experimental viewpoint, the results of this theoretical analysis indicate that
the cavities already fabricated in our laboratory should possess stable modes in which the
energy is confined in a volume of order λ 3 in the vicinity of the focal point, in spite of
fabrication errors. The higher order modes, in which the field is concentrated away from
the focal point, in whispering-gallery type configurations, will be unstable because of the
presence of fabrication defects. At the same time these modes will decay very fast as they
correspond to oblique incidences onto the Bragg mirror, at angles for which the mirror is no
longer reflecting. Experiments are in progress to characterize the structure and dynamics
of both the stable and unstable modes [7]. The robust stable modes in which the field is
confined in the vicinity of the focal point should give rise to strong enhancement of the
spontaneous emission of a dipole (such as a semiconductor quantum well or a semiconductor
quantum box) placed there, and a concomitant lowering of the lasing threshold, even for
our cavities that are of mesoscopic dimensions. This is because because even in such large
cavities, whose geometric volume is of the order of a few thousand cubic wavelengths, the
central lobe of the fundamental s-wave (which contains most of the energy) has an effective
volume of the order of one cubic wavelength.

These considerations underscore the interest that parabolic microresonators present by
exhibiting quantum electrodynamic effects as well as optical chaos, in spite of their rela-
tively large dimensions. In addition, the mesoscopic cavity dimensions of these structures
are an important practical feature, as they make the fabrication accessible to existing ex-
perimental techniques (such as Focused Ion Beam etching) while, at the same time, they
greatly facilitate the theoretical analysis of these devices as they permit the use of short-
wavelength approximations.
Acknowledgements: This work was supported in part by the European Commission
through an ESPRIT-LTR contract (No. 20029 ”ACQUIRE”) and a TMR Network (”Mi-
crolasers and Cavity Quantum Electrodynamics”).
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A Parabolic coordinates

The parabolic coordinates ξ ,η ,φ are related to the three-dimensional cartesian coordinates
according to 

x =
√

ξ η cosφ

y =
√

ξ η sinφ

z= 1
2(ξ −η)

(97)

Or, equivalently, 
ξ = r +z
η = r−z
φ = arctany

x

(98)

where r =
√

x2 +y2 +z2 is the spherical radius vector. With this definition, ξ and η have
the same dimensions as the cartesian coordinates, which is helpful for physical consider-
ations. The surfaces ξ = constantare paraboloids by revolution about the positive ẑ-axis
having their focal point at the origin, while the surfaces η = constantare directed along
the negative ẑ-axis. The plane z= 0 corresponds to the condition ξ = η . In terms of the
cylindrical coordinates ρ =

√
x2 +y2,z,φ the parabolic coordinates obey{

ρ =
√

ξ η

z= 1
2(ξ −η)

(99)

and  ρ̂ = 1√
ξ+η

(√
η · ξ̂ +

√
ξ · η̂

)
ẑ= 1√

ξ+η

(
−

√
ξ · ξ̂ +

√
η · η̂

) (100)

In these parabolic cordinates, the electric field E = (Eξ ,Eη ,Eφ ) is related to its represen-
tation in cylindrical coordinates according to

~E =



Eξ =
√

η

ξ+η

i√
2
(E+−E−)−

√
ξ

ξ+η
Ez

Eη =
√

ξ

ξ+η

i√
2
(E+−E−)+

√
η

ξ+η
Ez

Eφ = 1√
2
(E+ +E−)

(101)
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