
DYNAMICAL TUNNELING IN OPTICAL CAVITIES

Gregor Hackenbroich
Yale University, Department of Applied Physics, 15 Prospect Street, New Haven CT

06520, USA

Jens U. Nöckel
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ABSTRACT
The lifetime of whispering gallery modes in a dielectric cavity with a metallic in-
clusion is shown to fluctuate by orders of magnitude when size and location of
the inclusion are varied. We ascribe these fluctuations to tunneling transitions be-
tween resonances quantized in different regions of phase space. This interpretation
is confirmed by a comparison of the classical phase space structure with the Husimi
distribution of the resonant modes. A model Hamiltonian is introduced that de-
scribes the phenomenon and shows that it can be expected in a more general class
of systems.
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In recent years a lot of experimental effort [1] has been devoted to
dielectric microresonators. In these resonators long-lived whispering gallery
(WG) modes are created by total internal reflection of light circulating just
inside the surface of the dielectric. WG modes can have Q values as high as
108 making them useful for applications such as microlasers and optical in-
terconnects. For convex optical cavities that are deformed from rotationally
symmetric shape it was demonstrated [2] that the emission pattern of WG
modes can be understood in a ray-optics picture. The ray dynamics typi-
cally exhibits both stable and chaotic trajectories, and it was argued that
the presence of chaos should lead to a broadening of the WG modes with
increasing shape deformation.

In this paper we study effects in dielectric cavities that are beyond
a ray-optics model. We show that tunneling transitions between classically
disconnected regions in phase space can lead to fluctuations in the lifetime of



WG modes by several orders of magnitude. This is demonstrated numerically
by solving the wave equation for a dielectric that has a permeable coating
and the shape of the annular billiard. It is shown that the fluctuations arise
from avoided crossings of WG modes with much broader resonances of the
dielectric. The Husimi projections of the relevant modes reveal that the broad
resonances and the WG modes are localized in chaotic and regular regions of
phase space, respectively. This motivates us to model the dielectric in terms
of a tunneling Hamiltonian where states quantized in different regions of
phase space are connected by small tunneling matrix elements. We derive the
quantum scattering matrix associated with the tunneling Hamiltonian and
obtain the widths of the quasibound states. In agreement with our numerical
observation we find strong fluctuation in the lifetime of WG modes close to
avoided crossings with modes localized in a different region of phase space.

The idea that disconneted regions in classical phase space can give rise
to quantum tunneling has previously been introduced by Davis and Heller [3],
who dubbed this notion dynamical tunneling. Dynamical tunneling has been
observed [4, 5, 6, 7] in the bound state spectrum of closed quantum systems
whose classical counterparts exhibit both regular and chaotic motion. In such
systems dynamical tunneling leads to statistical fluctuations in the splittings
of nearly degenerate energy levels . While the resulting level splittings are
typically so small that their experimental detection seems unlikely, we believe
that the tunneling effects giving rise to fluctuations in resonance lifetimes of
open systems are amenable to experimental verification.

We have numerically studied a dielectric cavity with the shape of the
annular billiard [5, 7]. The system consists of a cylindrical dielectric with
radius R and index of refraction n > 1 that is suspended in air. Embedded
in this cylinder and off-center by an amount δ is a totally reflecting (metallic)
rod of radius a < R−δ. The surface of the dielectric is covered by a penetrable
metallic film that ensures that the resonances of the cavity are isolated. The
dielectric function of the system is written as ε = εbulk +εfilm where εbulk = n2

inside the dielectric and εbulk = 1 outside. The metallic film is taken as a
δ-function layer, εfilm = −η n2R δ(r −R) with η > 0.

The closed annular billiard (η →∞) exhibits mixed classical dynamics
[5]. Whispering gallery trajectories with impact parameter |l| > a+ δ do not
hit the inner cylinder, so that their motion along the perimeter of the outer
cylinder is regular. The phase space for |l| < a+ δ contains both regular and
chaotic regions if δ > 0. In the open system there are modes with very small
width created by total internal reflection of WG trajectories whose angle of



incidence with respect to the normal to the surface, χ, is above the critical
angle, sin χc = 1/n. Besides these sharp WG modes there are much broader
resonances that in a ray-optics picture are associated with trajectories hiting
the boundary with angles | sin χ| < 1/n.

We have solved for the quasibound states of the annular billiard using
wave function matching. The electric field Ψ when polarized parallel to the
cylinder axis satisfies the scalar wave equation

∇2Ψ + ε(r) k2 Ψ = 0, (1)

and is continuous at r = R. The δ-function in ε creates a jump in the deriva-
tive, ∂Ψ/∂r|R = ηn2k2RΨ(R). We search for a solution with no incoming
waves,

Ψ< =
∑
µ

AµΨ+
µ , Ψ> =

∑
µ

BµH
(1)
µ (kr) cos µφ, (2)

Ψ+ = H(2)
µ (nkr) cos µφ+

∑
ν

S(I)
νµ H(1)

ν (nkr) cos νφ, (3)

where Ψ< and Ψ> denote the electric field for r < R and r > R, respectively.
We use polar coordinates r, φ with origin in the center of the dielectric, and
H(1,2)

µ are the Hankel functions of first and second kind [8]. The scattering

matrix S(I) of the inner annulus is known explicitly [7]. Matching Ψ and
∂Ψ/∂r at the surface r = R, one obtains a set of simultaneous equations for
the coefficients Aµ, Bµ, which can only be solved at discrete complex values of
the wavenumber k. The corresponding solutions are the quasibound states of
the cavity. To each solution we assign the quantum numbers (nr, m), where
nr is the radial quantum number and m the angular momentum obtained for
the concentric billiard.

Fig. 1 shows the width of the even WG mode (2,30) corresponding to
sin χ = 0.66 (at δ = 0) as a function of δ/R. We chose n = 2, η = 1 and
kept a + δ = 0.65 fixed. This ensures that WG modes with sin χ > a + δ
remain classically undisturbed. The width is seen to fluctuate by orders of
magnitude. This is caused by avoided crossings with broader resonances, as
we show in the inset for the large peak at δ/R ≈ 0.139. Here, the dashed
line corresponds to a broad resonance of width −Im(kR) ≈ 10−3.

We now want to associate these resonances with different regions of
the classical phase space spanned r, φ and their conjugate momenta (pr, pφ).
This is achieved using the Husimi function, i.e. the overlap of Ψ< with a



Figure 1: The width of the whispering gallery mode (2,30) as a function of
the eccentricity δ/R. Inset: Positions of the WG mode (2,30) (solid line) and
the closest broad resonance (dashed line).

minimum-uncertainty wavepacket Φ centered at r̄, φ̄, p̄r, p̄φ. The resulting
phase space density ρH(r̄, φ̄, p̄r, p̄φ) characterizes Ψ<. To obtain a classical
phase-space portrait, we employ a Poincaré surface of section with φ and sin χ
as coordinates. By semiclassical arguments, sin χ can be directly related to
pφ. One can then project ρH onto the surface of section by integrating out
p̄r, choosing the spread of Φ around r̄ to be zero and setting r̄ = R.

The resulting density distribution ρSOS is shown in Fig. 2 for the
two resonances singled out in the inset to Fig. 1. Away from the avoided
crossing, the WG mode is localized in the regular regime at sin χ ≈ 0.66,
whereas the broad resonance is supported in the chaotic domain. However,
close to the anticrossing at δ/R ≈ 0.139, ρSOS reflects a strong coupling be-
tween the regular and chaotic parts of phase space due to interference of the
two resonances. In contrast to Figs. 2 a) and b), this is a classically forbid-
den phase space distribution made possible only by dynamical tunneling. It
causes the lifetime of the WG mode to approach that of the chaotic state. We
find fluctuations similar to Fig. 1 for all WG modes with impact parameter
|l| > a + δ. Moreover, we find fluctuations, though less frequent and much
smaller in magnitude, even in the absence of the coating, η = 0.

Our analytical approach is motivated by the observation that the
modes of the cavity have overlap with distinct regions of the classical phase



a) b)

c)

Figure 2: The projection ρSOS of the Husimi function onto the Poincaré
surface section, superimposed with classical trajectories to indicate the extent
of regular and chaotic regions. The uncertainty in φ is 0.5 radians; δ/R =
0.135 in a) and b), with a) showing the phase space density of the WG mode
and b) that of the broad resonance. In c), ρSOS is shown for the WG state
at δ/R = 0.139.

space. We model the system by the following Hamiltonian

H = H0 + HT . (4)

Here, H0 describes states quantized in two classically disconnected regions
in phase space as well as the channel region when these subsystems are
totally disconnected from each other. The couplings between the subregions
are described by HT . Written in a basis where the various subsystems are
diagonal, H0 has the form

H0 =
∑

i

Ei q
†
i qi +

∑
µ

Eµ c†µcµ +
∑
a

∫
dE E d†aEdaE. (5)



Here, the creation (annihilation) operators q†i and c†µ (qi and cµ) arise from the
quantization of the two respective regions of phase space. The corresponding
quantum states will be referred to as regular and chaotic states below. A
generalization of H0 to include more regions in phase space is straightforward.
There is a continuum of channel states with corresponding operators d†aE, daE,
where a = 1, 2, . . . ,M denotes the channels. The tunneling Hamiltonian HT

is given by

HT =

(∑
ai

∫
dE Uai(E) d†aEqi + H.c.

)
+

∑
iµ

Viµ q†i cµ + H.c.


+

(∑
aµ

∫
dE Waµ(E) d†aEcµ + H.c.

)
. (6)

It couples both the regular states and the chaotic states directly to the con-
tinuum. Moreover, there is a coupling between the regular and the chaotic
states via the matrix elements Viµ.

We note that the Hamiltonian (4) previously has been investigated in
various limiting cases. The case Viµ = Uai = 0 together with the assumption
that the matrix elements Waµ be random variables defines a model for chaotic
scattering (or compound-nucleus scattering) which has been the subject of
intensive research in the past decade [9, 10]. The case of vanishing channel
couplings, Uai = Waµ = 0 with Viµ choosen at random has been studied in re-
cent work [4-6] on the splitting distribution in closed quantum systems. Here,
we shall investigate the effects of tunneling transitions between the regular
and the chaotic region (Viµ 6= 0) when these regions are weakly coupled to
the channels. The channel couplings are assumed so weak that the typical
widths of both the regular and the chaotic resonances are smaller than their
respective energy spacing (the regime of isolated resonances).

We calculate the scattering matrix Sab(E) = δab− 2πiTab at energy E
from the Lippmann-Schwinger equation

T = HT + HT
1

E −H0 + iη
T (7)

for the transition operator T (η is positive infinitesimal). This equation is
solved by the explicit summation of the associated Born series [11]. Here it
is sufficient to discuss the solution in the two cases that the direct coupling
between regular and channel states is either (i) much stronger or (ii) much



weaker than the coupling arising from indirect processes involving chaotic
states. In both cases one finds that the S matrix has the form Sab = δab −
2πiTC

ab − 2πiTR
ab where TC

ab comprises all scattering processes involving only
chaotic states while all remaining processes are included in TR

ab. The poles of
TR

ab are located at complex energies Ei = εi− (i/2)Γi, where εi is the position
and Γi the width of the i-th resonance. Assuming that this resonance is
isolated from all other resonances, one obtains the result

Γi = 2π


∑

a U∗
aiUai, case (i),∑

a

∣∣∣∣∑µ

WaµV ∗
iµ

εi−Eµ+iπ
∑

b
W ∗

bµ
W

bµ

∣∣∣∣2 , case (ii),
(8)

where the matrix elements are evaluated at energy εi. We note that the
result in case (i) is just Fermi’s golden rule for the rate wi = Γi/h̄ of direct
transitions from the state i into the continuum (a factor counting the density
of final states has been included in the definition of the matrix elements U
and W ). Eq. (8) (ii) resembles the expression for the transition rate in
second-order perturbation theory [12], but in contrast to the perturbative
expression the denominator in Eq. (8) (ii) has a finite imaginary part. We
note that the width arising from direct transitions between regular states and
the continuum evolves smoothly under variations of an external parameter.
Any strong fluctuations in the resonance widths thus must arise from the
multi-step tunneling processes involving chaotic states included in Eq. (8)
(ii). In accordance with our numerical results for the lifetime of WG modes,
Eq. (8) (ii) shows a large increase of the width whenever a regular WG mode
(with index i) crosses a chaotic mode (with index µ).

It is known [13] that the interference of resonances may strongly affect
their positions and widths. To study this effect very close to an avoided
crossing we consider the nonhermitian Hamiltonian

H =

(
Ei V
V ∗ Eµ

)
− i

(
0 0
0 Γ̄/2

)
(9)

as a simple model of two resonances that are coupled to single open channel.
If the separation |Ei −Eµ| is much larger than |V |, there are two eigenstates
with width close to 0 and Γ̄, respectively. For small values of |Ei − Eµ|, one
finds an avoided crossing of the resonance positions (the real parts of the
eigenvalues). At the same time, both widths approach the value Γ̄/2. We
expect the sharp resonance typically to aquire a width of order Γ̄ (where Γ̄



is the width of the broader resonance when both resonances are separated)
even in the general case of an avoided crossing of two resonances in the
presence of an arbitrary number of open channels. This is clearly reflected
in our numerical data presented in Fig. 1, where the width of the WG mode
approaches a value of order of the width −Im(kR) ≈ 10−3 of the broad
chaotic resonance.

Further progress can be made assuming that the quantum states local-
ized in the chaotic regions of phase space obey random-matrix behavior. In
this case, the width Γi becomes a statistical quantity and one can compute
its probability distribution P (Γi). Due to avoided crossings, this distribu-

tion shows a power-law decay P (Γi) ∼ Γ
−3/2
i in the regime Γi � Γ̄, where

Γ̄ denotes the average width of the chaotic resonances. The derivation of
the distribution P (Γi) and a further discussion is deferred to a forthcoming
publication [14].

In summary, we have studied lifetimes and phase space distribution
of WG modes in a dielectric cavity. Dynamical tunneling leads to large
fluctuations of the lifetimes as a function of the asymmetry parameter, as we
demonstrate numerically for the open annular billiard. This system can be
realized using dielectric microcavities.
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