Overview of Computers in Education

"Smooth seas do not make skillful sailors." -- African Proverb

"Without a struggle, there can be no progress." -- Frederick Douglass (1819-1895)

Note: This is a work in progress and is far from complete. However, I have made enough progress so that much of the book is now usable. I am using this book in a fall term 2003 course I am teaching. I am making the very rough draft form of the book available as a service to my students.

11/12/03
David Moursund
Teacher Education
College of Education
University of Oregon
Eugene, Oregon 97405
moursund@oregon.uoregon.edu
http://darkwing.uoregon.edu/~moursund/dave/index.htm

Contents

0. Preface, Big Ideas, and Recommendations.....................2
1. Introduction...15
2. Self-Assessment on Some Basics of ICT26
3. Compelling and Second Order Applications.....................34
4. Generic Computer Tools..45
5. ICT as Curriculum Content ..51
6. ICT as an Aid to Teaching and Learning..........................62
7. ICT Assessment and Accountability..................................78
8. ICT in Special and Gifted Education.................................94
9. ICT and a Teacher’s Other Professional Work.................109
References..114
Index ...117
Possible Ideas for Content...119
Chapter 0
0. Preface, Big Ideas, and Recommendations

This book is designed for use by PreK-12 preservice and inservice teachers, and by teachers of these teachers. It provides a brief overview of some of the key topics in the field of Information and Communication Technology (ICT) in education.

The mission of this book is to help improve the education of PreK-12 students. A two-pronged, research-based approach is used:

• One goal of this book is to help you increase your expertise as a teacher There is substantial research that supports the contention that students get a better education when they have “better” teachers.

• One goal of this book is to help increase your knowledge and understanding of various roles of ICT in curriculum content, instruction, and assessment. There is significant research to support the benefits of ICT in these three areas.

Probably you noticed the rather strange title of this first chapter. The intent is to attract your attention, with the hopes that you will read this first chapter. It consists of:

1. Preface, stating the intended audience and purpose of the book.

2. A brief introduction to the Big Ideas (the unifying, very important themes) covered in this book.

3. A summary of some of the conclusions and recommendations that are based on the content of the book.

I hope that your reading of this first chapter will lead you into reading subsequent chapters.

Preface

The mission of this book is to help improve the education of PreK-12 students. The approach is via:

• Improving the general education and the ICT in education of preservice and inservice teachers.

• Improving preservice and inservice teachers’ use of their general education and their ICT education.

• Emphasizing the roles of ICT as an aid to solving complex problems and accomplishing complex tasks in all curriculum areas.

The typical first ICT in Education course for preservice and inservice teachers has a strong focus on learning to make use of various pieces of hardware, software, and connectivity. Such a course tends to be weak in providing an overview of ICT uses in curriculum, instruction, assessment, and other professional work of teachers. It tends to be weak in its contributions to improving the education of PreK-12 students.
This short book focuses on general topics such as ICT in curriculum, instruction, assessment, increasing problem-solving expertise of students, and in other aspects of a teacher’s professional work. The emphasis is on higher-order knowledge and skills. Thus, this book is designed to help change the “flavor” of a first ICT in Education course for preservice and inservice teachers.

Alternatively, this book can be used in a second ICT in education course for preservice and inservice teachers, building on the “basic skills” taught in a first course. However, throughout the book we argue that basic skills (lower-order knowledge and skills, rudimentary use of some of the general purpose pieces of computer software) should be integrated in with higher-order knowledge and skills.

The prerequisite for a course using this book is an introductory level of knowledge and skill in using a word processor, email, and the Web. Nowadays, very large numbers of students meet this prerequisite by the end of the 5th grade. Increasingly, instruction in such basic skills is not considered to be an appropriate part of a college-level curriculum that carries credit towards a college degree.

As you read this book, you will come to understand that ICT in education is a broad, deep, and rapidly growing field of study. ICT has the potential to make substantial improvements in our educational system. To date, much (most) of this potential has not been achieved. Moreover, the pace of change of the ICT field currently exceeds the pace of progress in making effective use of ICT in education. Thus, the gap between the potentials and the current uses of ICT to improve PreK-12 education is growing.

Some Big Ideas

ICT is a combination of science and technology. It includes the full range of computer hardware and software, telecommunication, the Internet and Web, digital still and video cameras robotics, and so on. ICT includes a huge and rapidly growing knowledge base that is being developed by practitioners and researchers. ICT has proven to be a valuable aid to solving problems and accomplishing tasks in business, industry, government, education, and many other human endeavors. This section lists a few of the Big Ideas (the important, long-lasting, unifying ideas) that have guided the development of the material in this book.

Big Idea 1: Problem Solving Using Body and Mind Tools

The diagram of Figure 0.1 illustrates the single most important idea in this book. The idea is that properly educated people, using tools that aid their physical bodies and their minds, can solve a wide variety of challenging problems and accomplish a wide variety of challenging tasks.
The center of the diagram is a person or group of people working to solve a problem or accomplish a task. The top part of the diagram focuses on the idea that throughout human history, humans have been developing tools to enhance the capabilities and performance of their bodies and minds.

- Consider the time hundreds of thousands of years ago when our ancestors developed using and making fires, the stone ax, the spear, and the flint knife as tools to enhance the food gathering and use capabilities.
- Consider 11,000 years ago when humans began to develop agriculture, along with the tools and methodologies to raise and effectively use crops and farm animals.
- Consider 5,000 years ago when humans developed written language, a very powerful mind tool. Reading, writing, and arithmetic were developed as an aid to solving the problems and accomplishing the tasks that developed in a thriving and growing agricultural society.

Reading, writing, and arithmetic were the first tools that required a formal and protracted education system. Up to that time, the body and mind tools could be learned through informal education and apprentice systems. After that time, we began to have formal schools that have many of the characteristics of today’s schools. The past 5,000 years have seen a huge growth in the number of students receiving formal education and the length of that formal education.

During the past 5,000 years, many new body and mind tools have been developed, and many of these have been widely adopted. In terms of the diagram of Figure 0.1, this means that our informal and formal educational system has been faced by the need for continual change in order to appropriately accommodate the changing tools environment.

A library can be thought of as being a mind tool. It facilitates the single most important aspect of problem solving—building on the previous work of others (Moursund, 2002). It is useful to think of the Internet (which includes email and the Web) as a powerful aid to building on the previous work of others.
Big Idea 2: Technology is a Change Agent

The invention or development of a new physical body or mental tool creates both opportunities and challenges. In brief summary, a new tool:

1. Helps us to “better” solve some problems and accomplish some existing tasks that we are currently addressing without the new tool. Here, the term “better” may have meanings such as: in a more cost effective manner; faster; more precisely; more reliably; with less danger; and so on.

2. Helps us to solve some problems and accomplish some tasks that cannot be solved without the tool.

3. Creates new problems. For example, the development of the 3Rs created the educational and social problems of who would receive a formal “grammar school” level of education focusing on these topics, and who would provide this education.

ICT is an example of a technology that has proven to be a powerful change agent. Going back to Figure 0.1, we can examine ICT from the point of view of how it contributes to tools that enhance our physical bodies. We now have microscopes, telescopes, brain scanning equipment, automated factories, and a huge range of other tools that are highly dependent on ICT.

We can also view ICT as a mind tool. It is evident that ICT incorporates and extends some of the power of reading, writing, and arithmetic. For example, the Internet facilitates global communication and the web (a global library). ICT facilitates the automation of many mental activities (and one can think about the parallel with other tools that automate physical activities).

ICT creates a number of problems in education, such as digital equity, the need for a relatively expensive addition to a school’s infrastructure, and how to provide appropriate ICT education for preservice and inservice teachers. IT in education creates problems of how to deal with potential changes in curriculum content, instructional processes, and assessment in a manner that leads to students getting a better education.

We are used to the idea that once a tool has been invented, it can be improved over time. However, humans have had little experience with tools that have been developed to a very useful level, and then subsequently improved by a factor of a million or more. The hardware capabilities of ICT are still changing very rapidly—doubling in capabilities over a time span of less than two years. This rapid pace of change is, in and of itself, a major challenge to our educational system.

Big Idea 3: Some Basic Goals of Education Tend to Endure

David Perkins' 1992 book contains an excellent overview of education and a wide variety of attempts to improve our educational system. He analyzes these attempted improvements in terms of how well they have contributed to accomplishing the following three major and enduring goals of education (Perkins, 1992, p5):

1. Acquisition and retention of knowledge and skills.

2. Understanding of one's acquired knowledge and skills.

3. Active use of one's acquired knowledge and skills. (Transfer of learning. Ability to apply one's learning to new settings. Ability to analyze and solve novel problems.)
These three general goals—acquisition & retention, understanding, and use of knowledge & skills—help guide formal educational systems throughout the world. They are widely accepted goals that have endured over the years. They provide a solid starting point for the analysis of any existing or proposed educational system. We want students to have a great deal of learning and application experience—both in school and outside of school—in each of these three goal areas.

You will notice that these goals do not point to any specific content areas. One of the reasons these goals have endured over the years is that they allow of change in curriculum content, instructional processes, assessment, teacher education, and so on. ICT is a powerful change agent in all of these aspects of our formal educational system. This book explores ICT from the point of view of the three goals stated by Perkins. It looks at ICT in terms of possible changes in curriculum content, instructional processes, assessment, teacher education, and so on.

In some sense, one can view these three goals as constituting a hierarchy moving from lower-order to higher-order knowledge and skills. One of the strengths of ICT lies in a combination of information storage and retrieval, and the automation of tasks that can be built on this type of accumulated knowledge.

The second goal focuses on understanding. What is your understanding of what it means for you or some other human to understand something? In what sense does a computer system “understand” something? As a preservice or inservice teacher, it is very important that you have clear insight into the similarities and differences of human understanding versus ICT system understanding.

Pay special attention to the third goal. There, the emphasis is on problem solving and other higher-order knowledge and skill activities. You know that ICT systems can solve or help solve a wide variety of problems. How does a computer’s “higher-order, problem-solving knowledge and skills” compare with a human’s higher-order and problem-solving knowledge and skills?

Big Idea 4: Developing Expertise in a Discipline

There is a difference between having some level of expertise and being an expert. Within any domain or area of knowledge and skills that is under consideration, an expertise scale runs from a very low level to a very high level. The diagram in Figure 0.2 illustrates this idea through use of a general-purpose expertise scale. Such a scale is applicable within any discipline or area of human endeavor.

![Expertise Scale](image)

Figure 0.2. A general purpose expertise scale.

As a teacher, you want to help your students move up expertise scales that correspond to the topics and subject areas that you teach. A high level of expertise in a domain is exemplified by high knowledge and skill that is efficiently and effectively applied to solving the problems and accomplishing the tasks of the domain. Here are a few things to be aware of:
1. A learner brings existing knowledge and skills to whatever new learning task they face. This situation is the core of constructivism, which is an important component of the Craft and Science of Teaching and Learning we discuss in the next section of this chapter.

2. Learners vary in their innate mental, physical, emotional, social, and other capabilities. Note, however, that the “nature versus nurture” issue is very complex. As teachers, our goal is to help our students to develop knowledge and skills that move them up various expertise scales. Some students will move up faster and some have the potential to move up further than other students. **All have the potential to gain increased expertise with a domain.**

3. It is very difficult (indeed, for the most part it is impossible) to accurately predict a long time in advance either how fast a learner will move up an expertise scale or how far along the scale the learner might progress. One of the things that educators have learned is that setting high goals and standards is usually very desirable. But, this must be done using common sense. Most children will not become world-class athletes or world-class scholarly researchers.

4. Increasing expertise draws upon a combination of lower-order and higher-order knowledge and skills. While lower-order and higher-order can be taught and practiced somewhat separately from each other, seamless integration is a goal. Educational research and practice suggests that this integration should be inherent to the teaching and learning process.

As an example of some of the above ideas, consider helping a student to gain increased expertise in writing in a word processing environment. This is obviously a complex domain, since it includes both writing (which is a complex domain) and word processing (which is a complex domain). Thus, to move a student up this expertise scale we might:

1. Place most of our emphasis on improving the learner’s writing knowledge and skills.

2. Place most of our emphasis on improving the learner’s word processing and desktop publication knowledge and skills.

3. Seek a middle position that combines aspects of (1) and (2) in a manner that best contributes to helping the learner move up the expertise scale.

We know that spelling, grammar, and legible writing are all important aspects of (1). However, in some sense these are lower-order aspects as contrasted with developing and representing ideas that communicate effectively. Also, we know that a word processor is a powerful aid to spelling and legibility, and a useful aid in grammar. Thus, it might prove desirable to place less emphasis in (1) on spelling and legibility (good penmanship), and perhaps less time on grammar (especially in the areas that a computer can do well). This frees up time for more emphasis on higher-order aspects of writing and time for learning to use a word processor. Some of the time might be used to help students gain increased knowledge and skills in process writing and in process writing in a word processing environment.

The analysis given in this section can be applied to any computer tool and expertise areas.
Big Idea 5: Craft and Science of Teaching and Learning

We now have 5,000 years of accumulated knowledge about teaching and learning in school environments. This knowledge is called the Craft and Science of Teaching and Learning.

Teachers and researchers have accumulated a huge amount of information about effective teaching and learning. As an example, consider the idea of teaching and learning in a manner that facilitates both retention and transfer to problems and tasks one will encounter in the future. The past two decades have witnessed the development of a low-road, high-road theory of transfer. This theory helps us to design curriculum content and instructional processes that improve our accomplishment of the three educational goals listed by Perkins.

The stimulus-response theory of B.F. Skinner has been supplemented and to a great extent superseded by a variety of cognitive learning theories. An understanding of early childhood development and learning has led to Head Start programs. An understanding of vitamins and chemicals has led to the addition of folic acid and other vitamins in a variety of our foods, and to removal of lead paint and leaded gas from our environment. We have a growing understanding of the effects of class size and the value of tutoring or very small group instruction.

In summary, we know lots of ways to substantially improve education. However, we are not particularly successful in the wide scale implementation of our steadily growing understanding of the Craft and Science of Teaching and Learning. ICT provides us with tools that can help substantially in this endeavor.

As an example, considering helping dyslexic students learn to read. Shaywitz (2003, p6) indicates that dyslexia may affect as many as one-fifth of all students. Thus, as a regular classroom teacher you are very apt to have one or more students with some degree of dyslexia. Brain science researchers have identified differences in brain “wiring” between students who readily gain fluency (speed and accuracy) in reading, and those who don’t. The brain imaging equipment used by the brain researchers is dependent on powerful computers as well as other technology.

Reading specialists and brain scientists are now working together to develop effective methods to help dyslexic students to learn to read well. Some of their successful approaches make use of highly interactive computer-assisted learning. Often this computer-assisted learning is delivered over a telecommunications system, such as the Web. In addition, dyslexic students benefit greatly from learning to use a word processor to do their writing (including doing the writing on tests) and being given more time to take tests.

Big Idea 6: Lower-order and Higher-order Knowledge and Skills

Bloom’s taxonomy provides one approach to analyzing lower-order versus higher-order knowledge and skills. Bloom’s 1956 scale (not an equal interval scale) has the labels knowledge, comprehension, application, analysis, synthesis, and evaluation to define a continuum moving from lower-order to higher-order. At the second and third levels (comprehension and application) Bloom stresses that the student is expected to have understanding that allows transfer to solving problems and accomplishing tasks that he or she has not encountered before.

There are many different ways to define lower-order and higher-order knowledge and skills. A learner’s point of view is represented in the diagram of Figure 0.3.
The diagram of Figure 0.3 stresses that a student does not understand lower-order and higher-order as separate ideas. Rather, the student combines his or her lower-order and higher-order knowledge and skills to perform at a certain level of expertise within a domain. From this point of view, “higher-order” is anything that helps the student gain increased expertise within the domain and builds upon current expertise. Thus, instruction should be at a level indicated by the large dot in the diagram—at a level somewhat higher than the student’s current level of expertise. Obviously this creates some tension between instruction that focuses heavily on the lower-order knowledge and skill aspects of a domain, versus instruction that has been carefully designed to balance learning of lower-order and higher-order knowledge and skills to help a student gain increased expertise.

The diagram in Figure 0.4 represents Perkins’ three goals of education from a lower-order to higher-order point of view. This representation of the three goals is intended to suggest that acquisition, retention, and understanding are all oriented toward being able to make effective use of what one is learning.
Big Idea 7: Taking Responsibility for Your Own Learning

A baby or toddler is naturally inquisitive, intrinsically motivated, and an omnivorous learner. A huge amount of learning occurs in the informal educational environment provided by the caregivers. We know that the quality of this environment makes a huge difference (on average) in the learning and cognitive growth of young children. Thus, many children reaching the kindergarten age are a year or more behind the “average” while many others are a year or more ahead.

One of the goals of our formal educational system is to help students develop an increasing level of expertise as independent, self-responsible, self-sufficient learners, intrinsically motivated learner. Educational researchers know quite a bit about adult learners, and this knowledge provides us with some insights into how well our formal educational system is doing in helping students learn to learn and learn to take responsibility for their own learning. We know that there are very large variations in our level of success in meeting goals of students becoming increasingly responsible for their own learning.

ICT enters this topic area in two key manners:

1. Access to aids to learning. ICT brings us the Internet, the Web, Computer-Assisted Learning, and Distance Learning.

2. Self-assessment and other aids to measuring one’s progress toward meeting one’s personal learning goals. (Use a Web search engine to search for self-assessment. Perhaps you will be surprised by the huge number of “hits” that you obtain.) Typically, Computer-Assisted Learning and Distance Learning include aids to measuring one’s progress—that is, aids to self-assessment.

Conclusions and Recommendations

The diagram given below in Figure 0.5 helps to unify the ideas in this section. This diagram emphasizes the idea that ICT systems all by themselves can solve some problems and accomplish some tasks much better than people. A parallel to this is the fact that people, independently of computers, can solve many problems and accomplish many tasks much better than computers. Finally, the diagram indicates that that there are many problems and tasks where people and ICT systems working together can out perform either ICT systems or people working alone.
Areas in which ordinary people can readily outperform ordinary ICT systems.

Areas in which ordinary ICT systems can readily outperform ordinary people.

Areas in which people versus ICT systems is a major issue and/or where the two together readily outperform either alone.

Figure 0.5. People versus ICT systems

All teachers are faced by the issues raised in the diagram of Figure 0.4. A major goal in preservice and inservice teacher education is to help prepare teachers to effectively deal with this challenge. Here is a recommendation:

In each academic discipline currently being taught in our schools, ICT has become a useful aid to representing and helping to solve problems and accomplish tasks. Thus, the diagram of Figure 0.5 is applicable to every teacher and student. This means that you to learn about the capabilities and limitations of ICT within the disciplines that you teach or plan to teach. The curriculum, instruction, and assessment in your everyday classroom needs to adequately and appropriately reflect your best insights into achieving an appropriate balance among the three components of the diagram.

An earlier part of this chapter discusses lower-order and higher-order knowledge and skills. We know that a path to increasing expertise in a discipline includes both lower-order and higher-order knowledge and skills. A teacher faces the challenge of helping to chart a path that is appropriate to the current knowledge, skills, interests, intrinsic and extrinsic motivation, and so on of each individual student. Meeting this challenge requires both a concerted effort on the part of the teacher and the understanding cooperation of the individual student. Here is a recommendation:

You should adopt the goal of helping each student gain increased expertise in being an independent, self-sufficient learner. Each learner should understand (make personal use of) constructivism, metacognition, lower-order and higher-order knowledge and skills, transfer of learning, self-assessment, and gaining increased expertise within a discipline. ICT (indeed, even a computer game) is quite useful in creating environments in which a student can practice these ideas.

One of the major goals of education is for a student to gain steadily increasing expertise in the very broad area of solving problems and accomplishing tasks. This includes posing problems and tasks, question asking, higher-order “critical” thinking, and decision making (making wise decisions). Problem solving is part of each discipline. Keep in mind that expertise in problem solving is built on a combination of discipline-specific (domain-specific) knowledge and skills, and broad-based knowledge and skills that cut across many disciplines. Our educational system
can become much better at helping students transferring their discipline-specific problem solving expertise to other disciplines. Here is a recommendation:

You should also adopt the goal of helping each student understand the ideas represented in Figures 0.1 and 0.4. These diagrams and the ideas that they summarize should be periodically revisited as a student moves from grade to grade, and as a student delves more deeply into various disciplines made available in secondary school. Your students need to understand what it means to gain increasing expertise in a discipline, as well as current and potential roles of ICT that are useful in achieving and performing at an increasing level of expertise.

In each discipline that you teach, help your students to understand what constitutes an increasing level of expertise within the discipline and how the instruction you are currently providing contributes to this increasing expertise. Weave this effort into an effort to increase transfer of learning of problem solving expertise into other disciplines.

Teaching is a difficult and challenging profession. You may have heard the expression “She is a ‘born’ teacher.” This can be interpreted as a comment about the nature versus nurture issue of becoming a good teacher. Good teaching requires a very broad range of knowledge and skills. Good teachers vary tremendously in their mental, physical, emotional, social, and other areas of innate abilities. A teacher’s expertise is based on his or her developed abilities to effectively use his or her innate abilities that are relevant to being a teacher. Moving up a “good teacher” expertise scale is no different than moving up any other expertise scale. Every preservice and inservice teacher can become a better teacher. Here is a recommendation:

As a teacher, you have a substantial level of expertise in helping students learn, learn to learn, and gain increased expertise in a variety of disciplines. Apply this expertise to your own development. Examine your relative strengths and weaknesses (your capacity) on a “good teacher” expertise scale. Develop ways to self-assess progress you are making toward becoming a better teacher.

ICT provides you with an area to practice gaining increased expertise as a teacher. If you consider your overall knowledge and skills as they relate to being a good teacher, you may find that you have not yet achieved a good balance between those that are ICT-related and those that are not ICT-related. Look for an example where the imbalance seems particularly strong. Devise and implement a plan to help address this imbalance.

You have some knowledge and skill in using a variety of widely applicable ICT tools, such as a word processor, email, and the Web. There are many other generic (general purpose, applicable across many disciplines) ICT tools such as a spreadsheet, a database, and draw and paint graphics. The International Society for Technology in Education, as well as many states and school districts, have set standards (goals) for student knowledge and skills in using these tools.

You need to careful consideration about the idea that a learning goal might be to learn a specific tool versus the idea that a learning goal might be to learn to effectively use a particular tool as part of gaining expertise within a discipline. As an example, great skill in using a word processor (i.e., fast and accurate keyboarding, skillful use of a spelling checker) does not, in and of itself, make a student into a better writer. The goal is for a student to learn to make effective use of a word processor as part of moving up the expertise scale in effective written communication. Here is a recommendation:

ICT provides a large number of general-purpose (generic) tools, as well as a still larger number of tools that are quite specific to particular domains. Each tool is designed as aid to representing and solving the problems, and representing and accomplishing the tasks, within one or more domains. From a general education point of view, increased expertise in using a tool should focus on its use as part of increasing problem-solving, task-accomplishing, and other higher-order aspects of expertise within a domain.
As a simple example, consider a four-function calculator. Some people learn tough keyboarding of a four-function calculator. This is highly useful in a job that requires great speed and accuracy at entering numbers and doing simple arithmetic operations on them. But, that skill is a very modest part of learning to understand, represent, and solve arithmetic problems. It takes only a modest amount of time for a student to learn to make effective use of a calculator. It takes years of instruction and practice for a student to meet contemporary standards of expertise in the field of math that we call arithmetic.

Improving Education—The Mission of This Book

One goal of this book is to help improve education by helping you to become a better teacher. Thus, many of the ideas that are discussed are far broader than just the field of ICT in education.

One goal of this book is to help you improve the education of your students through increasing your knowledge, understanding, and effective use of ICT in education. As a preservice or inservice teacher, you know that ICT has been highly touted as a vehicle for improving education. Quite likely you do not know about the broad range of possible uses of ICT in education and the research (or, lack there of) that suggests these uses will improve education.

There are certain aspects of improving education that can be mass-produced and/or mass distributed. That is, in some sense it is possible to apply ideas of automation to certain aspects of improving education. For example, we can work at a national level to develop better curriculum content and books that are designed to help students learn this curriculum content. Large numbers of such books can be printed and made available to large numbers of students. Similarly videos can be developed that combine curriculum content with some of our ideas on what constitutes effective instruction. Such videos can be distributed by broadcast and other methods in a manner that reach large numbers of students.

However, good teaching by humans currently lies at the very heart of good education for students. Good (human) teachers cannot be mass produced and/or mass distributed. As a preservice or inservice teacher, you have a responsibility of becoming as good a teacher as you can be. Moving up the “good teacher” expertise scale is a lifelong activity. The progress that you make will contribute to improving the education of your students.

Activities for Chapter 0

1. Now that you have read this chapter, “off the top of your head” name one idea covered in the chapter that seems particularly relevant to you, and name one idea that seems of relatively little relevance to you. Compare and contrast these two ideas from your point of view, explaining why one is of greater relevance (to you) than the other. Note that this type of question has lower-order and higher-order components. The first part of the question is lower-order. It asks you to select and name two ideas from the chapter. The second part of the question is higher-order. It asks you to do some compare and contrast thinking and presentation of logical or emotional arguments.

2. Consider your current level of expertise as a developing or on the job teacher. What is one of your specific areas of relatively high expertise. (This is a lower-order question, but answering it requires some understanding of the job of being a teacher and the idea of expertise in being a teacher.) Then share your current understanding of how ICT is affecting and/or might soon affect this specific area of your knowledge and skills. (This is a higher-order question). The overall design of this activity is based on the ideas of
constructivism—encouraging you to understand and then build upon your current knowledge and skills.

3. Make up a question/activity that you think would be appropriate to add to the above list. Design it so that it has a lower-order and a higher-order component. Then answer the question. This activity incorporates some of the ideas of evaluation, the top end of Bloom’s taxonomy. It is an activity that you might want to use in all of your studying of academic materials such as this book.

David Moursund
Fall 2003
Chapter 1
Introduction

This book is written for preservice and inservice PreK-12 teachers, and for teachers of teachers. Its goal is to improve the education that PreK-12 students and their teachers are receiving.

This book is about Information and Communication Technology (ICT) in education. Here are two key, unifying ideas:

1. A new technology such as ICT is developed as an aid to helping to solve certain types of problems that people deem to be important. ICT has proven to be a powerful aid in addressing a wide range of problems both in education and in many other fields.

2. A new technology creates problems. First, there are the problems of change, as old ways of addressing certain problems give way to new ways to address the same problems. Second, the new technology facilitates the identification of old and new problems that can make effective use of the technology. Many of these are problems that could not and cannot be effectively addressed by older technologies.

A Big “Big Idea”

The diagram of Figure 1.1 illustrates the single most important idea in this book. The idea is that properly educated people, using tools that aid their physical bodies and their minds, can solve a wide variety of challenging problems and accomplish a wide variety of challenging tasks.

Some examples of mental tools (often called mind tools) include reading and writing, arithmetic and mathematics, and ICT. And, of course, you know that ICT plays a major role in the field of tools that extend people’s physical capabilities.
Researchers and inventors are continually adding to our collection of mind and body tools. This means that our formal and informal education and training systems are faced by an ongoing and continually growing challenge. Over the past century, the pace of growth of human mind and body tools has accelerated. Our formal educational system has responded by providing (indeed, requiring) more and more years of formal schooling. There has been a huge growth in enrollment in higher education programs of study.

Our educational system has made a lot of progress in the past century. However, it is evident that the pace of growth of the “totality of human knowledge,” mind tools, and body tools far exceeds the pace of improvement in our formal education system.

The invention or development of a new physical body or mental tool creates both opportunities and challenges. In brief summary, a new tool:

1. Helps us to “better” solve some problems and accomplish some existing tasks that we are currently addressing without the new tool. Here, the term “better” may have meanings such as: in a more cost effective manner; faster; more precisely; with less danger; and so on.
2. Helps us to solve some problems and accomplish some tasks that cannot be solved without the tool.
3. Creates new problems. ICT in education, for example, creates problems such as digital equity, the need for a relatively expensive addition to a school’s infrastructure, and how to provide appropriate ICT education for preservice and inservice teachers. IT in education creates problems of how to deal with potential changes in curriculum content, instructional processes, and assessment in a manner that leads to students getting a better education.

ICT in Teaching and Learning

Our formal education system has a 5,000-year history, dating back to the development of reading, writing, and arithmetic (Divitt et al.). Over this period of time, educators have been faced by problems such as:

- What is appropriate content to include in the students’ curriculum?
- What are effective instructional practices for helping students to learn the curriculum content?
- What are effective student assessment practices to support student learning and school system accountability?
- What are effective preservice and inservice teacher education programs of study that lead to students having effective teachers?

It is evident that answers to these questions change over time. Answers are strongly affected by increases in human knowledge. In this book we are specifically interested in how the answers are being affected by the developments that are occurring in ICT. Thus we are led to four specific ICT in education questions:

- What is appropriate ICT content to include in the students’ curriculum?
• What are effective uses of ICT for helping students to learn the non-ICT and the ICT
curriculum content?

• What are effective uses of ICT in student assessment in non-ICT areas, and what are
other effective ways to assess student ICT knowledge and skills?

• What are effective preservice and inservice teacher education practices that lead to
effective integration of ICT into curriculum content, instructional processes, assessment,
and teacher’s overall professional learning and work?

These are hard questions. Moreover, ICT continues to change at a very rapid pace. Thus,
answers to the questions are changing and will continue to change in the future.

This issues raised in these questions are a challenge to our PreK-12 and teacher education
system. It is a major challenge to both preservice and inservice teachers. The rapid pace of
change in ICT is continually outdating their ICT knowledge and skills.

Craft and Science of Teaching and Learning

We now have 5,000 years of accumulated knowledge about teaching and learning in school
environments. This knowledge is called the Craft and Science of Teaching and Learning.

As an example, considering helping dyslexic students learn to read. Shaywitz (2003, p6)
indicates that dyslexia affects approximately 1/5 of all students. Brain science researchers have
identified differences in brain “wiring” between students who readily gain fluency (speed and
accuracy) in reading, and those who don’t. The brain imaging equipment used by the brain
researchers is dependent on powerful computers as well as other technology.

Reading specialists and brain scientists are now working together to develop effective
methods to help dyslexic students to learn to read well. Some of their successful approaches
make use of highly interactive computer-assisted learning. Often this computer-assisted learning
is delivered over a telecommunications system, such as the Web.

However, as Shaywitz emphasizes throughout her book, effective interventions also require
skilled teachers and supportive, caring parents and other people. The Craft and Science of
diagnosing students with dyslexia, helping them learn to read, and providing appropriate
accommodations to their particular learning difficulties is now well developed. Dyslexic students
often benefit from using a computer to do writing, using audio books and video materials, being
given extra time on tests, and being given the encouragement and opportunity to build upon their
mental and physical strengths. A word processor with a spelling checker is particularly valuable
to many dyslexics. This accommodation addresses two problems faced by many dyslexic
students—difficulty in learning to spell and difficulty in learning to write legibly.

This dyslexia example illustrates recent progress in the Craft and Science of Teaching and
Learning. You can learn more about roles of ICT in the diagnosis and treatment of dyslexia in
the Special and Gifted Education part of the Oregon Technology in Education Website (OTEC).

Four Important Components of the Science of Teaching and Learning

The Science of Teaching and Learning (SoTL) has made great progress in recent years.
Bransford et al. (1999) is a book that is available free on the Web that provides an excellent
overview of SoTL. I strongly recommend that all preservice and inservice teachers read the first
chapter as an introduction to this important field of study.
In this section of Chapter 1 we provide brief introductions to four important components of SoTL: constructivism, situated learning, motivation, and transfer of learning. Each of these is important to all teachers and all students at all grade levels and in all academic disciplines.

Constructivism

Constructivism is a learning theory that says a learner constructs new knowledge and understanding on top of and integrated with his or her current knowledge and understanding. Constructivist learning is based on the participant’s active engagement in critical thinking, problem solving, and search for meaning and understanding.

The basic ideas of constructivism date back at least a hundred years, with much of this early work being done by John Dewey (1859-1952). The early research has been solidified by more recent research by Jerome Bruner and many others (Ryder).

The President’s Council of Advisors on Science and Technology (PCAST, 1997) report summarizes the research literature on computers in education up through 1996. It includes a strong focus on constructivism as the most important underlying learning theory in the field. Quoting the report:

Constructivist theory has given rise to an approach to educational practice that places the locus of initiative and control largely within the student, who typically undertakes substantial, "authentic" tasks, presented in a realistic context, that require the self-directed application of various sorts of knowledge and skills for their successful execution. Such activities often involve student-initiated inquiries driven at least in part by the student's own curiosity, and are designed to motivate students in a more immediate way than is typical of traditional curricula based largely on the transmission of isolated facts.

Constructivist curricula often emphasize group activities designed in part to facilitate the acquisition of collaborative skills of the sort that are often required within contemporary work environments. Such group activities may offer students of varying ages and ability levels, and having different interests and prior experience, the opportunity to teach each other -- a mode of interaction that has been found to offer significant benefits to both tutor and tutee. Explicit attention is also given to the cultivation of higher-order thinking skills, including "meta-level" learning -- the acquisition of knowledge about how to learn, and how

Situated Learning

A learning theory called Situated Learning has been developing over the past two decades. It focuses on the idea that much of what we learn is dependent on the specific situation (environment, context) in which the learning occurs. Situated Learning emphasizes learning by doing and learning by addressing real, challenging problems.

ICT is a powerful aid to "doing" and to "addressing real, challenging problems." Thus, Situated Learning and ICT work well together. Situated Learning and Constructivism are compatible and mutually supportive.

Greg Kearsley maintains a Website that discusses a large number of different learning theories (Kearsley). Quoting Kearsley:

[Jean] Lave argues that learning as it normally occurs is a function of the activity, context and culture in which it occurs (i.e., it is situated). This contrasts with most classroom learning activities which involve knowledge which is abstract and out of context. Social interaction is a critical component of situated learning -- learners become involved in a "community of practice" which embodies certain beliefs and behaviors to be acquired. As the beginner or newcomer moves from the periphery of this community to its center, they become more active and engaged within the culture and hence assume the role of expert or old-timer. Furthermore, situated learning is usually unintentional rather than deliberate. These ideas are what Lave & Wenger (1991) call the process of "legitimate peripheral participation."
Nowadays, the majority of adults routinely make use of computers (email and the Web), cell telephones, CD and DVD players, and a large number of ICT systems that are built into cars, TV sets, and so on. By 1999, the number of computers being used in the “white collar” sector of business and industry in the US exceeded the number of workers in this sector.

This situation is in stark contrast with student use of ICT in PreK-12 schools. Schools in the US have an average of about one microcomputer per five students. Although more than half of these microcomputers are now located in classrooms (as contrasted with computer labs), their use is not routinely integrated into everyday student work. A significant fraction of the available ICT resources are used for playing games or using edutainment software that has questionable educational value. It is common for students in elementary schools to be scheduled into a computer lab for about 40-50 minutes, twice a week. The instruction in the lab and the work done there is often not integrated with their routine classroom work. Viewed from a Situated Learning perspective, the general types of uses of ICT in school are relatively far removed from the general goals for our educational system as well as from the goals for ICT in education that have been set by many states and by the International society for Technology in Education.

Motivation

A newborn child’s brain is designed to learn, is naturally curious, and is intrinsically (internally) motivated to learn. If the child is provided with an environment that is reasonably conducive to and supportive of learning, learning will occur at a rapid pace. This learning will include the marvelous accomplishment of learning to speak and understand speech, and learning the culture of his or her environment. A child raised in a bilingual, bicultural environment will become fluent in two languages and bicultural.

You are familiar with many different forms of extrinsic motivation, perhaps based on a system of rewards and/or punishments. Likely you are familiar with B.F. Skinner’s theory of behaviorism. Through appropriate use of behaviorist principles, rats, cats, dogs, people, and other animals can be trained to elicit certain predefined behaviors. These stimulus/response types of training have proven to be quite effective. (Note, however, in terms of education of humans, behavioral learning theory has largely given way to a variety of cognitive learning theories.)

There is no fine dividing line between intrinsic and extrinsic motivation. For example, consider a child growing up in the environment/culture of the home and community that includes the routine playing of musical instruments and enjoyment of music. Howard Gardner lists musical intelligence as one of the eight innate intelligences that people have. One can argue that each person has a certain level of intrinsic motivation to learn and do music. Growing up in a musically rich environment/culture provides a type of extrinsic motivation that blends with a child’s intrinsic music motivation. Eventually the child may develop a high level of intrinsic motivation in the field of music, and he or she may pursue a professional career in this field.

The music example illustrates a key idea in education. Teachers face the task of helping their students to become intrinsically motivated. Students who are intrinsically motivated (inherently interested) in a particular learning task will tend to learn more, better, faster, and remember longer what they have learned. Contrast this with a student who is extrinsically motivated to pass an upcoming test. The motivation may be to avoid failing a course, to get a good grade in a course, to please the teacher or parents, to get a money reward from parents, and so on. By and
large this extrinsic type of motivation leads to a “memorize, regurgitate, and quickly forget” type of learning.

During my lifetime I had the pleasure of watching my children and some of my grandchildren grow up in ICT-rich home environments. For many children, interactive computer games and other aspects of ICT are highly attention grabbing and seem be intrinsically motivating. When given an appropriate supportive environment, many children become intrinsically motivated to learn and routinely use ICT for play and work.

Over the years a number of software tools have been that many people find to be intrinsically motivating. Perhaps the first example was the spreadsheet. Approximately a half million people about Apple 2e computers and this software because it fit so well with what they wanted to do. A number of other intrinsically motivating pieces of tool software are discussed in Moursund (2000).

Transfer of Learning

Teaching for transfer is one of the seldom-specified but most important goals in education. We want students to gain knowledge and skills that they can use both in school and outside of school, immediately and in the future. The article abstract quoted below serves to define two major theories about transfer of learning (Perkins and Solomon, 1992).

Transfer of learning occurs when learning in one context enhances (positive transfer) or undermines (negative transfer) a related performance in another context. Transfer includes near transfer (to closely related contexts and performances) and far transfer (to rather different contexts and performances). Transfer is crucial to education, which generally aspires to impact on contexts quite different from the context of learning. Research on transfer argues that very often transfer does not occur, especially far transfer. However, sometimes far transfer does occur. Findings from various sources suggest that transfer happens by way of two rather different mechanisms. Reflexive or low road transfer involves the triggering of well-practiced routines by stimulus conditions similar to those in the learning context. Mindful or high road transfer involves deliberate effortful abstraction and a search for connections. Conventional educational practices often fail to establish the conditions either for reflexive or mindful transfer. However, education can be designed to honor these conditions and achieve transfer.

Transfer of learning is commonplace and often done without conscious thought. For example, suppose that when you were a child and learning to tie your shoes, all of your shoes had brown, cotton shoelaces. You mastered tying brown, cotton shoelaces. Then you got new shoes. The new shoes were a little bigger, and they had white, nylon shoe laces. The chances are that you had no trouble in transferring your shoe-tying skills to the new larger shoes with the different shoelaces.

Similarly, suppose you have achieved a high level of automaticity (speed and accuracy) in keyboarding. Then you can easily transfer this knowledge and skill among different computers. Both the shoe tying and the keyboarding are examples of near transfer, or low road transfer.

These examples give us some insight into one type of transfer of learning. Transfer occurs at a subconscious level if one has achieved automaticity of that which is to be transferred, and if one is transferring this learning to a problem that is sufficiently similar to the original situation so that differences are handled at a subconscious level, perhaps aided by a little conscious thought.

You know that it can take a great deal of instruction and practice to achieve a high level of automaticity in keyboarding (or in many other areas, such as sight reading music). Thus, in your everyday life you routinely encounter problems and tasks where you have not achieved a high
level of automaticity in solving the problem or accomplishing the task. This presents a challenge to you as a learner and to our educational system as a facilitator of learning.

Far transfer or high road transfer present a major challenge to students and our educational system. Often our educational system and our students do poorly when presented with this challenge. For example, a secondary school math class might teach the metric system of units. From the math class, students go to a science class. Frequently the science teacher reports that the students claim a complete lack of knowledge about the metric system. Essentially no transfer of metric system learning has occurred from the math class to the science class.

On a more general note, employers often complain that their newly hired employees have totally inadequate educations. Part of their complaint is that the employees cannot perform tasks on the job that they "should have" learned to do while in school. Schools respond by saying that the students have been taught to accomplish the tasks. Clearly, this is a transfer of learning problem that is owned jointly by schools, employees, and employers.

High-road transfer involves: cognitive understanding; purposeful and conscious analysis; mindfulness; and application of strategies that cut across disciplines. In high-road transfer, there is deliberate mindful abstraction of an idea that can transfer, and then conscious and deliberate application of the idea when faced by a problem where the idea may be useful.

For example, suppose that you are teaching your students to do process writing. Your students are leaning six steps:

1. brainstorming
2. organizing the brainstormed ideas
3. developing a draft
4. obtaining feedback from oneself and others
5. revising, which may involve going back to earlier steps
6. publishing—polishing the final product and making it available to others.

Can you think of problems other than writing in which this 6-step process, or a modification of it, might be applicable. How about composing music? How about painting a picture, designing a building, or choreographing a dance? How about doing a project in a project-based learning (Moursund, PBL Website)?

If you are teaching for high road transfer in this situation, you will teach your students that many different problems can be solved by use of a general Process Procedure that is illustrated by process writing. You will have your students learn a great deal about the Process Procedure in some specific area such as writing (the 6-step Writing Process). But, you will also have your students explore use of this Process Procedure in a number of different areas that are relevant to the students and to the goals of our educational system. (Examples are given in the previous paragraph.)

A number of other examples of teaching for high road transfer are given in Moursund (2002). ICT plays an important role in the Process Procedure and in many other applications of high road transfer. In Process Writing, for example, ICT facilitates all six of the steps listed above. It is particularly useful in revision and in publishing.
Theory into Practice

There is a huge gap between our accumulated research knowledge in education and our actual school-based teaching and learning practices. To help you understand why this is the case, we will briefly discuss constructivism, situated learning, motivation, and transfer of learning from the point of view of a (hypothetical) reader of this book.

Constructivism

It is obvious to me that this book is not specifically designed to meet my personal needs. The author does not know what I know and what I don’t know about the general field of education or about ICT in education. Thus, much of the content is too easy, too hard, not relevant to me, and so on. (Hypothetical Reader)

You are probably familiar with the arguments that support small class sizes. Among other things, small class size supports more interaction between students and the teacher, and supports more individualism of the curriculum content, instructional process, and assessment. Indeed, research on the benefits of students having highly qualified personal tutors suggest that the typical student in our school system is quite capable of learning as well as current students who are making A grades (Bloom, 1984).

It is possible to make a book highly interactive and to tailor it to a specific reader’s needs. This is what is done in Highly Interactive Intelligent Computer-Assisted Learning (HIICAL). However, this is time consuming and expensive. It can easily cost millions of dollars to develop such a book (course). Thus, the development of such books/courses is usually done only in situations where there is a relatively large mass market or where there is large funding from a government agency or a private foundation.

This means that in a typical teaching/learning situation much of the burden for constructivism lies with the individual learner. You (personally) know what you know. It is your job to take the learn materials and adopt them to your current knowledge and skills, and your specific needs. This is a very important idea for teachers. You can learn to be a “constructivist teacher.” However, one of the most important things you can do is to help you students learn to be responsible, self-reliant, constructivist learners. This idea can be integrated into teaching beginning at the earliest grade levels. It is part of the overall goal of helping students to become self-sufficient, lifelong learners.

Situated Learning

I am using your book in a workshop (short course) that I am taking. The workshop includes teachers who are interested in a number of different grade levels. The workshop is being given in a typical adult education setting, in an environment that is far removed from the one that I face in my teaching. It seems to me that this is a poor example of situated learning. (Hypothetical Reader)

You want to use your new ICT knowledge and skills to work with PreK-12 students in classrooms where you teach. Certainly the adult education inservice or preservice teacher education workshop is quite a bit different than the environment in which you want to use the knowledge and skills that you are gaining.

However, an effectively designed and facilitated preservice or inservice course/workshop can overcome some of the difficulties that you are naming. Here are some of ways in which this might be done:
1. The facilitator can draw heavily on the teaching knowledge and experience of the participants. This can be done in a manner that creates a discovery-based, highly interactive, sharing environment in which the participants gain a lot of “real classroom world” knowledge and skills.

2. All of the group discussions and all of the assignments or activities can be designed to allow participants to focus on ideas and examples specifically relevant to their own teaching situation.

3. Role playing, or facilitator modeling of teaching to children, can be employed.

4. The specific situations that teachers will encounter in their schools and classrooms can be a major topic. Thus, participants can learn about how to make effective use of their new knowledge and skills in a one-computer classroom, in a class where most (or few) of the students have ICT at home, in a classroom that has a pod of five Internet-connected computers, in a computer lab, and so on.

5. All of the examples presented by the facilitator can be drawn from actual school classroom settings.

6. Participants can be provided with materials and access to materials that include detailed classroom lesson plans.

The above list can be expanded. However, all of the ideas are merely substitutes for a staff development approach that has proven very effective. It is a classroom demonstration in the learner’s classroom. In this approach, a facilitator visits your classroom and teaches your students. You observe, perhaps acting as an assistant. Over time you gradually move from being an observer/helper to doing the instruction. For example, in an elementary school setting the workshop/course facilitator might do a writing lesson in which computers are used. You might then present a writing lesson later in the day or the next day, with the facilitator serving as your assistant and mentor. At a secondary school level the facilitator might teach one period, and you might then teach the same material using the same techniques in another section of the same course later in the day.

The trouble with this one-on-one approach is that it is quite expensive and does not lend itself to reaching the large number of preservice and inservice teachers who need the ICT education. Thus, this approach is most often found in schools that have an ICT coordinator whose duties include staff development. It can also be used in a school where the teachers each assume some of the staff development responsibilities in the school.

Motivation

I have been told that I need to know more about ICT, and there are pressures “from above” (requirements) for me to learn more. However, the school where I teach and the classrooms that I have visited are not making much use of ICT. It is not clear to me that computers are improving the education of students—mainly they seem like a waste of time and money that might better be spent on essentials such as improving student learning of the 3 Rs. I don’t have the time and energy to learn new things that are not immediately applicable to helping my students. (Hypothetical Reader #1)

I have been routinely using computers and the Internet for years, and I think they are great. I think that all students should have easy access to ICT both in their classrooms and at home, and that they should make routine use of such facilities. I really enjoy learning more about ICT and then making use of my increasing knowledge and skills. (Hypothetical Reader #2)
Hypothetical Reader #1 has some extrinsic motivation. It may be that he or she is taking a required ICT course and doesn’t particularly like computers. Hypothetical Reader #2 has intrinsic motivation. As a preservice or inservice teacher you know that you will experience better teaching results when most are all of your students are intrinsically motivated to learn. However, the reality is that this situation is not easy to achieve and seldom occurs.

There is quite a difference between teaching adults (especially inservice adults) than in teaching PreK-12 students. As students grow older they learn more about themselves and the world in which they live. They become more independent and self-sufficient.

It is assumed that you (a reader of this book) are an adult who has considerable intrinsic motivation to become or to be a good teacher. As an author, that makes my job easy. All I have to do is to help you understand the many benefits that ICT brings to students and teachers. If you become convinced that ICT can facilitate students getting a much better education, then it is likely that you will become intrinsically motivated to provide such ICT advantages to your students.

However, it is possible that no amount of evidence and arguments will convince you that calculators, computers, and Internet connectivity (email and the Web) are important to students in our educational system. If this is the case, here is something that might motivate you and help you develop intrinsic motivation as you read this book. Set a goal of being a highly qualified critic of ICT in education. Study ICT in education from the point of view of identifying its flaws and failing. I have developed a Web page to help you get started (Moursund’s “Arguments Against” Website).

Transfer of Learning

I think I understand the general concept of transfer of learning. However, I don’t see how it applies to taking ideas from this book and using them with my students. This book seems far removed from my teaching environment. (Typical reader)

As noted earlier, the goal of this book is to improve the education of our children. By reading about near/far transfer and about low road/high road transfer, you have probably increased your knowledge about how to teach for transfer. Teaching for transfer is one of the most important ways to improve our educational system.

As also noted earlier, there is a huge gap between educational theory and educational practice. You need to carefully examine your teaching knowledge, skills, and practices. Here is some food for thought.

1. Does your curriculum include a lot of emphasis on students gaining a highly level of automaticity (speed and accuracy) in certain areas? Perhaps you can identify one specific area in which you are striving to develop “machine-like” capabilities in your students, but where machines such as calculators and computers are far faster and more accurate. Time spent in achieving the automaticity for near transfer or low road transfer is time that is not available for teaching problem solving, critical thinking, and other higher cognition.

2. Do your students often take a “memorize and regurgitate” approach to materials you cover on your tests? Chances are that what they memorize and regurgitate is soon forgotten. There is almost no retention, or transfer into the future.
3. Many of the ideas and processes in problem solving, critical thinking and other higher-order cognition transfer over time and across different discipline areas. High road transfer provides a model for teaching for transfer, and it is especially relevant in teaching for problem solving, critical thinking, and higher-order cognition.

4. The chances are that you students have never been introduced to the idea of transfer of learning. Explore with your students their transfer of learning capabilities and limitations. Teach them the vocabulary “transfer of learning” and help them learn to identify when they are doing transfer of their learning.

As you read this book you will be exposed to many important educational ideas. Some will directly relate to ICT while others will apply to broader aspects of education. As you gain knowledge about one of these ideas, share it with some of your fellow preservice or inservice teachers, and with some of your students. That is, try transferring your new knowledge into environment outside of the one in which you are reading this book

Activities for Chapter 1

1. Have you ever tried to help someone else to learn something about ICT or to solve an ICT problem they were having? If so, discuss your successes and failures in this endeavor. What additional knowledge, skills, and experience would make you better at this helping task?

2. Do some reflective introspection about intrinsic and extrinsic motivation that has led you to read this book. Make some mental notes about what you expect to get out of reading this book. Then think about what the Preface and the first chapter have contributed toward these expectations, and whether they have added to your list of expectations.
Chapter 2
Self-Assessment on Some Basics of ICT

This book assumes that you have some introductory knowledge and skills in using an ICT system for word processing, email, and browsing the Web. This chapter contains a self-assessment instrument that you can use to judge your current levels in these and other basics widely used ICT tools. This information may be useful to you and your teacher as you proceed in an introductory or intermediate ICT in Education course.

Self-Assessment Instrument for General-Purpose ICT Tools

The ICT self-assessment instrument given in this chapter is designed for inservice and preservice teachers. It focuses on general-purpose ICT tools that are applicable in all academic disciplines.

The instrument makes use of the 7-point scale given in Figure 2.1. Four of the points are named, and it should be clear that this is not an equal interval scale. Moreover, note that the scale line extends both to the left and to the right of the labeled scale points. The meaning of each of the labels on the scale is given below the diagram.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novice; beginner</td>
<td>Average current teacher</td>
<td>Average school ICT coordinator</td>
<td>World class</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.1. Seven-point ICT teacher education expertise scale.

Novice; Beginner

Children are novices or beginners at the time they encounter each new thing in their environment. It is not surprising that children can learn to use ICT systems well before they begin to learn to read and write. Most young children have little trouble learning to point and click, and to follow the pictures and oral instructions given in age-appropriate games. School age children can learn the rudiments of word processing at the same time that they are learning to read and write.

Nowadays, almost all students receive a substantial introduction to computers well before they complete high school. This introduction may be informal, through games, self-instruction, and peer instruction. It may also be formal, through instruction offered by their classroom teachers and computer specialists in their schools. In such settings, very few children experience significant difficulty moving beyond the Novice; Beginner point on the 7-point scale.
However, occasionally a preservice teacher falls into the Novice; Beginner category. This situation may occur, for example when a "non traditional" older person returns to school to pursue a teacher education program of study. And, such a person may enough incorrect knowledge about a particular computer tool so that he might fall below the left-most scale point.

Average Current Teacher

A teacher is faced by the need to deal with: 1) general purpose ICT tools, such as those that their students have learned and/or are quite capable of learning; 2) ICT as an aid to instruction and assessment; 3) ICT hardware and software that their students use and that they use; 4) ICT as part of the content of the disciplines the teacher teaches; and 5) ICT as an aid to personal professional productivity. Teachers vary widely in their knowledge and experience in using ICT within these areas. Probably the "average" (the mean) for current teachers is best described as “has not yet achieved a confident level of functionality needed to make routine use of ICT everyday teaching.”

Average School ICT Coordinator

The person is well along toward meeting the ISTE NETS for teachers. These standards include meeting the ISTE NETS (12th grade level) for students and having a broad knowledge of uses of ICT in teaching and learning (ISTE NETS).

The average school ICT coordinator has considerable knowledge of educational software, is good at debugging ICT hardware, networking, and software problems, and is skilled at teaching both children and adults to use ICT facilities in education.

World Class

A “world class” ICT in education expert has a wide range of ICT knowledge and skills. This person is likely to be an invited (keynote) speaker at national and international ICT in education conferences. He or she may frequently present workshops and courses targeted toward school or school district ICT coordinators. He or she may have a leadership position such as the ICT coordinator in a large school district or for a state.

The world class ICT in education expert has a broad range of knowledge and experience in many levels of education and is an educational leader. Likely he or she is a visionary, helping to state-level and national-level leadership toward improving education through effective use of ICT.

Expertise

There is a difference between having some level of expertise and being an expert. Within any domain or area of knowledge and skills that is under consideration, an expertise scale runs from a very low level to a very high level. From a teacher point of view, you want to help your students move up expertise scales that correspond to the areas that you teach. Here are a few things to be aware of:

1. A learner brings existing knowledge and skills to whatever new learning task they face. This situation is the core of constructivism.
2. Learners vary in their innate mental and physical capabilities. Note, however, that the “nature versus nurture” issue is very complex. As teachers, our goal is to help our
students to develop knowledge and skills that move them up various expertise scales. Some students will move up faster and have the potential to move up further than other students.

3. It is very difficult (indeed, for the most part it is impossible) to accurately predict a long time in advance either how fast a learner will move up an expertise scale or how far along the scale the learner might progress. One of the things that educators have learned is that setting high goals and standards is usually very desirable. But, this must be done using common sense. Most children will not become world-class athletes or scholarly researchers.

4. Expertise in a domain has many dimensions. Some of these dimensions, such as drive, persistence, and motivation tend to cut across many different areas of expertise. There is considerable transfer of learning between areas of expertise.

5. Increasing expertise draws upon a combination of lower-order and higher-order knowledge and skills. While lower-order and higher-order can be taught and practiced somewhat separately from each other, seamless integration is a goal. Educational research and practice suggests that this integration should be inherent to the teaching and learning process.

6. A high level of expertise in a domain is exemplified by high knowledge and skill that is efficiently and effectively applied to solving the problems and accomplishing the tasks of the domain.

As an example of some of the above ideas, consider helping a student to gain increased expertise in writing in a word processing environment. This is obviously a complex domain, since it includes both writing (which is a complex domain) and word processing (which is a complex domain). Thus, to move a student up this expertise scale we might:

1. Place most of our emphasis on improving the learner’s writing knowledge and skills.
2. Place most of our emphasis on improving the learner’s word processing and desktop publication knowledge and skills.
3. Seek a middle position that combines aspects of (1) and (2) in a manner that best contributes to helping the student move up the expertise scale.

We know that spelling, grammar, and writing legible are all important aspects of (1). However, in some sense these are lower-order aspects as contrasted with developing and representing ideas that communicate effectively. Also, we know that a word processor is a powerful aid to spelling and legibility, and a useful aid in grammar. Thus, it might prove desirable to place less emphasis in (1) on spelling and legibility (good penmanship), and perhaps less time on grammar (especially in the areas that a computer can do well). This frees up time for more emphasis on higher-order aspects of writing and time for learning to use a word processor. Some of the time might be used to help students gain increased knowledge and skills in process writing and in process writing in a word processing environment.

Six Self-Assessment Questions

This section contains a six-question self-assessment instrument that covers several basic ICT tools. It is not a hands-on assessment. That is, the questions do not ask you to actually
demonstrate on a computer that you have skills in the areas being covered. In a later chapter of this book we will briefly explore the idea of hands-on assessment of computer knowledge and skills. North Carolina uses such an instrument in its statewide assessment of eighth grade students.

Each question is accompanied by a brief discussion of the topic being assessed. If you do not understand the details given in a particular brief discussion, the chances are that you are at the (1) or (2) level on this topic. After you give yourself a numerical rating on the 7-point scale, write a paragraph that explains and justifies your numerical rating.

1. Word processing: 1 2 3 4 5 6 7

A modern word processor contains hundreds of aids to writing and editing. For example, it may contain aids to help create headers, footers, page numbering, tables, styles, index, and table of contents. It may contain an outliner, provisions for arranging a list in alphabetical or numerical order, provisions for inclusion of and editing of graphics, and provisions for establishing Web links. It contains provisions for setting a first line indent and a hanging indent. In contains provisions to make use of a variety of typefaces and type sizes. It contains a spelling checker and may contain a grammar checker. It contains provisions for saving files in a variety of formats, including RTF. Briefly discuss your knowledge, skills, and experiences in using a modern word processor.

2. Desktop publishing: 1 2 3 4 5 6 7

Desktop publishing is the design and layout of a hardcopy document for effective communication. Increasing expertise is shown by knowing and following the rules about effective use of white space, layout, Z scan, typefaces, graphics, and color to improve communication. It is also shown by knowing how to design and use "styles" (the style sheet facilities of the word processor). Briefly discuss your knowledge, skills, and experiences in this area.

3. Email: 1 2 3 4 5 6 7

Email includes sending and receiving messages (including saving and deleting messages), sending and receiving attachments, building and maintaining an address book, building and maintaining a Distribution List, participation in chat groups, making use of News Groups, and making use of instant messaging. It includes the knowledge of avoiding responding to all of the people in a Distribution List when you really only want to respond to one specific person in the list. Briefly discuss your knowledge, skills, and experiences in this area.
4. World Wide Web: 1 2 3 4 5 6 7

The World Wide Web can be used to find information, to carry out business transactions, and as an aid to distance learning. Increasing expertise is evidenced by the ability to efficiently locate, evaluate, use, and learn from multiple, high quality sources of information on a topic. This includes increasing skill in using a variety of search engines and doing "advanced" searches. (These are some of the skills of a research librarian.) Effective use of the Web also includes knowledge and skill in navigating through interactive hypermedia documents, and developing and editing a list of Bookmarks or Favorites. Briefly discuss your knowledge, skills, and experiences in this area.

5. Suite of General-Purpose Tools: 1 2 3 4 5 6 7

In addition to word processing, email, and Web, a suite of general-purpose tools may include spreadsheet, database, paint graphics, draw graphics, and slide show (presentation graphics). And, of course, the suite makes it easy to apply all of its tools to a problem, readily moving from one tool to another and integrating components developed using the different tools as one works on a document. Discuss your knowledge and skill in using a suite of general-purpose tools, with special emphasis on spreadsheet, database, paint graphics, draw graphics and slide show or other presentation graphics.

6. Multimedia (Hypermedia): 1 2 3 4 5 6 7

A multimedia (hypermedia) document can be nonlinear and interactive. It can include text, sound, graphics, animation, video, and color. There has been substantial research on how to design interactive multimedia documents for effective communication. For example research indicates that improper use of color and type faces can result in a significant decrease in comprehension. The lack of good design can lead to a user “getting lost in hyper space.” Increasing expertise is evidenced by the ability to design and implement more complex and more effective multimedia documents, both in a Web and a non-Web environment. Briefly discuss your knowledge, skills, and experiences in this area.
Thinking About Your Self-Assessment

By and large, people tend to over rate themselves when using self-assessment instruments. However, the information provided by use of such an instrument is useful both to you and to your course instructor. As you identify your strengths and weaknesses, you may well become intrinsically motivated to build upon these strengths and to improve your areas of relative weakness.

If you are a preservice teacher, your goal should be to enter the teaching profession with ICT expertise somewhat above the “3” level. There is no reason that a beginning teacher should immediately need to take inservice ICT courses to be at the level of a typical inservice teacher. Instead, there is a growing expectation that newly minted teachers will be able to help more experienced teachers to gain needed ICT knowledge and skills.

Moreover, the typical inservice teacher is not yet comfortable in integrating ICT throughout the curriculum. If you are a preservice teacher, one of your ICT goals should be to become comfortable in helping your students to make grade level appropriate routine use of ICT tools.

Final Remarks

One of the intriguing aspects of ICT tools is that a person can gain a useful level of knowledge and skill in a modest number of minutes. However, each ICT tool is useful as an aid to problem solving and accomplishing a variety of higher-order, challenging tasks. Thus, moving up the expertise scale in use of a particular tool requires a combination of learning to use the tool better and learning to use the tool to solve complex problems and accomplish complex tasks. This provides a strong argument for the routine integration of ICT into each subject area that students study.

However, such integration presents major challenge to our educational system. As an example, consider word processing. A word processor is a useful aid to process writing. With appropriate instruction and practice, relatively young students can learn to keyboard much faster than they can print or handwrite, and the keyboarding provides much more legible text. Thus, a school might decide that its students should learn word processing as part of the overall process of learning process writing and learning to communicate effectively in writing. Now consider questions such as the following:

1. At what grade level or age is it appropriate for a student to begin to learn to use a word processor?

2. What should be dropped from the curriculum in order to make time for a student to learn to effectively use a word processor?

3. Who should provide the needed instruction? (What are the desirable qualifications? Remember, a word processor is not a typewriter. People who are skilled at teaching typing may little about word processing and teaching a student to write in a word processing environment).
4. How much school time should be used in helping a student to become fast and accurate at key boarding? (And, of course, at what age or grade level should this be done, and what should be dropped from the curriculum to provide the needed time?)

5. As a student gains skill in using a word processor (including the spelling checker and other built-in aids to writing), should the student be allowed to (or, required to) make use of this facility in writing and in taking essay tests?

6. Is use of a basal spelling text and weekly or more frequent “by hand” spelling test an effective and appropriate part of the curriculum when students routinely write using a word processor with a built-in spelling checker?

7. How should a teacher deal with the fact that some students have access to a word processor at home, and some do not?

8. Should cursive writing be dropped from the curriculum?

These types of questions help to suggest some of the breadth and depth challenges that teachers and schools face as they move toward greater integration of ICT into the everyday classroom.

Activities for Chapter 2

1. Select one of the six questions in the Self-Assessment instrument. Develop a “hands on” test question or activity that could be used in place of the self-assessment question. Note that such a hands-on test question is both more authentic and better adheres to the goals in situated learning.

2. Try out the Self-Assessment instrument on some of your fellow preservice or inservice teachers. Use this activity to engage them in conversation about the field of ICT in education.

3. What are your carefully considered opinions on the questions given in the Final Remarks section of this chapter?

4. Consider the quotation given below. (You might be interested in reading the entire article.) Think about how the author’s assertions fit with the idea of integrating ICT across the curriculum, and including a strong emphasis on higher-order thinking and problem solving using ICT skills.

Widespread concern about students' poor thinking skills has been expressed recently by educators, journalists, and the public at large. The National Assessment of Educational Progress has reported that students show weaknesses in the logical processes required for clear communication. In A NATION AT RISK, The National Commission on Excellence in Education noted that students have a poor command of such intellectual skills as drawing inferences and solving problems.

The College Board's Project Equality booklet, ACADEMIC PREPARATION FOR COLLEGE, called for the teaching of reasoning as a basic academic competency, along with reading, writing, speaking, listening, and mathematics. Finally, employers frequently report that young people lack the ability to think through problems and offer alternative solutions.

In spite of acknowledgement of the need to help students develop intellectual skills, little consensus exists about how thinking skills should be taught and who should teach them. Should thinking be taught as a separate skill, as part of each subject area, or as both? Do English and language arts teachers have a special role in the teaching of thinking skills? How do concepts like language and writing across the curriculum relate to thinking skills instruction?
Chapter 3
Compelling and Second Order Applications

By now you have begun to appreciate some of the challenges that ICT brings to education. You may have begun to form some definite opinions on appropriate goals for ICT in our formal educational system. You may have developed some ideas as to what should be added to the curriculum, and what should be deleted.

This chapter explores two important ideas about ICT in education: 1) Some computer applications are intrinsically motivating and have been widely adopted. We call them Compelling Applications. 2) Much of the ICT use in our schools is at a relatively low level that we call First Order. ICT will begin to have a much greater impact on education as we move toward Second Order applications.

A Little Bit of History

The “mass production” of electronic digital computers began in 1951, with the Introduction of the UNIVAC I. These early computers were expensive and not terribly reliable. However, they were a valuable aid to solving problems and accomplishing tasks in business, government, military, and research. During the 1950s, some colleges and universities acquired computers and developed courses on their use. By 1958, there were already some precollege students who were learning how to use computers.

The computer industry grew rapidly, as did the capabilities of computers. The 1960s saw the development of local area computer networks and time-shared computing. The trend was to make computers more readily available to people and more convenient to use. While the development and sales of “large, expensive” mainframe computers continued at a remarkable pace, less expensive and smaller minicomputers were developed. It became common for scientists to have minicomputers (as well as access to a mainframe computer, perhaps a timeshared mainframe) in their laboratories.

The latter half of the 1970s saw the development of microcomputers. The Apple 1 was produced in 1976, and various versions of the Apple 2 had been in production for years before IBM developed and began selling its first microcomputer in 1981. Now, the worldwide sales of microcomputers is approximately 150 million machines a year, or about one per 40 people. It is interesting to contemplate the fact that today’s modestly priced microcomputer is hundreds of times as fast as the million dollar mainframes of the early 1970s. Measured just in terms of compute power, current annual production of microcomputers is more than equivalent to one circa 1970 mainframe computer for each person on earth.

Compelling Applications

There are a number of computer applications that are compelling (intrinsically motivating) to people, companies, government agencies, and so on. The following article discusses the idea of “compelling” computer applications that many students and educations find to be intrinsically motivating.
Roles of IT in Improving Our Educational System

When microcomputers first started to become popular in the late 1970s, most computer-using businesspeople viewed them with disdain. Microcomputers were underpowered and not particularly useful in solving the problems and accomplishing the types of tasks businesspeople faced. Instead, microcomputers were "toys" that might best be used to play games or solve inconsequential problems.

This attitude toward microcomputers was forever changed with the 1979 development of the first spreadsheet software. A spreadsheet running on a "toy" computer was a powerful aid to doing bookkeeping and accounting tasks. Moreover, the software made it relatively easy to incorporate formulas (for example, compound interest and payment schedules) to help solve a particular problem. Thus, the spreadsheet software could handle many of the types of real-world problems faced by businesspeople.

The spreadsheet had an additional feature, one that made it particularly compelling. A spreadsheet can be viewed as a type of mathematical model for a particular aspect of a business (such as payroll or inventory). With this computerized mathematical model, it is easy to ask "what if?" questions and get prompt answers.

Compelling Applications (Two Examples and an Overview)

Spreadsheet. From the point of view of businesspeople, the spreadsheet was the first compelling application of a microcomputer. For this particular group of people, spreadsheet software has the following characteristics:

1. It is intrinsically motivating. (The user is intrinsically motivated to learn to use the software, because it is such a powerful aid to doing his or her job.) It empowers the user to solve problems and accomplish tasks that the user cannot readily accomplish without use of the software.

2. It is reasonably priced. Indeed, the worker's increased productivity far overshadowed the cost of both a microcomputer and the software. Thus, it was advantageous to businesses to provide such facilities to their workers who had need for them.

3. The time and effort needed to learn to use a spreadsheet is reasonable relative to the available time and capabilities of many businesspeople. One does not need to be a "rocket scientist" to learn to use a spreadsheet. In some sense, the compelling application embodies some of the knowledge of a field, so that the user can more rapidly gain a functional level of skill, as compared to a person who is learning how to do bookkeeping and accounting tasks by hand.

It is important to make two points here. First, compelling is in the eyes of the learner/user. Intrinsic motivation makes an application compelling.

Second, a compelling application empowers its user to do things that are not readily done without the computer system. Spreadsheet models, along with formulating and answering "what if?" questions, are very powerful aids to representing and solving business problems.

I suspect that most of us have not thought much about how the spreadsheet and other business software has changed business education. Essentially every high school in the country has replaced its typewriter labs with computer labs. Students now learn keyboarding instead of typing. They learn to represent and solve bookkeeping and accounting problems using spreadsheets and other accounting software. They learn to develop databases, and they do "electronic" filing. The more-modern business programs are now including a focus on e-commerce, preparing their students to work in this rapidly growing aspect of business.
Desktop publishing. The Macintosh computer that first became available in 1984, with its graphic user interface, was woefully underpowered. However, it had a mouse, and it came with both word processing (allowing multiple typefaces and font sizes) and graphics software. With the aid of a relatively inexpensive laser printer, the user of such a system could do professional-level desktop publishing. Take a look back at the three components I used to define a compelling application. Clearly, desktop publishing is a compelling application for many people.

Think about what this compelling application did for mechanical drawing, engineering drawing, and graphic arts curricula at the secondary school level. And, think about the spill over into journalism courses (e.g., the school newspaper and yearbook). Indeed, we are now beginning to expect that all students develop a reasonable level of knowledge and skill in the design and layout work required in desktop publishing, even in elementary school.

Two Key Questions

Now, I want you to think about two important questions.

1. What evidence do we have that business students in our secondary schools are getting a better education because of IT?
2. What are some additional examples of compelling applications that have had or have the potential to have a significant effect on our educational system?

The first question is important because it brings a new perspective to saying what constitutes an improvement in education. We no longer consider neat penmanship or speed and accuracy in doing simple arithmetic to be major goals in business education. And although being good at spelling is still useful, its importance has decreased because of spelling checkers in word processors.

Nowadays, we want graduates who can think, and who can represent and solve the types of problems that are common to the academic areas they have studied. We want them to effectively use commonly available aids to represent and solve such problems, and we want them to be good at learning new aids as they come along. We want our graduates to have good interpersonal skills so they can work effectively with their fellow employees and with customers.

Our current business education program is much changed from the past. Relative to contemporary needs, our business curriculum from 25 years ago would be classified as "terrible." More than likely, 25 years in the future, our current business education program will be considered terrible. Because IT is such a powerful aid to solving the problems and accomplishing the tasks faced by businesspeople, we are trying to hit a rapidly moving target. (I hope you are saying to yourself: "Hmm. I wonder if there are other components of our educational system that are faced with similar difficulties because IT is changing so rapidly."

The second question is important because it gets us started thinking about other changes that have already occurred in our educational system because of compelling applications. Moreover, it gets us thinking about whether there might be many compelling applications whose widespread use could lead to significant improvements in our educational system.

In Summary

Compelling applications from business have been integrated into our educational system and have produced significant changes in this system. A person who learns to make effective use of these compelling applications is empowered. This person can solve problems and accomplish tasks that are deemed important in our society and than cannot readily be done without the use of IT.

Perhaps you are detecting a pattern? Consider the hypothesis that compelling applications from business are apt to be powerful change agents in the K-12 curriculum. Remember that the underpinnings of science are generating and testing hypotheses. You can add to your understanding of the science of teaching and learning by testing this hypothesis. Perhaps the hypothesis is not correct. Do you know some good examples of compelling applications in business that have not had an effect on K-12 education?

Now move your thinking outside the business curriculum. Spend some time thinking about the non-business courses you teach or are familiar with. From your point of view, are there compelling applications that should be an integral component of some of these courses? Please send me your ideas about other compelling applications that have, have not, or could affect K-12 education.
First-Order and Second-Order Uses of ICT

As noted in earlier parts of this book, it is quite easy to develop a useful level of knowledge of such tools as a word processor, email, and a Web browser. For many people, these three tools are sufficient justification for owning and regularly using a computer. Other people find that computer games (perhaps played over the Internet) provide more than enough reason for owning and regularly using a computer.

Essentially all students in our formal precollege education system are learning how to use a word processor, email, Web browser, and various forms of edutainment (a word that combines educational and entertainment) software. However, the nature and extent of this ICT use in schools just touches the surface of the current capabilities of ICT in education. The following article I wrote for Leading and Learning with Technology explores the idea of moving beyond such superficial uses of ICT in education.

Getting to the Second Order

Moursund, D.G. (2002). *Getting to the second order: Moving beyond amplification uses of information and communications technology in education*. Learning and Leading with Technology. v30 n1 pp6-. Reprinted with permission from Learning and Leading with Technology (c) 2002-2003, ISTE (the International Society for Technology in Education. 800.336.5191 (U.S. & Canada) or 541.302.3777, cust_svc@iste.org, http://www.iste.org/. Reprint permission does not constitute an endorsement by ISTE of the product, training, or course.

This was an invited article that appeared as part of the celebration of the start of the 30th year of publication of Learning and Leading with Technology. I founded this publication in 1974 and served as Editor-in-Chief until the end of April 2001.

I am pleased to have the opportunity to write for the first issue in Volume 30 of Learning & Leading with Technology. When I started this periodical nearly 30 years ago, I gave little thought as to what its future might be.

Like Learning & Leading with Technology, the field of Information and Communication Technology (ICT) in education has come a long way--but it has just scratched the surface of what is to come. During the past three decades, ICT has had some limited effect on curriculum content, instructional processes, assessment, and the professional lives of educators. But, for the most part our educational system has been "business as usual," with many small (incremental) changes. In total, our educational system has not changed much during this time.

Contrast this with the ICT-based changes outside of our educational system (Christensen, 2000; Moursund, 2001). There have been substantial gains in productivity attributed to ICT. Many new companies have been created and have prospered, and many other companies have proven unable to effectively deal with ICT-related changes.

My prediction is that the next three decades will see ICT being a disruptive force in education. Large changes will occur, and many of our schools and school systems that attempt to follow the "traditional" path of the past decades will not prosper. This article looks at where ICT in education is headed and what educators can do now to help significantly improve the quality of education our students are receiving.

Incremental Change

On May 6, 1954, Roger Bannister became the first person to break the 4-minute barrier in the mile foot race. Since then, through better training, changes in the track surface, better running shoes, and so on, the world record for the mile has been broken a number of times, and it is now about 3 minutes 43 seconds.
This is an excellent example of incremental change, with small changes occurring from time to time. Note that the total improvement has been less than 8%.

Now, think about two possible goals in people movement:

- The goal is to have a person run a mile as fast as possible, aided by "simple technology" such as good running shoes, a good running track, good coaching, and rigorous training.
- The goal is for an ordinary person to quickly move a distance of a mile using appropriate, safe, modern technology.

Clearly, the more sophisticated technology that is allowed in achieving the second goal has made it easy for most people to break the 4-minute mile. Indeed, the technology need not be very sophisticated. Bicyclists and motorcyclists can move faster than the fastest runners. The first locomotives powered by steam engines were not an incremental change in transportation--they were a revolutionary change that contributed to significant changes in our society.

Amplification Versus Second-Order Change

Desktop Publication Example

To a considerable extent, new inventions are first used to "amplify" (do better, faster) what we are already doing (Moursund, 1997). Thus, a word processor can be used like an electric typewriter that has a memory. Using a word processor like an electric typewriter is an amplification (i.e., first-order) use of ICT. This type of use eventually led to desktop publication, a second-order use of the technology. Desktop publishing includes:

- design for effective communication
- appropriate use of styles and templates
- appropriate use of typefaces and color
- appropriate use of graphics; and
- meeting contemporary publication standards

The word processor and desktop publishing facilitate the "revise, revise, revise" and the publishing phase of process writing. Desktop publishing was a disruptive technology, and it substantially changed the publishing industry.

Three conditions need to be satisfied to move from first-order to second-order applications of ICT:

1. appropriate hardware and software
2. a clearly recognizable benefit (i.e., intrinsic motivation) to people who potentially could make the move
3. formal and informal training and education to help interested people make the move

For desktop publishing, the appropriate hardware and software became available with the introduction of the Macintosh computer and desktop laser printer in 1984. Many people in publishing recognized the potential and were intrinsically motivated to move to desktop publishing. Through self-instruction, learning from their peers, and workshops and longer courses, a large number of people achieved levels of expertise that met their needs.

Some people would claim that our K-12 students have also made the move, because essentially all high school graduates know how to use a word processor. However, for most of them, use of a word processor is essentially at the amplification level and is far from meeting contemporary standards for desktop publishing.

Essentially the same analysis holds for developing and publishing documents in an interactive multimedia environment, and for a number of other uses of ICT. Many students and teachers find a variety of ICT applications to be intrinsically motivating. However, relatively few K-12 students have moved significantly beyond the amplification level in their uses.

Why is this? Let's go back to the three conditions necessary to move from first-order to second-order use.
1. Appropriate hardware and software. This is available in essentially all schools. Indeed, perhaps 2/3 of students have appropriate facilities at home. Thus, this is not the reason why so few students move beyond amplification of first-order ICT applications.

2. Clearly recognizable benefits. For the most part, curriculum developers, teachers, students, and many other stakeholders do not recognize the potential benefits of moving beyond amplification. For example, I am not aware of any statewide assessment of students that tests for knowledge and skills in desktop publication, interactive multimedia publication, or full integration of ICT in math and science education. Such an assessment would need to be in a hands on mode, with the electronic copies being carefully analyzed and graded. Most K-12 students lack the maturity to recognize that something is missing in their ICT education, and they lack the knowledge of potential benefits of the second-order applications we are discussing.

3. Training and education. Of course, self-instruction opportunities for K-12 students and their teachers are widely available. But, the formal instruction they are receiving--the students while they are in K-12 schools; the teachers while they are in their teacher education programs and inservice education--is totally inadequate to the task.

ICT in Math Education Example

The same type of analysis as was used with desktop publishing is relevant to math education, but additional issues will emerge. (Author's note: Read more about ICT in math education in Moursund, 2002a.)

Moreover, the approach used here can be applied to other disciplines.

Begin with a set of goals for education in the discipline being analyzed. In math education, we want students to:

1. Learn math and how to solve math problems that they encounter as they, work, study, and play in a wide variety of discipline areas.
2. Learn to pose mathematical problems and represent problem situations as mathematical problems.
3. Learn how to learn math.

Let's briefly analyze the potential for ICT to affect these goals.

1. Learn math and how to solve math problems. Perhaps the largest potential ICT effect in math education is that calculators and computers can solve a very wide range of math problems. Thus, at the current time our math education system spends the majority of its teaching efforts and time helping students learn to do procedural tasks that machines can do faster and more accurately. The analogy with the mile foot race and traveling a mile aided by technology seem particularly powerful to me. A person plus machine can out perform a person alone in a wide variety of math problem-solving tasks. For example, consider graphing of functions and data.

2. Learn to pose mathematical problems and represent problem situations as mathematical problems. This area is increasingly important as use of computational modeling steadily grows in each discipline. For example, one of the winners of the Nobel Prize in Chemistry in 1998 received the award for 15 years of work in computational modeling in chemistry. All of the sciences (including math) now include computational modeling as one of their major components. Computational modeling in economics has long been a productive approach to problems in this field. The spreadsheet is, of course, a powerful aid to computational modeling in business and many other fields. The digitizing and manipulation of film and video are examples of using computational modeling that makes use of quite sophisticated mathematics.

3. Learn to learn math. Computer-assisted learning (CAL), intelligent computer-assisted learning (ICAL), and distance learning are all aids to learning math. Largely, CAL has been used at an amplification level in math education, as an automated flash card system with lots of bells and whistles. For the most part, distance learning is used to deliver the traditional curriculum. The Web is a global library, and learning to use the math global Library is part of learning to learn math. For the most part, students are not learning to use the math global library.

Let's return to our three-item list of what is needed to move from first order to second order, and look at it from a math education point of view.
1. Appropriate hardware and software. Math educators believe every student needs ready access to the ICT systems to be used in math education. This helps to explain the emphasis on handheld calculators. At the current time, the "ready access" requirement cannot be met by providing all students with handheld Internet-connected computers, or laptops and desktop machines. Progress in handheld computers and wireless technology is gradually eating away at this problem.

2. Clearly recognizable benefits. The use of handheld calculators on state and national assessments is now generally accepted. Many students choose to carry a calculator and/or to have one readily available at home. But, little progress has occurred to allowing students to use more sophisticated ICT on math tests—thus, there is a severe restriction to potential benefits to students.

3. Training and education. It takes very little time to learn to use a four-function calculator at an amplification level. However, ask yourself the following three questions:
 a. Do my students and I know how to make effective use of the memory (e.g., the M+) and the numerical constant features of a simple calculator?
 b. Do my students and I know how to detect and correct keying errors?
 c. Do my students and I use a simple calculator comfortably and easily in a manner that brings this computational power to all subject areas that we address?

Very few teachers answer "yes" to all of these questions. It is evident that it takes significant training and education to move beyond the amplification level in use of a simple calculator. The learning effort required for more powerful calculators and for computers is much larger.

Now, let's imagine what would constitute moving math education into broad-based second-order ICT applications. Again, I follow my list of three necessary conditions for this.

1. Appropriate hardware and software. Students need a computer system with a large display, a full-size keyboard, and good connectivity. They need a full range of software that is designed to support the learning and using of math both in a math classroom environment and in the other environments (school, home, work, play) that they encounter.

2. Clearly recognizable benefits. Students will recognize the benefits when the tool becomes an integral component of curriculum, instruction, assessment, and application in both the math classroom environment and in a wide range of environments outside of the math classroom. Students will be able to accomplish math-related tasks that they want to accomplish (intrinsic motivation) and cannot accomplish without the technology.

3. Training and education. A substantial change in math education is needed to achieve second-order effects. Although calculators have given us some hints as to what is possible, calculators are too limited to transform math education. Imagine, for example, the effects of all K-12 students having routine access to "just in time" highly interactive intelligent computer-assisted learning and distance learning that covers all topics in the K-14 math curriculum. This instruction would include built-in, routine use of the capabilities of an ICT system. It would be provided on an ICT system with a large viewing screen, good keyboard as well as voice input, and good connectivity to the Internet.

Problem Solving

Each academic discipline addresses the issues of representing and solving the problems within the discipline. In this section, I use the term problem solving to encompass a variety of tasks such as:

- posing and answering questions
- posing and solving problems
- posing and accomplishing tasks
- posing and making wise decisions
- using higher-order, critical, and wise thinking to do all of the above

Figure 3.1 illustrates six steps that might occur as one encounters and works to solve a math problem situation. The same type of diagram exists for each discipline area. At the current time, however, the point I am trying to make is perhaps best illustrated in math.
The six steps are:

1. Understand the problem situation and translate into a clearly defined problem. What is the given initial situation and what is the goal? What are the resources and rules that apply to solving the problem? (Moursund, 2002b).

2. Model the problem as a math problem. That is, translate the problem into a "pure" math problem. This is somewhat akin to what one does in translating a word problem into a set of equations to be solved.

3. Solve the pure math problem.

4. Translate the results back into a statement about the problem to be solved. This can be thought of as unmodeling, sort of the opposite of step 2.

5. Check to see if the problem has actually been solved.

6. Check to see if the original problem situation is resolved (solved). If it hasn't, reformulate the problem situation and/or problem and start over at step 1 or 2.

Estimates are that approximately 75% of K-12 math education time is spent helping students learn to do step 3 with reasonable speed and accuracy. Thus, the time spent learning the other steps is quite limited.

Step 3 is what calculators and computers do best. That is, the great majority of the K-12 math education curriculum consists in teaching students to compete with machines! This suggests that we might decrease the time spent in teaching by-hand methods of doing step 3, and spend the time that is saved in developing greater skill in doing all of the other steps. This would represent a substantial change in math education.

Remember, the analysis in this section focused on math. However, the diagram of Figure 1 is applicable in any academic discipline. Steady progress in each discipline is increasing the number of step 3 procedures that can be carried out by an ICT system and in which ICT is a major help to a person carrying out a procedure.

Science of Teaching and Learning

There is a large and rapidly growing body of knowledge called the Science of Teaching and Learning (Bransford et al., 2000). This research and practice-based knowledge provides a foundation for substantial improvements in our educational system. The problem, however, is how to achieve widespread implementation of this research and practice-based knowledge.

One way to think about this is to consider what can be mass produced and/or mass distributed, and what cannot. For example, it is very difficult to change the educational knowledge and skills of a few million teachers. It is relatively easy to mass-produce and mass distribute four-function handheld calculators.
Although the writing of a book or a piece of software is typically done by a small number of people (not mass production), a book or software itself can be mass reproduced and mass distributed.

If ICT is going to help in substantially improving education, it will be through aspects of curriculum content, instructional processes, and assessment that can be mass-produced and/or mass-reproduced, and mass-distributed. The following list provides some examples. It provides some insights into the future of education.

1. Highly interactive intelligent computer-assisted learning (HIICAL) can be mass reproduced and mass distributed. Eventually we will have HIICAL that covers the full range of curriculum that a K-12 student person might want to study. This will be a slow, gradual process. HIICAL will incorporate what is known about the science and practice of effective teaching and learning. Eventually we will have a substantial amount of HIICAL that can teach better than an average classroom teacher who is attempting to teach a whole classroom full of students. At the current time there are a modest but growing number of examples of such HIICAL. An excellent example is provided by the Fast ForWord software used to help severe speech delayed students (Fast ForWord, 2002). Some of the "Help" features being built into modern pieces of software can be categorized as HIICAL.

2. Software that can solve or help solve a specified category of problems can be mass-reproduced and mass-distributed. Examples include the spelling checker, thesaurus, and grammar checker in word-processing software; math problem-solving software such as Mathematica or Maple; and statistics and graphing software. It is disruptive to curriculum content when curriculum is changed from teaching students to do tasks by hand to teaching students to do such tasks in a computer-assisted environment. Many teachers are skilled in teaching the lower-order skills needed in problem solving and are not comfortable moving to an emphasis on higher-order skills.

3. Interactive assessment (computer-assisted testing) making possible both self-assessment and assessment at a time that is convenient to the student. Though such tests are expensive to develop, they are gradually coming into widespread use. Eventually it will be possible for students to easily assess themselves on whatever they are striving to learn. Often this is a feature of HIICAL.

4. Individualized instruction. Constructivism and individualization are highly touted in education, but are not well implemented. This is partly because an individual teacher cannot readily know in detail what each of their students knows and adjust the instruction so that it builds on the knowledge each individual student already has. At the current time, developing and implementing an individual education plan is costly relative to the current per-pupil costs of general education. An interesting aspect of ICT is that it can support a great deal of individualization in a mass-production mode.

5. All students will have routine access to the Web. Neither the teacher nor the books available in one's classroom or school library hold a candle to the size of the emerging global library available on the Web. It is somewhat disruptive to a teacher for students to find information the teacher does not already know.

Concluding Remarks

The totality of human knowledge continues to grow quite rapidly. Thus, our educational system is faced by content-related problems:

1. What should we help students store in their heads? Remember, a student can learn only a tiny (and steadily decreasing) fraction of the totality of human knowledge. Thus, our educational system needs to continually reexamine this issue.

2. What should we help students learn to do making use of aids such as ICT, books, and other mind tools? Remember, a steadily growing amount of this knowledge is stored in computers in "the ICT system can do it for you" mode (as in step 3 of Figure 1).

ICT can help students to learn more, better, and faster. Still, such improvements are incremental. They are not second-order changes. They cannot hope to begin to make a dent into the rapidly growing totality of human knowledge.

ICT can solve many of the problems and accomplish many of the tasks that students are currently learning to do by hand. Moreover, ICT can help students become substantially more productive in solving problems and accomplishing tasks. If appropriately educated, a student working with an ICT system can far out perform a student who lacks such an aid in a wide range of problem-solving tasks. Our educational system
will be significantly change education in the next three decades as it incorporates the idea of educating students and ICT to work together.

For ICT-using teachers, the message is clear. Work to move yourself and your students--your curriculum, instruction and assessment--from amplification (first-order) uses of ICT to second-order uses of ICT.

Resources

Maple: http://www.maplesoft.com/

References

Terms

Computer-Assisted Learning (CAL): Includes drill and practice, tutorials, simulations, and virtual realities designed to help students learn. CAL includes the "Help" features built into software applications and can be a component of a Web-based distance learning course.

Constructivism: The learning theory that students construct knowledge by building on their current knowledge. This theory helps make the distinction between teachers teaching and students learning, and it supports the need for individualization of instruction.

Disruptive Technology: A new technology that is disruptive to a current business or way of doing things. For example, the automobile was disruptive to the horse and buggy industry; the microcomputer and word processing software were disruptive to the typewriter industry.

Highly Interactive Intelligent Computer-Assisted Instruction (HIICAL): Begin with CAL. Design it so there is a great deal of interaction between the computer and the learner. Enhance this with artificial intelligence to improve the quality of the instruction and the interaction. The result is HIICAL. For more, see L&L 28(7).

Information and Communications Technology (ICT): ICT is an expansion on the term information technology (IT) designed to stress that communications technology such as the Internet is an important component of the field.

Intelligent Computer-Assisted Learning (ICAL): Use of artificial intelligence to improve CAL. For example, an ICAL system may contain models of the learner, the curriculum content, the teaching process, assessment, reward structures, and so on. These are combined and used in an intelligent fashion to increase the quality, quantity, and speed of student learning.
Final Remarks

Some people find one or more pieces of software to be compelling—intrinsically motivating and attention grabbing. For a child, the piece of software might be a game, an educational game (edutainment), a program for creating graphics, or perhaps a word processor.

However, relatively few students are intrinsically motivated to learn a wide range of computer tools such as those discussed in Chapter 2. And, still fewer students are intrinsically motivated to learn to routinely use such tools at a second-order level.

For most students, a combination of extrinsic and intrinsic motivation is needed to learn to use a wide range of general-purpose ICT tools. Our educational system has the dual challenge of helping students learn to use these tools and creating an environment in which it is to the learner’s advantage to learn to routinely and effectively use these tools. That is, our schools need to create situated learning environments in which students routinely are facilitated in making second-order uses of a wide range of ICT tools. This is a responsibility of every classroom teacher.

Activities for Chapter 3

1. The A Bit of History section of this chapter mentioned timeshared computers. The term was not defined. Thus, you were left with the task of drawing on your own knowledge and the context provided by the paragraph in order to build an understanding of what was being discussed. You were given an opportunity to practice constructivism. Did you think about “time shares” in real estate? Did you think about how computers process credit card transactions? Did you do a Web search or look in a dictionary? Think about your constructivist activities in dealing with this term.

2. Think about your own current uses of ICT. What use do you find to be most compelling (to you), and why?

3. Think about your own current uses of ICT. Divide them into first-order and second-order uses. Select one of your first-order uses that is somewhat intrinsically motivating (compelling) to you. What would it take for your use of this application to become second-order for you?

4. Select a grade level or subject area that you teach or are preparing to teach. For this teaching situation, select one piece of software that you feel is most important to emphasize. That is, think about a piece of software that is compelling to you and that you would like your students to find compelling. How would you go about creating a situated learning environment that is extrinsically motivating and that would move your students to second-order use of this piece of software?
Chapter 4
Generic Computer Tools

This is the first of six chapters that explore various components of the field of ICT in education.

The term "generic tool" is used in this document to represent ICT tools useful in many different disciplines and that might be taught to most or all students at the PreK-12 level.

Typical candidates for this designation include:

- Word processor.
- Database.
- Spreadsheet.
- Graphics (both Paint and Draw).
- Graphing (of data and functions), using both computers and graphing calculators.
- Desktop publication systems.
- Desktop presentation systems.
- Multimedia and hypermedia systems.
- Connectivity, including email, the Web, and groupware.
- Calculators (the full range, from low-end 4-function calculators to high-end calculators that can solve equations, graph functions, and may be programmable).

The International Society for Technology in Education (ISTE) and a number of other people and organizations have made recommendations about students learning to use generic tools. For example, the National Council of Teachers of Mathematics has supported use of calculators in the curriculum since 1980. ISTE believes that all students can and should develop a reasonable level of skill in use of almost all of the tools listed above by the end of high school. Indeed, ISTE recommends that most of the initial phases of learning to use these tools should be completed by the end of the 8th grade.

An examination of the software for these various application areas indicates that the software is steadily improving, but typically growing more complex. It also reveals the development of "templates" that contain substantial knowledge on appropriate use of the tool. Simple examples are provided by templates for various types of letters to be used in correspondence, or templates for various types of slides (visuals) to be used in a presentation.

There tend to be two commonly used approaches to helping students learn generic tools. In one approach, instruction in the tool occurs in an ICT course or unit of instruction. For example, in an elementary school a “computer teacher” might present the instruction in a computer lab. A second approach is for the instruction to be presented as part of a non-ICT course or unit of study, with the instruction being presented by the regular classroom teacher. For example students in elementary school might learn to use a 4-function calculator during their math
An ICT teacher tends to know more than the regular classroom teacher about the generic application being taught and tends to be more experienced in teaching ICT. Since the same teacher may be teaching all students at a particular grade level, or all students in a school, this helps to ensure a common base of student knowledge about the application.

However, the instruction given by an ICT teacher in a computer lab is often not closely related to the curriculum that students are currently studying in their regular classroom. Transfer of learning to the regular classroom and the subjects being studied there may be weak, or may not occur.

In addition, it often happens that the regular classroom teacher does not attend and participate in the instruction provided by the ICT teacher. Thus, the regular teacher does not know what his or her students are learning about ICT and does not gain in knowledge of how to teach this aspect of ICT.

The ISTE National Educational Technology Standards for Teachers calls for teachers to meet the ISTE NETS for Students (the 12th grade standards) as well as having knowledge and skill in use of ICT in curriculum, instruction, and assessment (ISTE NETS). Thus, a good approach to use when an ICT teacher is teaching the basic of use of generic tools (especially at the PreK-5 levels) is:

1. The regular classroom teacher serves as an assistant in the computer lab as his or her students receive ICT instruction on generic applications.

2. The ICT teacher and the regular classroom teacher work together to plan the computer lab instruction so that it incorporates activities that are relevant to the current curriculum in the regular classroom.

3. The regular classroom teacher then immediately reinforces this integration of ICT into the regular classroom curriculum by class discussions and activities.

Another approach is to have the ICT teacher come to the regular classroom and work together with the regular classroom teacher to present instruction about ICT generic applications instruction.

Still another approach is to have the classroom teacher or an ICT teacher provide instruction to a very small number of “early adopters” of a tool in a particular classroom, and then have these students provide one-on-one instruction to others in the class. Such peer instruction can be quite effective.

Learning a Specific Generic Tool

In Chapter 2 we made use of the following expertise scale for preservice and inservice teachers:
I estimate that the ISTE NETS for teachers is approximately a 4 on this scale. In terms of the discussion in this chapter, the suggestion is that preservice and inservice teachers should know most of the generic computer applications quite well—better than is currently the case.

One way to think about the challenge of learning a generic application is that the typical manual for such an application is several hundred pages in length. Similarly, books written about a specific generic application tend to be several hundred pages in length and may be designed to serve as the text for a substantial high school or college course. This provides evidence of the complexity of a generic application.

To cite a specific example, consider Microsoft Word. I have seen estimates that the typical user of this word processor uses less than 5% of the capabilities of this generic tool. You can do a quick check on your use of whatever word processor you typically use. Look at each item on each menu. Do you understand it fully? Then spend some time browsing the Help component of the application. What percentage of the items listed there is quite familiar to you?

A different way of thinking about this situation is the easy entry and learning by doing approach. ICT lends itself to getting started with only a modest amount of formal instruction, and then learning by doing. Remember, however, each generic application contains a huge amount of breadth and depth of aids to addressing a certain category of problems. Few PreK-12 students, preservice teachers, and inservice teachers make significant progress in gaining this depth and breadth on their own.

Thus, one very important approach to ICT generic tool education is to create learning situations that foster learning about the generic tool and that provide “just in time” breadth and depth instruction that is immediately useful to the learner. The just in time instruction might come from one’s fellow students (peer instruction), from manuals and books, from one’s teachers, from the computer system itself, and so on.

Example: Learning to Use a Word Processor

Chapter 2 contains a self-assessment question about use of a word processor. The accompanying information in this question states:

A modern word processor contains hundreds of aids to writing and editing. For example, it may contain aids to help create headers, footers, page numbering, tables, styles, index, and table of contents. It may contain an outliner, provisions for arranging a list in alphabetical or numerical order, provisions for inclusion of and editing of graphics, and provisions for establishing Web links. It contains provisions for setting a first line indent and a hanging indent. In contains provisions to make use of a variety of typefaces and type sizes. It contains a spelling checker and may contain a grammar checker. It contains provisions for saving files in a variety of formats, including RTF. Briefly discuss your knowledge, skills, and experiences in using a modern word processor.
Consider Pat, a pre-literate child perhaps three or four years old, growing up in a home where the parents have a computer and use computers on their jobs. Think about Pat’s first exposure to using a word processor. Pat has learned some or all of the letters of the alphabet and perhaps the spelling of his or her name. Thus, Pat can sit at a keyboard (probably on a parent’s lap), key in letters and see them appear on the display screen, and perhaps key in the letters of his or her name.

Next, think about Pat just finishing the third grade. Pat has grown up in a computer-rich environment and attended a school that places significant emphasis on learning to make use of ICT. Pat has learned to read and is just beginning to read to learn. (This is a transition that an average child can make by the end of the third grade.) The school has emphasized rudiments of touch keyboard and developing the beginnings of automaticity in keyboarding. Thus, Pat keyboards at 10 to 15 or so words per minute, which is faster than he or she can print and/or handwrite.) Pat knows how to correct keyboarding errors, do very rudimentary editing at a keyboard, and how to print out a word-processed document. Also, Pat knows how to use a portable keyboarding unit (such as an AlphaSmart) for keyboarding text, and how to transfer this text into a laptop of desktop microcomputer.

Now, continue to follow Pat through the end of the fifth grade. Pat now keyboards at 25 words per minute, or more, and is comfortable at composing at a keyboard. This speed requires a level of automaticity that does not disappear if not used over a period of time, such as a summer. Twenty-five words per minute is far faster than a typical child can print or write. Pat uses a spelling checker and is adept at correcting spelling errors. Pat also makes routine use of the built-in dictionary and the grammar checker, and has learned the rudiments of desktop publishing. Pat saves documents to a server and to a portable medium, such as a removable disk, moving documents from school to home and from home to school, and is quite comfortable with using different makes and models of computers.

We continue to follow the word processing exploits of Pat through the eighth grade. Now Pat makes use of a style sheet and can create a new style sheet to fit a new writing situation. Pat makes use of bulleted and numbered lists, and tables. The child is relatively skilled in doing layout and design of a document to be desktop published, where the document includes pictures, graphics, and multiple fonts, and may be a tri-fold brochure or a newsletter. Pat is accomplished at using email attachments to send and receive word-processed documents.

While we could continue to follow Pat’s word-processing exploits, we can see that a pattern has emerged. Pat now keyboards at better than 40 words a minute and often makes use of a voice input system. Word processing and desktop publishing have become routine and powerful tools for the child. This set of tools facilitates Pat in doing process writing better than a child who lacks the ICT knowledge and skills. The set of tools facilitates the Pat in designing and creating desktop-published documents that communicate effectively. Finally, as the need arises, the Pat learns new features of a word processor (constructs new knowledge and skill, building on previous knowledge and skill) with little or no aid from formal instruction provided by a teacher.

Desirable Levels of Expertise

There are a number of generic tools that have the characteristic that a student can gain a useful level of knowledge and skill in a very short period of time. Word processor, email, and
Web browser tend to have this characteristic. For these and all generic applications we can think of an expertise scale such as the one shown in Figure 4.1.

![Expertise Scale for a Generic ICT Tool](image)

Figure 4.1. Expertise scale for a learner learning a generic ICT tool.

The story of Pat given in the previous section illustrates a student achieving “fluent, second-order knowledge and skills” in use of a word processor by the end of high school. For Pat, this was a gradual and multiyear process. Pat’s initial interest in word processing was strongly influenced by his or her parents and by an intrinsic motivation to learn. The initial intrinsic and extrinsic motivation was nurtured by both the home and school environment. Pat’s teachers created a situated learning environment that provided extrinsic motivation, facilitated moving to the second-order, and continued to nurture Pat’s intrinsic motivation.

The chances are that Pat also gained “fluent, second-order knowledge and skills” in use of email and the Web. But, what about a wide range of other generic tools? A lot depends on the schools Pat attended and the teachers Pat had. Pat clearly has the potential. However, for many of the Pats in our schools, the potential is not achieved. As a preservice or inservice teacher, you should set a personal goal of helping to facilitate your students to achieve fluent, second-order knowledge and skills over a wide range of generic ICT tools.

Generic Tools and Problem Solving

The story about Pat included some emphasis on learning to use a word processor and desktop publishing to help solve the problem of effective written communication. By and large, ICT preservice and inservice education place little emphasis on problem solving, critical thinking, and other higher-order knowledge and skill. Such instruction tends to assume that the learner will transfer ICT knowledge and skills into non-ICT disciplines and will easily integrate the ICT knowledge and skills into these disciplines. Unfortunately, for most students this does not occur.

As an example, consider a student’s PreK-12 education in the Social Sciences. The Web provides access to a huge amount of historical and current date and information. However, the data and information is of varying levels of correctness, has varying levels of readability, and covers a huge range of topics.
To be even more specific, consider what a student might learn about the discipline of history. What does it mean for a student to gain increasing expertise in a discipline such as history? What roles does the Web play in this?

We all know that learning history includes learning some facts (names, dates, places, etc.) However, even more important is learning pose and explore historical situations and problems, develop hypotheses, find evidence and develop logical arguments to support these hypotheses, and so on. Remember, each discipline is defined by the problems it addresses, the methodologies and tools it uses, and the results it has achieved.

Clearly the Web is now an excellent aid to finding primary resources, to exploring the collected historical knowledge that has been accumulated by the human race, and to finding alternate viewpoints on historical events. A student can gain such knowledge and skills through appropriate instruction and thorough participation in appropriate history-oriented situated learning environments. It is easy for a student to gain a rudimentary and useful level of knowledge and skill in using the Web. It is a significant challenge for a student to move up the “history education” expertise scale and to learn to make effective use of the Web as part of being a beginning historian.

Activities for Chapter 4

1. Select three or more generic ICT tools that you use. For each, think about how you learned to use the tool and what recent progress you have made in moving up the expertise scale for knowledge and skill in using this tool. Compare and contrast your answers among the three or more generic tools you are exploring.

2. Select six or more of the generic tools list given in this chapter. For each, discuss the types of problems and/or tasks that this tool was primarily designed to help solve. Then explore the problem-solving or task-accomplishing advantages that the generic ICT tool user has when competing with a person who does not have access to ICT facilities and/or lacks knowledge and skill in using the generic tool.

3. Select a grade level or a subject area that you teach or are preparing to teach. Suppose that the average student entering your class is somewhat below grade level) in terms of ISTE NETS for Students) in use of one specific ICT generic tool. Describe what you can do to create a situated learning environment that provides extrinsic motivation, encourages intrinsic motivation, is constructivist, and moves your average student to routine second-order and grade level appropriate use of this generic tool.

4. Select a grade level or a subject area that you teach or are preparing to teach, and select a generic tool that you feel is appropriate to this grade level or course. Discuss the higher-order problem solving and critical thinking aspects of this generic tool with respect to students you will be teaching.
Chapter 5
ICT as Curriculum Content

This chapter explores the idea of ICT as curriculum content in precollege education. The focus is on:

- ICT as a discipline in its own right. This discipline is often called Computer and Information Science.
- ICT as a discipline-specific component of non-ICT disciplines. For example, one of the winners of the 1998 Nobel Prize in Chemistry was awarded this prize for his previous 15 years of work in Computational Chemistry. By the early 1980s “Computational” had begun to be an important part of the content area in many different disciplines, including all of the core curriculum area: language arts, math, science, and social science.

Characteristics of a Discipline

This chapter focuses on ICT as part of the content of various disciplines or fields of study, such as language arts, math, science, and social science. These four disciplines are quite different, but they share much in common. For example, for any discipline we can think of a learner beginning as a novice and then moving up an expertise scale. Basic ideas of constructivism, situated learning, and transfer of learning are important to the learner in any discipline.

Each discipline can be characterized by the types of problems it addresses, the tools and methodologies that it uses, and the results that it has achieved. That is, representing and solving problems is a characteristic of each discipline.

A discipline tends to develop special vocabulary for representing and communicating about the types of problems that it addresses. Thus, an important aspect of learning a discipline is learning to understand and communicate using its special vocabulary.

For example, consider the discipline of mathematics. This discipline has developed an extensive notational system and vocabulary. You are undoubtedly familiar with some of the symbols used in its notational system, such as:

- the digits 0, 1, 2, … , 9
- symbols for the four basic arithmetic operations +, −, ⋅, ÷
- a large number of other symbols such as =, ≠, <, >, ±, (,), and []

One way to think about mathematics is that it is a language. This language includes all of the vocabulary of “natural language” (for example, English) in which people develop speaking and listening expertise. The language of mathematics also includes a large number of symbols, natural language words that have been given special definitions for use in math, and rules for combining the words and symbols for communication about mathematical ideas.

As a discipline grows, it often is divided into sub disciplines. You are undoubtedly familiar with some of the subdivisions of mathematics, such as arithmetic, algebra, geometry, probability, and statistics. You may have studied some calculus and/or number theory, and other sub
disciplines of mathematics that are found in a typical undergraduate college degree program for
math majors.

You know that math is a broad, deep, complex, and ever growing discipline. Since you know
something about calculators and computers, you know that some parts of ICT are parts of the
content of mathematics. We will say more about this later in this chapter.

But first, let’s look at the “discipline” that underlies ICT.

Computer and Information Science

The discipline of computer and information science began to develop long before the first
computers were built. For example, the 1890 U.S. census data was processed by putting the data
onto punch cards and using automated sorting and counting machines. The history of mechanical
calculators goes back well over 300 years, and the history of the abacus goes back at least 2,500
years (Redin).

The first computer science departments (they are now often called Computer and Information
Science Departments, or CIS departments) in higher education were established during the later
1950s and early 1960s. Typically this occurred in one of three ways:

- As a split off from a mathematics department, forming a department with an orientation
toward math and the other areas of liberal arts.

- As a split off from one or more departments in an Engineering School, forming a
department with an electrical engineering orientation.

- As a split off from one or more departments in a Business School, forming a department
with a business orientation.

These early CIS departments offered programs of study that included a major focus on
computer programming and solving the types of problems that occur in some general
disciplinary areas. Thus, a business-oriented computer science department might offer a variety
of courses in COBOL programming, with the focus being on learning to develop computer
systems to solve business problems. An early engineering oriented computer science department
might offer courses in FORTRAN programming and courses about computer circuitry. A liberal
arts-oriented CIS department might have significant emphasis on general purpose programming
languages such as Pascal, and on such topics as data structures and analysis of algorithms.

CIS is now a large and well-established discipline. This discipline is important in its own
right and also because it provides important tools, ways of organizing knowledge, ways of
representing problems, and ways of thinking about problems in all disciplines. One of the
unifying ideas in CIS is that of **procedures and procedural thinking**. In CIS, a procedure is a
step-by-step set of instructions that can be mechanically interpreted and carried out by a
specified agent (such as a computer). CIS has a strong emphasis on developing procedures that
are designed to solve certain types of problems, and on thinking about the capabilities and
limitations of computer procedures.

Here is a list of some of the areas of study that now are considered to be parts of the field of
Computer and Information Science:

- Analysis of Algorithms
• Artificial Intelligence, including Expert Systems
• Data Representation, Data Structures, and Databases
• Discrete Mathematics (coursework may be offered by a math department)
• Hardware
• Human-Machine Interface
• Modeling and Simulation
• Networks, including the Internet
• Numerical Analysis (coursework may be offered by a math department)
• Programming and Software Engineering

As you can see, CIS is divided into a number of sub disciplines. Some of these sub disciplines are particularly important in precollege education. For example, Artificial Intelligence is important in spelling and grammar checkers, search engines, voice input to computers, computer-assisted learning, and in helping to solve a wide range of the types of problems that students study. (See Moursund, Artificial Intelligence.)

Some high schools offer an Advanced Placement course in Computer and Information Science. It corresponds roughly to the first year of college CIS course for potential CIS majors. It contains a strong emphasis on computer programming and problem solving.

The early history of ICT in precollege education was strongly influenced by Computer and Information Science Departments and people who had a CIS orientation. As an example, computer programming was a typical component of early computer in education courses for preservice and inservice teachers. Two programming languages received a lot of attention. BASIC is a language that was developed at Dartmouth University during the 1960s. Its use eventually became thoroughly integrated into the undergraduate curriculum and eventually spread to precollege education. The original versions of BASIC shared much in common with the FORTRAN programming language whose original targeted language was scientists, engineers, and applied mathematicians.

The Logo programming language was developed relatively shortly after BASIC. It was based on a programming language named LISP that was developed for use by researchers and practitioners in Artificial Intelligence. Logo was specifically designed for use by grade school students, but it has the characteristic of meeting needs at all grade levels, including college and graduate school.

With the advent of microcomputers came the idea of providing generic tools (as distinguished from programming languages) that could be used by people who had not taken coursework of the sort offered by a CIS department. Very young students could learn to make effective use of a word processor. Apple’s introduction of the Macintosh computer in 1984 opened the field of applied computer graphics to students of all ages. Gradually the emphasis on teaching computer programming to preservice and inservice teachers (and, to their students) faded away. Now, most preservice and inservice teachers receive very little or no instruction on computer programming.
ICT as Content in Four Core Non-ICT Disciplines

This section contains a brief exploration of how ICT is affecting the content of four core disciplines or fields of study: language arts, mathematics, science, and social science. Let’s begin with a summary of what we do not focus on in this section.

- **Generic Tools.** Generic ICT tools tend to cut across all or most disciplines. Essentially all of the generic tools discussed in the previous chapter have become commonly used tools in language arts, math, science, and social science. For the most part, we will not provide more detail here in this section.

- **Computer-Assisted Learning.** In Chapter 7 we will discuss Computer-Assisted Learning. As you already know, ICT is now widely used as an aid to student learning in all of the core fields of study and in most other disciplines. For the most part, we will not provide more detail here in this section.

- **World Wide Web (WWW).** The Web is a component of ICT that cuts across all disciplines but that is also quite specific to each discipline. Each discipline has its own ways of representing the types of problems that it addresses and the results that it has achieved. The collected knowledge from a discipline can be organized in a manner that facilitates storage and retrieval, and then placed in a “traditional” physical library, or in an electronic library such as the Web. One aspect of learning a discipline is to learn about the storage and retrieval of information within that discipline. Thus, as a student studies science, he or she should be learning about the sub disciplines of science and how the accumulated knowledge of science is stored and retrieved. It is not sufficient to say that a student has learned to use a browser as a generic tool for searching the Web. The overall field of information storage and retrieval (including the discipline of librarianship) is much more than this. It takes considerable understanding of a discipline and information retrieval within the discipline to locate information that may be relevant to a particular problem or task, judge the quality of the information, understand the information, and make use of the information.

Language Arts

The language arts include a number of sub disciplines such as speaking, listening, reading, writing, and literature. Here are a few examples of ICT as content in the language arts:

- **Before the development of the word processor, writing tended to be a linear process. A word processor facilitates skipping forward and backward, inserting, deleting, and moving major sections of text, and carrying out other non linear writing activities. While writing in a linear paper and pencil environment and writing using a word processor are closely related activities, they differ quite a bit. The word processor, electronic outliner, spelling checker, grammar checker, built-in dictionary, and so on all play significant roles in the writing process. Thus, students can benefit by instruction on how to make effective use of a word processor when writing.

- **Process writing has long been considered an appropriate model of how to teach and do writing. The final step in process writing is the "publication" phase. Desktop publication has substantially changed this phase. Desktop publication includes giving careful thought to designing a document for effective communication. Desktop publication is a significant sub discipline in written communication.**
• Interactive multimedia (such as a typical Website) is now a common environment for communication. Such multimedia often includes text, pictures, graphics, video, sound, and color. Students benefit by instruction on how to effectively read (view, use, learn from) an interactive multimedia environment. As with the reading and writing of text, the writing (creation) of multimedia documents can be considered as part of the language arts.

• Language arts includes students gaining skill in doing oral presentations. Nowadays, presentation media are commonly used in oral presentations. Developing and making effective use of presentation media is an important component of the language arts.

Mathematics

• The changes in curriculum due to changes in tools or the introduction of new tools can be subtle. For example, it used to be that students in first and second year high school algebra courses learned how to calculate square roots using pencil and paper, how to make use of math tables, and how to interpolate in math tables. Quite a bit of this content has disappeared from the curriculum; calculators have replaced it.

• Calculators can be a replacement for a substantial amount of time that is currently spent learning and using paper and pencil computational skills. Graphing and equation-solving calculators have facilitated significant changes in the content of a number of high school math courses.

• Software packages such as Maple and Mathematica can solve a wide range of the types of problems students study in arithmetic, algebra, geometry, probability, statistics, and calculus. This has led to significant changes in the content of some calculus courses at the high school and college level.

• Computer modeling and simulation are now one of the major sub disciplines of mathematics. Such computational modeling and simulation is now a common tool in engineering, architecture, all of the sciences, and a number of other areas.

Science

Up until about 25 years ago, the various science disciplines tended to be classified as pure and applied, or as theoretical and experimental. ICT has brought a new category—computational modeling and simulation. By the early 1980s, some science researchers were doing their work by drawing upon the ideas from the theoretical and experimental approaches, but carrying out their work computationally. Their theoretical models were represented as computational models, and their experiments were carried out on computers. In 1998, one of the winners of the Nobel Prize for Chemistry was a computational chemist. The prize was awarded for work that he had begun more than 15 years earlier. Here are a few examples of ICT as content in the sciences:

• Microcomputer-Based Laboratory (MBL) represents a significant change in the content of various science courses due to the capabilities of laboratory instruments with built-in ICT capabilities.

• Global Positioning Systems (GPS) have replaced or supplemented a wide range of surveying and navigational non-ICT methodologies.
• Geographic Information Systems (GIS) have become standard aids to problem solving in geography, city planning, and environmental studies.

• A variety of telescopes and microscopes now include powerful built-in computers and cannot function without the capabilities of such computers. The same holds true for much of the other instrumentation now used in the sciences.

Social Science

ICT has substantially changed our society and other societies of the world. Over the past 11,000 years, large parts of the world have moved from being hunter-gatherer societies to being agrarian societies to being industrial age societies to being information age societies. ICT is a very powerful change agent and now has a history that can be traced back well over 100 years. Thus, it is an appropriate content area for both history and current events. Here are some other examples of ICT as content in social science courses:

• The Web is now a global library that contains a large number of primary source documents. Thus, students can now obtain information from primary sources rather than just information filtered through the minds of their textbook authors.

• ICT makes it much easier to publish information and to keep published information up to date. The teaching and learning of various social studies disciplines are significantly changed by having current, up to date information readily available.

• Students can readily communicate with students throughout the country and in other countries. This change in communication capabilities is somewhat akin to providing students access to primary resources.

Miscellaneous Other Examples of ICT in Non-ICT Disciplines

• Music synthesizers provide an interesting example. With relatively inexpensive equipment, students can compose, edit, and perform music. Composition can be taught to relatively young students--to students who have not mastered the performance tools of music.

• Artificial Intelligence, including Expert Systems and Agent Technology, is gradually becoming a discipline-specific tool within many different disciplines. A steadily increasing number of hard problems and tasks can be solved by specific-purposed artificially intelligent ICT systems. We are left to ponder the question: "If an ICT system can solve or substantially aid in the solution of a category of problems, what should students be learning about this category of problems?"

• In many disciplines, there is a very close connection between the tools of the discipline and the content/methodology of the discipline. An old fashioned example is provided by Mechanical Drawing. For many years the tools of this discipline included high quality pencils and ink, rulers, compasses, protractors, and plastic or metal templates for drawing a wide variety of curved line segments and shapes. Relatively early on in the development of electronic digital computers it became evident that a computer could “drive” a pen and ink plotting device (CGI Historical Timeline). As the tools change, the discipline and courses in the discipline change. Thus, Mechanical Drawing has changed into CAD/CAM (Computer-Assisted Design/Computer-Assisted Manufacturing).
• The field of graphic arts has been substantially changed by ICT.
• Many artists now make use of ICT tools as a medium which they use to express their artistic knowledge and skills.
• The spreadsheet was originally developed for use in business accounting work. It has now become both a generic tool, cutting across many disciplines, and a very powerful tool in the field of business. Spreadsheets and other business software are now an integral component of the business school curriculum.

Self-Assessment Instrument for ICT as a Component of the Content of the Disciplines You Are Preparing to Teach

• Computers have significantly changed the field of graphic arts and are now an integral and routine part of the content of this discipline.
• Computers have significantly added to the field of music composition and performance and are now an integral and routine part of the content of this discipline.
• All fields of science now include "Computer modeling and simulation" as a third general methodology, along with the traditional Experiment and Theoretical methodologies.
• Interactive multimedia is now a common mode of "writing" and is thus an important component of Language Arts.
• Calculators and computers can rapidly and accurately carry out the computational and algebraic procedures that currently form the bulk of the K-12 math curriculum.

If your goal is to become an elementary school teacher, you will eventually be teaching Language arts, Math, Science, and Social Science. You may also be teaching a wide variety of other disciplines such as Art, Music, and so on. Each discipline can be defined by the problems that it addresses, the tools and methodologies that it uses to address these problems, and the accumulated results it has achieved. Each of these aspects of a discipline are being strongly affected by ICT. In each of these disciplines, special software has been developed to aid in the representation and solution of the problems in the discipline.

If your goal is to become a middle school or secondary school teacher, you will likely end up teaching in a small number of disciplines. The self-assessment instrument given below focuses on ICT as a component of the content of six different disciplines. If you are teaching or planning to teach at the middle school or high school, some of the questions are not applicable to you. And, quite likely you will need to add questions to cover the specific areas that you are teaching or are preparing to teach.

Please rate yourself using the following 7-point scale for each question that is applicable to you.
Each question is accompanied by a brief discussion of the topic being assessed. However, it does not include a discussion of roles of ICT as part of the content area. [[Note: This may eventually be added.]] After you give yourself a numerical rating on the 7-point scale, write a paragraph that explains and justifies your numerical rating. Focus on explaining your understanding of roles of ICT as part of the content of each discipline.

1. Art (Fine Arts, Graphic Arts, Creative & Performing Arts): 1 2 3 4 5 6 7

 The fine arts include painting, sculpture, drawing, graphics, and architecture. A graphic artist is one who communicates information or suggests ideas through the use of color and form, making use of a variety of technologies such as computers, ink, paint, pencils, photography, and so on. The creative and performing arts include dance, theater and drama, vocal, and so on. ICT now plays a significant role in the arts. Briefly discuss your knowledge, skills, and experiences roles of ICT in the content of the arts.

2. Language Arts: 1 2 3 4 5 6 7

 Language arts includes reading, writing, speaking, listening, creating, and communicating in oral, print, and visual media. ICT can be thought of as providing new communication media (for example, interactive hypermedia, hypertext, email, instant messaging) as well as aids to creating and using the media that existed prior to the development of computers. Briefly discuss your knowledge, skills, and experiences in the roles of ICT in the content of language arts.

3. Math: 1 2 3 4 5 6 7

 Mathematics is a science that provides tools useful in all other disciplines. Mathematics is the posing, representation, and solution of problems using the ideas, and notation, and vocabulary of the language of mathematics. Mathematics includes arithmetic, algebra, geometry, analysis, probability and statistics, topology, real and complex variable, and a number of other subfields.
The National Council of Teachers of Mathematics first recommended use of calculators in the elementary school curriculum in 1980. Now, calculators and computers are built into the NCTM Standards. Briefly discuss your knowledge, skills, and experiences in the roles of ICT in the content of mathematics.

4. **Music: 1 2 3 4 5 6 7**

Instrumental and vocal are a form of human expression and communication. Music is often combined with other communication media, such as video and the performing arts. The discipline of music includes composition and performance. There are a huge range of musical instruments, including many different electronic instruments. These are used in the composition, editing, performance, and distribution of music. Reading and writing music (using musical notation and the vocabulary of music) are an important component of the discipline of music. Briefly discuss your knowledge, skills, and experiences in roles of ICT in the content of music.

5. **Science: 1 2 3 4 5 6 7**

A "traditional" dictionary definition of science tends to emphasize that science is the study of the physical world and its manifestations, done by using systematic observation and experiment. It includes the development and testing of theories. This definition underlies the theoretical and experimental approaches that are used in each science. A third approach, using computational modeling and simulation, is now common throughout all sciences. For example, a 1998 Nobel Prize in chemistry was given for the previous 15 years of computational chemistry work of the prizewinner. Briefly discuss your knowledge, skills, and experiences in roles of ICT in the content of the sciences.

6. **Social Studies: 1 2 3 4 5 6 7**

Social studies includes the social sciences and humanities. A social studies curriculum provides coordinated, systematic study drawing upon such disciplines as anthropology, archaeology, economics, geography, history, law, philosophy, political science, psychology, religion, and sociology. ICT is an important part of the content of many of these disciplines. In addition, computational modeling and simulation is beginning to become a useful tool for researchers and practitioners in many of these disciplines. And, of course, ICT is providing students and others far more access to a broad source of information, including primary
Thinking About Your Self-Assessment

ICT as part of the content of each discipline provides an excellent example of how our educational system is failing to keep up with the pace of change in ICT. Even at the undergraduate level of higher education, there are relatively few courses that include ICT as an important aspect of the content of the discipline. The greatest numbers of exceptions are found in professional schools, such as business, engineering, graphic arts, and music. It is a rare course in the Liberal Arts that includes a solid treatment of roles of ICT in representing and solving the problems of the discipline.

A school or school district ICT coordinator is not expected to be an expert in each non-ICT discipline. Instead, each subject area specialist might be expected to know more about ICT as part of their subject content area than their school or school district ICT coordinator.

Activities for Chapter 5

1. Each academic discipline can be defined by the problems it addresses, the tools and methodologies that it uses, and the results that it has achieved. Pick one of the content area disciplines that you know best. Off the top of your head, define the discipline in terms of the problems it addresses, the tools and methodologies that it uses, and the results that it has achieved. Then carefully examine the ICT parts of your answer. Think about how to help students gain ICT knowledge and skill within the disciplines that you know best.

2. I am particularly interested in the roles of ICT and Brain Science in math education. I have built a Website on this specific combination of topics. See http://darkwing.uoregon.edu/~moursund/Math/. No matter what area you teach in or are preparing to teach, your formal education has included a lot of instruction in math. Explore the Website deeply enough to increase your knowledge of ICT in math and math education.

3. Select some discipline that you teach or are preparing to teach. To be a good teacher of XYZ (the discipline you have selected) you need to understand both the discipline and how to teach it. Specifically, you need to be able to answer the question “What is XYZ?” from the four points of view listed below. Reflect on and explain what the discipline XYZ is:

A. In a manner that is appropriate to the XYZ maturity and current understanding of your students, and that helps contribute to their gaining an increased understanding of the XYZ discipline.

B. In a manner that is foundational to your work as a teacher of XYZ. Your decisions about the XYZ content, instructional processes, and assessment used with your
students should be rooted in your adult level, professional teacher level, of understanding.

C. In a manner that is appropriate for explaining your roles as a teacher and what you teach to a wide range of people such as parents, your friends and acquaintances, and other people who have widely varying backgrounds in XYZ.

D. In a manner that provides helps you as you strive to be a better teacher of XYZ. Keep in mind that XYZ is a steadily growing and changing field. Thus, for example, you might want an answer that helps you meet the challenge of Information and Communication Technology in XYZ curriculum content, instruction, and assessment.
Chapter 6
ICT as an Aid to Teaching and Learning

A simple-minded description of a school is that it is a place where “teachers teach and students learn.” Historically, it is easy to understand why schools became places where people came together to learn and that human teachers facilitated the learning. Gutenberg’s mid 15th century development of a printing press that used movable type was a major contribution to education (Gutenberg Bible). As books became relatively inexpensive and more available, a learner could take more responsibility of his or her learning and could carry out this learning at a time and place to fit his or her convenience.

As noted in earlier chapters, there is a steadily growing collection of practitioner and researcher knowledge on the Craft and Science of Teaching and Learning. Educators often talk about translating theory into practice. The “theory” they are talking about is our collected knowledge of the Craft and Science of Teaching and Learning. The challenge is to translate this theory into practices that improve the quality of education being received by students.

There are lots of ways to translate this collected knowledge into practice. For example, curriculum content, aids to instruction, and assessment instruments can be developed that reflect this knowledge. These materials can be widely distributed.

Another common approach is through preservice and inservice education of teachers. Continuing staff development is continued to be a crucial component of our overall educational system.

ICT brings us some very powerful new aids to translating theory into practice. This chapter addresses two of these aids, computer-assisted learning and distance education.

ICT Availability
We are used to the idea that books, telephones, and TV are readily available in most households. We are less used to the idea that computers with Internet connectivity have become a common household item.

In 2002, 83 percent of American family households (with at least one child aged 2–17) owned a computer, and 78 percent of children lived in a home in which either they or a parent used the Internet from home (Connected to the Future).

About 90 percent of people ages 5 to 17 use computers and 59 percent of them use the Internet -- rates that are, in both cases, higher than those of adults.

Even kindergartners are becoming more plugged in: One out of four 5-year-olds uses the Internet.

The figures come from a new Education Department analysis of computer and Internet use by children and adolescents in 2001. A second report from the agency, based on 2002 data, shows 99 percent of public schools have Internet access, up from 35 percent eight years ago (Mercury News, 2003).

Children with computers at home often have access to three or more of the following general categories of software:

• Pure entertainment (games that are not designed to be educational). Some of these games are now played online (on the Internet) with many thousands of people simultaneously.
playing the same game, and with teams of players often working together toward some common goals.

- Purely educational, designed specifically to provide instruction to help the user learn.
- Edutainment (lying some place on the line between pure entertainment and pure educational).
- Communication tools and reference materials, including email, Web, and laser disc encyclopedias, books, and other reference materials.
- Tools such as a word processor and graphic software (for example, software for editing photos).

When children grow up in an ICT intensive home environment, they may gain many thousands of hours of experience using ICT facilities. At the elementary school age level, such ICT use has overtaken use of TV. Schools cannot compete with this environment if they use an approach that students only get to use the computer one or two hours a week in a computer lab.

The educational systems in the United States have made a determined effort to provide computers and connectivity in all schools. Nowadays, it is unusual to find a school that does not have computers and Internet connectivity. On average, our schools have approximately one microcomputer per five students. Roughly speaking, however, this means that students have about three times as much ICT at home as they have at school.

There is a steady upward trend in the amount of compute power and connectivity power (bandwidth) being made available to students at school, at home, and in other places such as public libraries. This ICT is slowly beginning to make a significant contribution to translating educational theory into practice.

Computer-Assisted Learning

Over the past 50 years, many different terms have been used to describe teaching being done by a computer system. For example, computer-based instruction and computer-assisted instruction used to be common terms. There has been a gradual shift from these terms to the term computer-assisted learning. Among other things, this reflects the goal of helping students learn. Computer-assisted learning (CAL) places the emphasis on student learning rather than on teaching being done by a computer.

As with any important emerging area of the Craft and Science of Teaching and Learning, there have been a large number of CAL research studies, and the literature contains many thousands of “testimonials” (articles that are not research studies) touting the merits of CAL. On 10/25/03 I did a Google search using the term computer-assisted learning and got 483,000 hits.

Over the years, the research literature on CAL grew to a level that it could support metastudies. A metastudy is a careful analysis of a group of related studies (Boston, 2002). By 1994, there were enough metastudies of CAL so that James Kulik was able to conduct a meta-metastudy of CAL (Kulik, 1994). His conclusion is that, on average over a wide range of subject matter areas and a wide range of students, CAL works. Students learn significantly faster and better. Kulik reported an average effect size of about .35 (a 50th percentile student becoming a 64th percentile student) and timesaving of about 20%.
There have been quite a few metastudies on CAL. Table 6.1 summarizes some metastudies on CAL (NCREL).

<table>
<thead>
<tr>
<th>Author(s) and Date</th>
<th>Focus</th>
<th>N of Studies</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayraktar (2001-2002)</td>
<td>CAI in secondary and college science</td>
<td>42</td>
<td>.273</td>
</tr>
<tr>
<td>Blok, Oostdam, Otter, and Overmaat (2002)</td>
<td>Computer-based instructional simulations</td>
<td>42</td>
<td>.190</td>
</tr>
<tr>
<td>Cavanaugh (2001)</td>
<td>Interactive distance education technologies</td>
<td>19</td>
<td>.147</td>
</tr>
<tr>
<td>Christmann and Badgett (1999)</td>
<td>CAI in science</td>
<td>11</td>
<td>.266</td>
</tr>
<tr>
<td>Christmann, Badgett, and Lucking (1997)</td>
<td>CAI in differing subject areas</td>
<td>27</td>
<td>.209</td>
</tr>
<tr>
<td>Christmann, Lucking, and Badgett (1997)</td>
<td>CAI in secondary schools</td>
<td>28</td>
<td>.172</td>
</tr>
<tr>
<td>Lou, Abrami, and d'Apollonia (2001)</td>
<td>Small group versus individualized learning with technology</td>
<td>122</td>
<td>.150</td>
</tr>
<tr>
<td>Whitley (1997)</td>
<td>Gender differences in computer-related attitudes and behavior</td>
<td>82</td>
<td>.209</td>
</tr>
</tbody>
</table>

Median = 28 .209

Table 6.1. Summary of some CAL metastudies.

Notice that the fourth column of Table 6.1 gives the effect size. In metastudies, this term is the difference between the means of treated and control subjects divided by the pooled standard deviation of the two groups. The effect size can also be stated as a percentile standing, as shown in Table 6.2 (Effect Size).
<table>
<thead>
<tr>
<th>Effect Size</th>
<th>Percentile Standing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>97.7</td>
</tr>
<tr>
<td>1.9</td>
<td>97.1</td>
</tr>
<tr>
<td>1.8</td>
<td>96.4</td>
</tr>
<tr>
<td>1.7</td>
<td>95.5</td>
</tr>
<tr>
<td>1.6</td>
<td>94.5</td>
</tr>
<tr>
<td>1.5</td>
<td>93.3</td>
</tr>
<tr>
<td>1.4</td>
<td>91.9</td>
</tr>
<tr>
<td>1.3</td>
<td>90</td>
</tr>
<tr>
<td>1.2</td>
<td>88</td>
</tr>
<tr>
<td>1.1</td>
<td>86</td>
</tr>
<tr>
<td>1.0</td>
<td>84</td>
</tr>
<tr>
<td>0.9</td>
<td>82</td>
</tr>
<tr>
<td>0.8</td>
<td>79</td>
</tr>
<tr>
<td>0.7</td>
<td>76</td>
</tr>
<tr>
<td>0.6</td>
<td>73</td>
</tr>
<tr>
<td>0.5</td>
<td>69</td>
</tr>
<tr>
<td>0.4</td>
<td>66</td>
</tr>
<tr>
<td>0.3</td>
<td>62</td>
</tr>
<tr>
<td>0.2</td>
<td>58</td>
</tr>
<tr>
<td>0.1</td>
<td>54</td>
</tr>
<tr>
<td>0.0</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 6.2. Effect size and percentile standing.

Here is how to interpret the type of data given in Table 6.1. Quoting from Boston (2002):

Normal distribution has a range of about three standard deviations above the mean and three standard deviations below the mean. In graphic terms, envision a bell-shaped curve divided in half at the highest part (the mean score), then add two more vertical lines at equal intervals on each side. About 68 percent of the population can be expected to lie within the first standard deviation on either side of the mean (34 percent on each side). About 95 percent of the population will lie within +/- two standard deviations, and 99 percent of the population will lie within +/- three standard deviations. To give an extremely simplified example, assume subject knowledge is normally distributed among 100 students, on a test of 100 items with a mean of 50 and a standard deviation of 20. About 34 students would be expected to score between 50 and 70, about 14 students would score between 71 and 90, and about 2 would score between 91 and 100. Fifty of the students would, of course, score below the mean, with 34 scoring between 30 and 50, 14 scoring between 10 and 29, and two students scoring between 0 and 9 points.

An effect size of .20 is considered to be small, while an effect size of .50 is considered to be medium, and an effect size of 1.0 is considered to be large (Boston, 2002). Results are often also reported in terms of percentiles. Referring back to Table 6.1 and 6.2, the effect size of .209 represents a small positive effect, with the experimental group scoring at the 58th percentile of the control group distribution. The effect size of .410 corresponds to the positive effect of the experimental group scoring at the 66th percentile of the control group distribution.
Over the years, there has been a trend toward CAL becoming both more “intelligent” and more interactive. The “intelligence” in this type of CAL refers to the use of Artificial Intelligence, an important component of the field of Computer and Information Science. Thus, people now talk about Highly Interactive Intelligent Computer-Assisted Learning (HIICAL). A 10/25/03 Google search using this expression produced nearly 8,000 hits. Here is a short article I wrote on this topic a few years ago.

Highly Interactive Computing in Teaching and Learning

Reprinted with permission from Learning and Leading with Technology (c) 2000-2001, ISTE (the International Society for Technology in Education. 800.336.5191 (U.S. & Canada) or 541.302.3777, cust_svc@iste.org, http://www.iste.org/. Reprint permission does not constitute an endorsement by ISTE of the product, training, or course.

This article is about roles of teachers, learners, and computers in highly interactive teaching and learning. When most educators think about highly interactive computing, their first thought is about computer-assisted instruction. But, there are many other situations in which one uses a computer in a highly interactive manner. The development of a spreadsheet model, and the use of it in asking and answering "What if?" questions, provides a good example. The interaction one does in editing a photograph provides another example. This article explores various aspects of highly interactive computing and makes some suggestions about how to improve our educational system.

Computer-Assisted Instruction

We all know that a computer can be a powerful aid to learning. We know about "drill and practice" and tutorial computer-assisted instruction (CAI), and we know about simulations used to train airplane and spaceship pilots. In all of these teaching/learning situations, there is interactivity between the computer system and the learner.

In the pilot training simulations, the learner is involved in a highly interactive simulation of a real world environment. The simulation is attention-grabbing and realistic, and usually there is a high intrinsic motivation to learn. These characteristics contribute significantly to the learning process.

Drill and practice or tutorial CAI tends to lack the real world flavor of pilot-training simulations. A standard attempt to overcome this difficulty is to embed the CAI in a game-like, entertainment environment. The game-like environment may prove both attention-grabbing and intrinsically motivating. On the other hand, it is possible that it contributes little to the desired learning outcomes. This is because there may be little transfer from the learn environment to situations in which the learning is to be applied.

Transfer of Learning

Transfer of learning is closely related to the CAI ideas given above. The computer simulations used in pilot training are so realistic that there is a high level of transfer of learning to real world piloting situations. Flying the training simulator is less expensive and less dangerous than flying a real airplane or spaceship. Moreover, the computer simulation also allows the pilot to gain experience in dealing with dangerous emergency situations that are not apt to occur very frequently in the real world. All things considered, such CAI simulations have many advantages over emerging a trainee in a real world training environment.

On the other hand, the learning that occurs in more traditional CAI environments faces two transfer of learning difficulties. First, there is the transfer from the computer environment to the non-computer environment. Second, there is the transfer from the non-computer environment to the real world. To illustrate, a child may become adept at quickly doing certain mental arithmetic feats in a highly interactive and entertaining game environment. Will the child be able to display the same level of skill in the non-game environment of a traditional classroom or on a traditional pencil and paper test? And, will such traditional classroom knowledge and skill transfer to recognizing and solving somewhat similar problems that the student encounters outside the classroom?
We know how to use computers to make highly interactive simulations that are so real world-like so that there is a high level of transfer of this learning to the real world. This provides us with a target to aim at as we develop other types of CAI for use in our schools. We have not come very far in this endeavor.

Learning and "Attention" in the Human Mind

The body/brain receives input from the five senses: aural, taste, touch, visual, and smell. (For simplicity, in the remainder of this article I will use the term mind in place of the term brain/body.) Learning takes place inside the mind. This learning is influenced by what the mind consciously does to promote learning, as well as what it unconsciously does. Thus, we can think about improving learning by improving the external stimulus (what is provided from outside the mind) and by training the mind to learn better from the stimuli that it receives and from what it has stored in the past.

The mind's various input systems are easily overwhelmed by the amount of input that is or can be available. Thus, the mind is designed to not pay attention to most of the input. That is, there is a continual filtering mechanism being applied. The mind only pays attention to a very small part of the input. It pays special attention to life threatening and other dangerous situations.

The mind can consciously decide to focus its attention on certain internal and external components of its environment. That is, the conscious mind can focus its attention on stored data, information, knowledge, and wisdom, and it can also decide to pay attention to external stimuli.

This selective attention mechanism presents a major challenge to teachers. As a teacher, you want students to pay attention to what is going on in the classroom. But, you are competing against built-in mechanisms that are designed to have the mind only pay attention to really important things. Many students automatically filter out (that is, do not pay attention to) what is going on in the classroom. After all, classrooms are designed to be safe places, so there is little chance of life-threatening events occurring, such as an attack from a tiger or a poisonous snake. In a classroom, a student's mind can safely consider events of past days or possible events in the future. These events may be far more attention-grabbing than the current events within the classroom. The student pays attention to and learns about these past and possible future events, rather than what the teacher would like the student to be learning.

From a teacher point of view, there is a competition going on for the attention of a student's mind. The good teacher is able to create an interactive learning environment that helps to focus student attention on important curriculum topics. A good teacher and a good educational environment can grab the attention of the students in a class. Highly interactive computer environments can add significantly to such a learning environment.

Interactivity in Tutorial Settings

The mind is designed to be able to learn. Consider a situation faced by a very young baby. The baby's mind recognizes some form of discomfort (a belly ache, too cold) and produces the action of crying. The crying is heard by a parent. The parent makes a guess as to the source of the discomfort and takes an action to remedy the situation. This baby-parent interaction leads to learning on the part of both the baby and the parent.

A similar description fits well with a child learning other non-verbal and verbal language. This is a good example of highly interactive one-on-one "tutoring," with both the child and the adult learning from the interaction. There is a very important point to be made here. The nature, extent, and timing of the feedback provided by the tutor (the adult) is determined by the best judgment of the tutor. It is individualized and highly personalized based upon past interaction with the child.

From the type of analysis given in this section, we can identify some of the characteristics of a good tutor. It needs to:

1. Have a good "understanding" of what is to be learned and how humans learn it.
2. Have a good understanding of what the learner already knows and learning characteristics of the learner.
3. Provide feedback and interactivity that is appropriate in nature, extent, and timing.

Over the years, some progress has been made in the development of drill and practice and tutorial CAI that has these features. There has been encouraging progress in the development of Intelligent CAI systems, that make use of progress that has been occurring in the field of artificial intelligence. However, we have a long
way to go. Much of the interaction needed to make current CAI into a rich learning environment must come from and through the learner. This means that students need to learn to make effective use of the types of CAI that we are currently able to produce.

This is not a whole lot different than a student learning to learn from books. The CAI can be thought of as an interactive type of book. Little learning occurs in drill and practice or tutorial CAI unless the student is consciously and actively engaged, and has learned to make effective use of the medium.

Non-CAI Interactivity

I spend a significant fraction of my work time seated at a computer. I mainly use general-purpose computer tools such as word processor, spreadsheet, paint and draw graphics, E-mail, Web browser, and Web authoring software.

Typically, my goal is to solve a problem or accomplish a task. I use all of my computer tools in a highly interactive manner. This type of interaction is much different than one finds in a CAI drill and practice or tutorial environment. Sometimes I do most of the work in the interactions, such as when I am authoring using a word processor or a Web authoring system. Other times the software carries much of the burden, such as when my word processor is checking my spelling and grammar. Sometimes there is a nice balance, as my Web browser and I work together to solve an information retrieval problem.

As I work to solve problems and accomplish tasks, I learn a great deal. The combination of my mind and the computer system provides me with information to be learned and feedback during the learning process. This is consistent with Situated Learning, a learning theory that supports putting the learner into rich, real world problem-solving environments (Moursund; Roschelle). Situated Learning theory helps to explain the success of problem-based learning and project-based learning. Computers can be a valuable component of a situated learning environment.

At one time in my life, I spent a lot of time doing and teaching computer programming. In the early years, the nature of my interaction with the computer was limited by the slow turnaround of using punched cards on a batch processing computer. Then timeshared computing was developed, and this greatly improved the interaction. Microcomputers have further improved the human-machine interaction in computer program. Computer programming is now an example of highly interactive computing. It is also an excellent example of a situated learning environment.

Final Remarks

Learning occurs in one's mind. This article focuses on various types of learning environments in which there is interaction between a computer system and a person's mind. Such interactive learning situations can be improved by:

1. Improving the computer system. For example, we are making progress in developing Intelligent CAI systems that have some of the characteristics of a good human tutor. There are a number of examples of computer simulations that are excellent aids to learning, but relatively few have been designed for use at the precollege level.

2. Helping the student learn to make effective use of the various types of interactivity that a computer can provide. Often this takes considerable learning on the part of the student. Situated Learning is a learning theory that fits well with immersing students into computer rich problem solving environments in a manner that will facilitate student learning.

References

As computer networks began to be developed, CAL took advantage of the development. By the 1970s, quite a bit of CAL was being delivered over computer networks. One can think of this as a type of Distance Education or DL (DL). Now that the Internet has become so powerful, the dividing line between DL and CAL has narrowed substantially.

Distance Learning

Distance Learning (DL) via Correspondence Courses existed long before the development of the first computers. The interactivity between student and instructor was quite slow, perhaps measured in terms of several weeks for an interaction. Of course, airmail improved this situation.

DL has been conducted by one-way (broadcast) radio as well as two-way radio. It has been conducted by a combination of broadcast TV and surface or airmail. You can think of the everyday TV that people watch and radio broadcasts that people listen to as types of DL. Most of this component of DL might be classified as informal education, but some of the materials are well suited for using in formal educational settings.

In more recent times, it has become common for DL to made use of two-way TV, email, and the Web. We are gradually seeing a merger of these technologies. Thus, we are gradually moving toward the situation of DL environments based on interactive two-way audio and video being made available on the Web, and being supplemented by email, chat rooms, and so on.

As with initial research into CAL, the first issue in DL has tended to be measures of student learning versus learning via other modes of instruction. There have been hundreds of such studies. Large numbers of studies have reported “no significant difference” in learning outcomes (Russell). However, the situation is much more complex than is suggested by this type of literature.

Schools provide a social setting in which people come together and interact with each other. As students progress through years of schooling, they become used to the idea that formal education is conducted in this social setting and that the social and face-to-face interactions are a key part of schooling. This environment (think in terms of situated learning) is a very powerful component of formal education.

Many students who are put into DL environments do not become adequately engaged to do the coursework. They lack the wherewithal for the intrinsic and extrinsic motivation to keep them seriously engaged in the necessary learning tasks. Thus, many different DL courses have experienced drop out rates and non-completion of 50% or more. Most often the drop or non-completing students are lumped together for statistical purposes. Both groups are counted as drop outs, and they are not figured into the “learning” effectiveness of the course. Thus, most studies that report “no significant difference” exclude a significant percentage of the students who begin the course.

The use of DL at the precollege level is steadily growing. The quality of the courses, the screening of potential students, the design to help students who might otherwise drop out, and other improvements are increasing completion rates. Internet II is steadily making progress. It provides a thousand or times the bandwidth of our currently widely used Internet (which can be called Internet I). Internet II makes possible high bandwidth interactive TV along with other telecommunication capabilities that enhance communication. Distance Education will be a
steadily growing component of both formal and informal education systems for many years to come.

Distance Learning Workshop Keynote Address

This is a keynote address I presented at the beginning of a weeklong Distance Learning (DL) workshop held in Oregon June 23-28, 2003. The workshop was designed for educators who wanted to gain initial skills in the development of Distance Learning materials and courses. However, a number of the participants already had some knowledge, skills, and experience in developing DL materials and courses.

Introduction

The goal of this presentation is to introduce you to some of my current ideas on teaching and learning, especially as they relate to DL. Most of the ideas are also applicable to Traditional Classroom Education (TCE). My vision of the future includes a substantial coming together of DL and Traditional Classroom Education at the K-12 levels.

The document is a detailed overview for a 75-minute presentation. It contains a discussion of the main topics to be addressed.

Introduction of Moursund and Moursund's Websites

I first became involved as an instructor in distance learning courses (correspondence courses) while was still in high school. My professional career includes being a research mathematician, the head of a Computer & Information Science Department, the founder of the International Society for Technology in Education, writing a large number of articles, books, and Websites, being the major professor or co-major professor for more than 75 doctoral students, and many years of teaching teachers.

While I worked for ISTE, I developed several DL courses that were conducted mainly via surface or air mail, but which also made use of email for communication with the instructor.

This presentation draws heavily from materials that I have written previously and materials I am currently writing. To access many of my materials, go to http://darkwing.uoregon.edu/~emoursund/dave/index.htm.

All Learning Takes Place Within One's Mind and Body

The human brain can be thought of as a naturally inquisitive learning mechanism. We are all lifelong learners. From an evolutionary point of view, our brains evolved to their current level because this gave the human race a survival advantage over our predecessors. Of course, there are disadvantages such as the brain using up about 20 percent of the total body's caloric needs and a large head makes giving birth a significant challenge.

The human brain grows from about 350 cc at birth to about 1,500 cc at adulthood, and our bodies grow by an even larger factor. Humans have a long childhood during which they must be cared for, protected, and nurtured. It takes many years of growth, informal education, and formal education for a newborn to become a responsible adult citizen. The many years of rapid growth and development in mind and body means that teaching and learning at the precollege education level are aiming at a rapidly changing target.

The target of the teaching and learning is uniquely different in each child. The fields of Constructivism, Multiple Intelligences, Emotional Intelligence, Learning Styles, Developmental Theory, Brain Science, and Cognitive Psychology give us some insights into these differences.

DL and Non-DL

As noted in the Introduction, all learning takes place in a person's mind and body. Input to the mind/body comes from the five senses. One can thus argue that all learning is "distance learning" in that the stimuli come from some distance outside the mind/body, while the learning takes place inside the mind/body.

This is an important idea. School, home, teachers, parents, siblings, and so on are all outside the learner's mind/body. Informal and formal education provide various types of input and feedback to the learning
components of the mind/body. We know that some forms of instructional input are more effective than others, and that some forms of feedback are better than others.

In terms of our formal educational system, at the current time it is common to talk about DL and TCE as being two distinct types of teaching/learning environments. For simplicity, we will refer to these as DL and TCE. An excellent introduction to DL is provided in the following article by Gould:

Straying from the Topic

In talks such as this talk about DL, I often stray from the topic, but in a manner that raises interesting ideas and relates somewhat to the topic. Here is an example of such straying.

It is interesting to note that the average IQ in this country and many other countries has gone up quite a bit in the past few decades. A standard explanation for this is that young people are growing up in a much more intellectually stimulating environment than people did 30 or more years ago. Television (and now, the Web) are important parts of that environment. If we decide to define DL so that it includes audio and video tapes and disks, computer-assisted learning, movies, and television, then we will be able to conclude that DL has already proven to be very successful.

The above assertion about increasing IQ comes from:

Sternberg, Robert J. (Summer 1997). Technology Changes Intelligence: Societal Implications and Soaring IQs. TechnosQuarterly. Accessed 6/22/03: http://www.technos.net/tq_06/2sternberg.htm. Quoting from the article:

Brief Abstract: Technology is changing society in many ways--some quite unexpected. It's been credited with much of the dramatic rise in IQ scores over the past 30 years. But while technology's effects on human intelligence measurement may be positive, there are some distressing and potentially negative repercussions. Are there inevitable social tradeoffs for higher IQs?

First Paragraph: With all the moaning and groaning we constantly hear about the way schools educate our children, we often lose sight of an important and startling fact: intelligence, as measured by so-called intelligence quotients, or IQs, has been increasing over the past 30 years, and the increases are large--about 20 points of IQ per generation for tests of fluid intelligence such as the Raven Progressive Matrices, which require flexible thinking with relatively abstract and novel kinds of problems.

Research on Traditional Classroom Education and DL

Researchers and educational practitioners explore TCE and DL teaching/learning environments in an attempt to determine which is more effective, more cost effective, and more advantageous. However, this type of research is not "fine grained" enough. In this type of analysis it is helpful to break teaching and learning into smaller components. For example, suppose we are just analyzing TCE. We know that books, worksheets, flashcards, videos, lectures, fieldtrips, hands on science labs, and so on are all used in TCE. Each has certain advantages and disadvantages relative the others.

The same type of observation holds for DL. We have synchronous and asynchronous courses, "help" features build into the software applications we use on our computers, cell telephones, email, and a number of other aids to teaching and learning that fit under the heading of DL.

There is another important category of teaching that we have not yet mentioned. The great majority of the "thinking" or processing that goes on in one's mind/body occurs at a subconscious level. However, we have some conscious control over this thinking and processing. Through this control we can direct some of our thinking and processing in a manner that leads to learning things that we consciously want to learn. We can consciously focus our attention on what is already stored in our mind/body. From the stored knowledge and skills we can develop new knowledge and skills, and we can better learn current knowledge and skills. That is, although learning occurs at a subconscious level (indeed, it is a biological process), we can influence this learning by our conscious thoughts and other efforts of our mind/body.

Remember, the human mind/body is learning all of the time as it processes input received through the five senses and as it processes information already stored in the mind/body. Gradual progress is occurring in the
development of a "science" of teaching and learning. This is being significantly aided by brain scanning equipment (that depends heavily on computers) and other non-invasive instruments that allow monitoring of what goes on inside the brain/body

Two (Now "Traditional") Categories of DL

Early forms of DL made use of the postal service and traveling teachers. As radio became available, one-way and two-way radio were used in DL. As television became available, one-way and two-way television became part of various DL systems. Before the Web became available, there were email-based DL courses.

It is now common to use the words "synchronous" and "asynchronous" to describe two types of DL. Two-way television and two-way radio provide for immediate interaction between a teacher and a student. These are examples of synchronous DL. Email and the Web tend to be used in a mode where there may be a substantial delay in two-way interaction between a human instructor and a student. Such a situation is called asynchronous DL.

As Information and Communication Technology continues to improve, a DL course often contains a combination of synchronous and asynchronous components. For example, a DL course might make of broadcast television or video tapes, and supplement this with email-based discussion groups and a chat room.

Advantages of Asynchronous DL

A student in an asynchronous Web-based learning environment has choice of the time (and perhaps place) in which teaching/learning will occur. Also, it is quite likely that the student has made a carefully considered decision to take a course in this environment. These personal decisions contribute to intrinsic motivation.

A student in an asynchronous Web-based learning environment has Web connectivity during the teaching and learning time. The student has control over the pace of instruction and can readily backtrack to materials covered a few minutes or a longer time in the past.

Depending on the course instructor, a student in an Asynchronous DL environment may get much more timely answers to questions and other feedback than does a student who "sees" a teacher only during the scheduled classroom meeting time.

A student in an Asynchronous DL environment is learning to learn in an Asynchronous DL environment, and this is valuable learning that is apt to be useful throughout the student's lifetime.

It is important to note that people developing Asynchronous DL courses tend to spend much more time and effort doing so than when they are developing Traditional Classroom Education courses. Indeed, such courses may well be developed by a team and involve very large amounts of time, effort, and money.

Finally, the fields of Computer-Assisted Learning and of Asynchronous DL are merging, and high quality highly-interactive Computer-Assisted Learning can be delivered over the Web. Such Computer-Assisted Learning provides excellent examples of Asynchronous DL. There is quite a bit of research on the effectiveness of Computer-Assisted Learning.

Advantages of Synchronous DL

Synchronous DL can be made so that it has a number of the features of Traditional Classroom Education. Two-way television allows the teacher to see the classroom or classrooms full of students, and allows the students to see the teacher as well as pre-prepared materials that the teacher has developed or assembled. Such an environment can be enhanced by providing students with computers, Web connectivity, and chat rooms so that they can be interacting with each other, browsing the Web, and keyboarding their lecture notes at the same time they are viewing and listening to the teacher.

Advantages of Traditional Classroom Education (TCE)

Humans are social beings. Social interaction, based upon millions of years of evolution, is a huge part of what we are. Up until quite recent times, this social interaction has occurred in face-to-face environments. Evolution has not had the time or capabilities of building a cell phone receiver and transmitter and Web connectivity into the mind/body of today's humans.

Traditional Classroom Education (TCE) has other advantages over DL. Teachers become skilled at reading students' facial expressions and other body language, and students become skilled at communicating in a
face-to-face classroom environment. TCE is carefully time-structured (in essence, it is synchronous with all learners being in the same place at the same time), and children have received years of education and training in working in this time-structured environment. TCE allows the teacher to make mid-lesson changes and to communicate with the whole class in real time.

Science of Teaching and Learning

Student learning in both DL and TCE are improved by appropriate implementation of ideas from the Science of Teaching and Learning (SoTL). SoTL has made significant progress in the past 10 years. You can access (for free) the leading book in this area on the Web.

Constructivism and Situated Learning

Constructivism is a learning theory that states that new knowledge and skills are built upon one's current knowledge and skills. What that sentence is easy to memorize and seems self-evident, it is a major challenge to effectively implement constructivist-based learning theory. That is because each person has different knowledge and skills. In Special Education a great deal of time and effort goes into developing an Individual Education Plan for a student. The IEP pays careful attention to the learner's current level of knowledge and skill. It then crafts educational goals and a plan of teaching/learning that is specific for the learner. Implementation of an IEP may cost two to three times the cost of non-special education.

We can gain some additional insight into constructivism by looking at some research results produced by Benjamin Bloom. His research showed that with appropriate one-on-one tutoring the typical "C" student could learn at the level of an "A" student.

The advent of the World Wide Web provided the feasibility of instant feedback between student and instructor analogous to the teaching methodology of ancient Greece. However, modern lecture halls or classrooms notably diminish the student's knowledge expectancy, suggesting a normal distribution curve. Research results affirm that learning is the sole responsibility of the student. However, unless the design team responsible for developing the distance education course addresses on-line variances and the instructors acknowledge their responsibility to provide motivation by putting a personal instructional touch into the "tube," the attainable two-sigma shift to the right will not be achieved. Therefore, has the Web's distance asynchronous on-line instruction defined a solution for the long-held dilemma of finding an educational methodology that will achieve results analogous to tutorial education and, if so, under what conditions would those similar results be achieved?

Our educational system cannot afford the costs of every student having an IEP and individual tutoring. However, well-designed interactive DL can, in a cost effective manner, move us a significant step toward providing students with highly individualized, constructivist-based, one-on-one instruction.

Some teachers think that if all of the students in their classes have taken and passed the required prerequisite courses, then they all have the needed knowledge and skills that the courses they teach build upon. But we all know that in any course at any grade level there is a tremendous difference in the cognitive abilities, cognitive maturities, and knowledge and skills of the various students.

Situated learning is a theory that indicates that what one learns is highly dependent on the environment in which the learning is situated. This is closely related to transfer of learning, which is the next topic we will discuss. Situated learning theory suggests that instruction should be designed so that students are learning in the types of environments to which we want them to transfer their learning. A good example of this is problem-based learning such as is frequently used in medical schools and business schools.

Transfer of Learning

Teaching for transfer is one of the seldom-specified but most important goals in education. We want students to gain knowledge and skills that they can use both in school and outside of school, immediately and in the future.

Transfer of learning deals with transferring one's knowledge and skills from one problem-solving situation to another. You need to know about transfer of learning in order to help increase the transfer of learning that you and your students achieve.
The Perkins and Salomon low-road/high-road theory of transfer of learning is only about 15 years old and it is an important part of SoTL. A really good summary of transfer of learning is available in:

In low-road transfer one trains for automaticity, for quick and automatic response at a subconscious level. The stimulus/response is practiced in the situations (or, simulations of the situations) in which the problem-solving action is to occur. For example, a goal in reading instruction is a student to be able to recognize words quickly without conscious thought, linking the printed symbols with "meaning" stored in the neurons in his or her head. Many students gain a good level of speed and accuracy (fluency) by the time they finish the third grade. An important aspect of low-road transfer is that it can take a great deal of time and effort to achieve the needed level of automaticity. However, once achieved, much of this automaticity is maintained after a significant period of time (such as a summer) of non-use.

High-road transfer involves: cognitive understanding; purposeful and conscious analysis; mindfulness; and application of strategies that cut across disciplines. In high-road transfer, there is deliberate mindful abstraction of an idea that can transfer, and then conscious and deliberate application of the idea when faced by a problem where the idea may be useful.

Here is an example. Suppose that in math you are teaching students the strategy of breaking a large problem into a collection of more manageable smaller problems. You name this strategy "Breaking a big problem into smaller problems." You have students practice it with a number of different math problems. You then have them practice the same strategy in a number of different non-math disciplines. Good teachers teach these strategies for high-road transfer.

Lower-order and Higher-order Knowledge and Skills

Bloom's Taxonomy provides a way to look at lower-order and higher-order knowledge and skills. Bloom uses the words knowledge, comprehension, application, analysis, synthesis, and evaluation to define a continuum moving from lower-order to higher-order. At the second and third levels (comprehension and application) Bloom stresses that the student is expected to have a level of understanding that allows transfer (of the knowledge and comprehension) to solving problems and accomplishing tasks that one has not encountered before is part of every discipline.

More generally, think about the fact that each academic discipline is defined by:

1. The types of problems and tasks that it addresses.
2. Its methodologies used in representing and solving the types of problems and accomplishing the types of tasks it addresses.
3. Its accumulated results.

Solving problems and accomplishing tasks requires an appropriate blend of lower-order and higher-order knowledge and skills. Although Bloom's taxonomy tends to define the terms so that they are independent of the learner, constructivism tells us that we must pay careful attention to the individual learner. The following diagram illustrates a different way of thinking about lower-order and higher-order. The diagram suggests that lower-order is what the student has already mastered on the road toward achieving a high level of expertise in a discipline. Higher-order is the knowledge and skills needed to move up the expertise scale. The black dot indicates the appropriate level of instruction.
Expertise Scale Illustrating Lower-Order and Higher-Order Knowledge and Skills

![Expertise Scale Illustrating Lower-Order and Higher-Order Knowledge and Skills](image)

Figure 6.1. Lower-order and higher-order from students point of view.

Developmental Theory

Piaget, as well as many others, did research on stages of development. Piaget, for example, talks about a child beginning at the level of Sensory Motor, moving to Preoperational, then Concrete Operations and eventually reaching Formal Operations. In more detail, the stages are:

1. **Sensorimotor stage (Infancy).** In this period (which has 6 stages), intelligence is demonstrated through motor activity without the use of symbols. Knowledge of the world is limited (but developing) because its based on physical interactions / experiences. Children acquire object permanence at about 7 months of age (memory). Physical development (mobility) allows the child to begin developing new intellectual abilities. Some symbolic (language) abilities are developed at the end of this stage.

2. **Pre-operational stage (Toddler and Early Childhood).** In this period (which has two substages), intelligence is demonstrated through the use of symbols, language use matures, and memory and imagination are developed, but thinking is done in a nonlogical, nonreversible manner. Egocentric thinking predominates.

3. **Concrete operational stage (Elementary and early adolescence).** In this stage (characterized by 7 types of conservation: number, length, liquid, mass, weight, area, volume), intelligence is demonstrated through logical and systematic manipulation of symbols related to concrete objects. Operational thinking develops (mental actions that are reversible). Egocentric thought diminishes.

4. **Formal operational stage (Adolescence and adulthood).** In this stage, intelligence is demonstrated through the logical use of symbols related to abstract concepts. Early in the period there is a return to egocentric thought. **Only 35% of high school graduates in industrialized countries obtain formal operations; many people do not think formally during adulthood** [boldface added for emphasis by Moursund].

A student’s overall level of development, as well as his or her development in a particular discipline, comes from a combination of nature and nurture. A teacher in a particular discipline needs to pay careful attention to the developmental level of his or her students. As an example, the term mathematical maturity is used to describe a student's math development. At every grade level and in every math course a significant number of students are not at a math maturity level that is assumed by the content and method of instruction. This means that many students are unable to "really learn and understand" the content being taught. Consequently they are still further behind in their level of mathematical maturity when they encounter the next topics of course in math.

Learning to Learn and About Oneself as a Learner
As indicated earlier, our educational system cannot afford to develop an IEP for every student and then to individualize curriculum content, instruction, and assessment to exactly fit the constructivist needs of each individual student. We must find less expensive ways to meet the individual needs of our students.

This fact suggests the need for our educational system to have a goal of helping each student to learn a great deal about himself or herself as a learner. Each teacher has a responsibility for contributing to this endeavor. The way that two different students efficiently and effectively learn math may well be different. The way that a student efficiently and effectively learns math may be quite different than the way that the student efficiently and effectively learns history.

Improving Education

This section briefly discusses some ways to improve education. Remember, Benjamin Bloom has shown us that education can be much better. (All we need to do is to provide each student with highly qualified tutors.) What we are looking for is less costly or perhaps more cost effective ways to improve education.

Good Teachers

There is substantial research that says that good (human) teachers are the most important key to good learning on the part of students. This particular research has focused on good (highly effective) teachers versus not so good teachers.

The No Child Left Behind legislation talks about highly qualified teachers. Being highly qualified in terms of college degrees and credentials does not necessarily make one into a good teacher. We know, however, that a teacher can get better by concerted effort to move up the teacher expertise scale. This involves continual improvement, lifelong learning, and concerted effort.

A good teacher learns about and implements many of the ideas that we have mentioned about learning theory, transfer of learning, and lower-order vs. higher-order knowledge and skills.

Curriculum Content

Education can be improved by improving the content that is taught. Part of this process is achieving an appropriate balance between lower-order and higher-order knowledge and skills. Part depends or an appropriate sequencing of the knowledge and skills we want students to gain.

The web has emerged as a worldwide library that contains a great deal of up to date information as well as many primary sources of information. This library far exceeds that of any K-12 school. Appropriate use of this library can improve education. Moreover, students need to learn to use this library as well as other sources of information. This is part of the learning to learn process. Note that learning to use the Web to retrieve information in math is not the same as learning to use the Web to retrieve information in history or to do online shopping!

Instruction

We know that good (human) teachers are very important. But, we also know that students can learn from books, television, and other media. Education can be improved by providing students with more and better instructional materials.

Computers have made possible DL as well as highly interactive intelligent computer-assisted learning. We now have a few highly interactive intelligent computer-assisted learning (HIICAL) materials that can do better than a highly qualified individual total. We have quite a few CAL materials that can do better than an average teacher working with a classroom full of students.

The future will bring us more and more HIICAL materials that are delivered over the Web and that can out perform an average (indeed, an excellent) teacher in specific instructional areas.

Assessment

Web-based asynchronous DL is occurring in a web environment. We have previously mentioned situated learning theory. The situation (environment) for this DL is a student seated at a computer that is connected to the Web. How should we assess this student? Grant Wiggins has been pushing for "authentic assessment" for many years. He argues that content should be authentic and assessment should be authentic. The web gives students and their teachers access to information that can be used to make instructional content more authentic. But, what should the DL course designer and instructor be doing about authentic assessment?

Questions and Conclusions

To encourage participants to ask questions we close with a quote from the Wiggins article cited above.

Conventional curriculums reinforce the idea that knowledge is uncontroversial or self-evident, when the opposite is often true. The test for a modern curriculum is whether it enables students, at any level, to see how knowledge grows out of, resolves, and produces questions. Rather than the TV-view that by the end of a class or school career all the "answers" have been "taught" and tied together in a happy ending, closure would consist of taking stock of the current state of the boundary between one's knowledge and ignorance, and gauging the depth of one's grasp of the questions.

In short, the aim of curriculum is to awaken, not "stock" or "train" the mind. That goal makes the basic unit of a modern curriculum the question. Given the intimidating, easily trivialized mass of knowledge, what the modern student needs is the ability to see how questions both produce and point beyond knowledge (whether one's own or the expert's). Educational progress would thus be measured as the ability to deepen and broaden one's command of essential questions by marshaling knowledge and arguments to address them [boldface added by Moursund for emphasis.]

Final Remarks on Chapter 6 Topics

Taken together, Computer-Assisted Learning and Distance Learn are a powerful change agent in education. This change agent certainly challenges the conventional design of a school being a place where students and teachers come together at one place for many hours a day and many days per year.

Our formal educational system of schools and schooling is a huge and slowly changing social system. ICT, including CAL and DL, is a powerful change agent. Now and in the future it will be interesting to watch the collision of the slow to change formal educational system and the powerful change agent.

If you are a relatively young inservice or preservice teacher, you will have 20 to 30 years or more of involvement in this collision. During this time ICT systems will grow immensely in capability. CAL and DL will get better and better. During your teaching career you will see significant changes in our formal education system brought on by ICT.

Activities for Chapter 6

1. Explore your thoughts and feelings about the fact that in certain limited teaching & learning situations, HIICAL produces results that are better than what an average teacher produces when working with a classroom of students.

2. Explore your thoughts and feelings about the fact that in certain limited teaching & learning situations, HIICAL produces results that are better than what an average individual tutor produces when working with a student.

4. Gradually, quite a bit of the HIICAL named in (1) and (2) given above will become available (at a reasonable cost) to students at home, to Libraries, to Home Schools, to Charter Schools, to Private Schools, and to Public Schools. What are your thoughts and feelings as to how this will change the teaching profession and your career as a teacher?
Chapter 7
ICT Assessment and Accountability

ICT is now a widely used aid to student assessment. In addition, the introduction of ICT into school curricula has brought with it the need to assess student learning of ICT. Finally, self-assessment is of growing importance in education, and ICT can play a significant role in it.

There are a variety of ways to look at assessment. For example, we can ask if an assessment instrument or an assessment system is reliable, valid, fair, authentic, and cost effective. We can ask if an assessment system provides appropriate help to students, teachers, and others in improving our educational system. We can ask if an assessment system contributes to accountability. This chapter discusses such issues from an ICT point of view.

Overview of General Background Information
Most preservice teacher education programs include a course that specifically focuses on assessment, evaluation, and related topics. The first part of the current chapter summarizes a few of the key ideas that such a course might cover. In this part of the chapter, there is little specific mention of ICT.

Assessment and Evaluation

People often confuse the two terms, assessment and evaluation. Quoting from Brookhart (1999):

"Assessment" means to gather and interpret information about students' achievement, and "achievement" means the level of attainment of learning goals … Assessing students' achievement is generally accomplished through tests, classroom and take-home assignments, and assigned projects. Strictly speaking, "assessment" refers to assignments and tasks that provide information, and "evaluation" refers to judgments based on that information.

In brief, assessment is the process of gathering data about performance, and evaluation is the analysis and the assigning of meaning and value to the assessment data.

Some aspects of assessment can be automated through use of ICT. ICT also can play a significant role in evaluation. However, human judgment is a key aspect of evaluation in education, so this is a situation in which one seeks an appropriate balance between human and ICT system capabilities in accomplishing the task.

Norm Referenced and Criterion Referenced Evaluating

State and national evaluation of student performance often involves comparing students against criteria (criterion referenced) or other students (norm referenced). The following two definitions come from the Center for the Study of Evaluation glossary (CSE http://www.cse.ucla.edu/resources/glossary_set.htm).

Criterion-Referenced Assessment. An assessment where an individual's performance is compared to a specific learning objective or performance standard and not to the performance of other students. Criterion-referenced assessment tells us how well students are performing on specific goals or standards rather that just telling how their performance compares to a norm group of students nationally or locally. In criterion-referenced assessments, it is possible that none, or all, of the examinees will reach a particular goal or performance standard. For example: "all of the students demonstrated proficiency in applying concepts from astronomy, meteorology, geology, oceanography, and physics to describe the forces that shape the earth."
Norm-Referenced Assessment. An assessment where student performance or performances are compared to a larger group. Usually the larger group or “norm group” is a national sample representing a wide and diverse cross-section of students. Students, schools, districts, and even states are compared or rank-ordered in relation to the norm group. The purpose of a norm-referenced assessment is usually to sort students and not to measure achievement towards some criterion of performance.

ICT has contributed to the development and use of huge amounts of assessment data for the purposes of developing norm-referenced assessment instruments. The judgment of human experts in a field is a key aspect of developing criterion-referenced assessment instruments.

Formative, Summative, and Residual Impact Evaluation

Evaluation is sometimes divided into three categories:

1. **Formative evaluation.** This is evaluation that occurs in a timely manner to allow “mid course” feedback and changes in a teaching/learning or other activity. In a teaching/learning classroom environment, such formative evaluation may result in letter or numerical grades being assigned to and reported to students. However, That is not a necessary component of formative evaluation. The key issues is providing feedback to students and the teacher in a timely manner. ICT can be useful in this endeavor.

2. **Summative evaluation.** This is evaluation of a teaching/learning activity or other activity that summarizes the outcomes. It may be based on a combination of assessment data garnered during the course of the activity and assessment data garnered at the end or shortly after the end of the activity. From a student point of view, reports from summative evaluation come after a unit of instruction has been completed, when it is too late for a student to make changes in his or her learning and other work activities. From a teacher point of view, summative evaluation provides information about the effectiveness of a lesson or sequence of lessons, and it provides information that can be used to improve the lessons for use sometime in the future.

3. **Long-term residual impact evaluation.** This is evaluation based on assessment data gathered well after a teaching/learning or other activity has ended. For example, educators are interested in the “end of the subsequent summer” residual impact of instruction that has occurred during an academic year. As a teacher, you can do some residual impact evaluation of your students a few weeks or months after a unit of study has been completed. You may be surprised by the results.

Reliable, Valid, and Fair Assessment

Researchers and practitioners in assessment agree that assessment instruments should be reliable, valid, and fair. The following two definitions come from the Center for the Study of Evaluation glossary (CSE http://www.cse.ucla.edu/resources/glossary_set.htm).

Reliability. The degree to which the results of an assessment are dependable and consistently measure particular student knowledge and/or skills. Reliability is an indication of the consistency of scores across raters, over time, or across different tasks or items that measure the same thing. Thus, reliability may be expressed as (a) the relationship between test items intended to measure the same skill or knowledge (item reliability), (b) the relationship between two administrations of the same test to the same student or students (test/retest reliability), or (c) the degree of agreement between two or more raters (rater reliability). An unreliable assessment cannot be valid.

Validity. The extent to which an assessment measures what it is supposed to measure and the extent to which inferences and actions made on the basis of test scores are appropriate and accurate. For example, if
a student performs well on a reading test, how confident are we that that student is a good reader? A valid standards-based assessment is aligned with the standards intended to be measured, provides an accurate and reliable estimate of students' performance relative to the standard, and is fair. An assessment cannot be valid if it is not reliable.

An assessment instrument may be both reliable and valid, but may not be designed to be equally fair to various subgroups of people being assessed. The instrument may favor men over women, or different ethnic groups, or different religious groups, and so on. An assessment may favor students who have taken a specific course from a specific teacher versus students who have learned the material in other ways and/or from other teachers. An assessment instrument may favor students who have grown up in a high socio-economic setting versus students from lower socio-economic setting.

Reliability can be measured by use of a variety of statistical techniques. Validity can be determined by a careful analysis of an assessment instrument in terms of the instructional goals, instructional content, teaching methodology, and other aids to teaching and learning involved in a unit of study that is being assessed. It is much harder to determine if an assessment instrument is fair. Among other difficulties is that of deciding who the assessment instrument should be fair to.

ICT is used various aspects of administering and scoring a wide variety of assessment instruments. This, by itself, does not ensure that an assessment instrument is reliable, valid, or fair.

Accumulated Knowledge Base

Both assessment and evaluation are large and complex disciplines. They are also the basis for a very large industry. One relatively small piece of this industry is funded by the US Department of Education and is called the ERIC Clearinghouse on Assessment and Evaluation (ERIC/AE). Quoting from their Website:

The ERIC Clearinghouse on Assessment and Evaluation at the University of Maryland, Department of Measurement, Statistics and Evaluation, is one of 16 subject-oriented clearinghouses operated by the United States Department of Education, Office of Educational Research and Improvement. Since its inception in 1966, the Educational Resources Information Center (ERIC) has become one of the major bibliographic databases in the world. ERIC has acquired, reviewed, and processed more than one million citations that policy makers, program planners, researchers, and other users can readily identify and obtain.

There is a substantial and steadily growing research base of knowledge in assessment and evaluation. A good source of information on this research is the UCLA Center for the Study of Evaluation. (CSE). Quoting from the Website:

For more than 36 years, the UCLA Center for the Study of Evaluation (CSE) and, more recently, the National Center for Research on Evaluation, Standards, and Student Testing (CRESST) have been on the forefront of efforts to improve the quality of education and learning in America. Located within UCLA’s Graduate School of Education & Information Studies, CSE/CRESST has pioneered the development of scientifically based evaluation and testing techniques, vigorously promoting the accurate use of data, test scores, and technology for improved accountability and decision making.

In recent years, CSE/CRESST has grown to meet expanded needs resulting from changes in federal and state laws and has substantially broadened its research well beyond the K-12 educator audience. Through the addition of several new projects, CSE/CRESST research and development now extends significantly into pre-school and after-school programs and also includes studies of adult learning using advanced technology. The 2002 passage of the No Child Left Behind Act provides additional opportunities for research and development related to state, district, and local school accountability needs.
Teachers, school districts, and our overall educational system make use of a variety of assessment instruments. These vary widely in quality and how well they support evaluation needs. Moreover, there are ongoing efforts to improve assessment. One approach is through the use of Alternative Assessment instruments and procedures.

Alternative Assessment

The remainder of this chapter focuses on topics that are particularly relevant to ICT in education.

To a large extent, “traditional” assessment in the United States is based on objective tests—true/false, multiple choice, matching, and so on. Here is a definition of alternative assessment from the Center for the Study of Evaluation glossary (CSE http://www.cse.ucla.edu/resources/glossary_set.htm).

Alternative Assessment (also authentic or performance assessment). An assessment that requires students to generate a response to a question rather than choose from a set of responses provided to them. Exhibitions, investigations, demonstrations, written or oral responses, journals, and portfolios are examples of the assessment alternatives we think of when we use the term "alternative assessment." Ideally, alternative assessment requires students to actively accomplish complex and significant tasks, while bringing to bear prior knowledge, recent learning, and relevant skills to solve realistic or authentic problems. Alternative assessments are usually one key element of an assessment system.

Notice the emphasis given to students accomplishing complex and significant tasks, and students solving realistic or authentic problems. As noted much earlier in this book, there is considerable agreement in goals of education that focus on students learning to solve complex problems and accomplish complex tasks. The assessment issue is how to assess this type of student learning.

In recent years, one approach has to strive to make assessment be more “authentic.” Grant Wiggins has long been a leader in this approach. Quoting from Wiggins (1990):

Assessment is authentic when we directly examine student performance on worthy intellectual tasks. Traditional assessment, by contract, relies on indirect or proxy 'items'—efficient, simplistic substitutes from which we think valid inferences can be made about the student's performance at those valued challenges.

The key idea is the issue of assessment that uses indirect or proxy items versus assessment that directly examines student performance on “worthy intellectual tasks. For example, suppose that we want to assess how well a student can write in a word processing environment. We could analyze this assessment task and decide we should give the student a two-part test. The first part would be a paper and pencil writing task—perhaps writing a 200-word essay on a specified topic. This would be graded in a “traditional” manner that includes emphasis on spelling, punctuation, legibility, content, and so on. The second part would be an objective test on various aspects of a word processor, including where the on-off switch is located on a particular machine, how to load a word processor, what commands are used to load and save a file, and so on.

This above example is mean to sound ridiculous. It emphasizes a far extreme from authentic assessment. Contrast this with simply seating the student at a computer and asking the student to make use of the computer to write, save, and print out a 200-word essay? You might observe the student carrying out this task, looking for effective use of a word processor as an aid to process writing (revise, revise, revise), spelling, certain aspects of grammar, and counting words. You would note whether the student appropriately saves the document from time to time and knows
how to print a document. In additional to the assessment information you gained through observations, you would read the document of content and overall (holistic) quality of writing.

Typically, there is a reasonable amount of authenticity in traditional modes of assessment. However, the following additional quotations from Wiggins (1990) emphasize how authentic assessment differs from traditional assessment.

Authentic assessments attend to whether the student can craft polished, thorough and justifiable answers, performances or products. Conventional tests typically only ask the student to select or write correct responses--irrespective of reasons. (There is rarely an adequate opportunity to plan, revise and substantiate responses on typical tests, even when there are open-ended questions).

Authentic tasks involve "ill-structured" challenges and roles that help students rehearse for the complex ambiguities of the "game" of adult and professional life. Traditional tests are more like drills, assessing static and too-often arbitrarily discrete or simplistic elements of those activities.

Authentic assessment is an important idea throughout education. ICT brings new challenges of authentic assessment of student knowledge and skills related to ICT or making use of ICT as students demonstrate knowledge and skill in non-ICT areas. Think, for a moment, about the working environment of a typical white-collar worker nowadays. This person has an Internet-connected computer sitting on his or her desk, available for use on any work task that can benefit from the types of tools that ICT provides. This person learns to use ICT as a routine aid to solving problems, accomplishing tasks, producing reports, and so on.

Now, contrast this with how we currently assess students who are in school. Very few teachers think it would be all right to provide students routine access to a computer, email, the Web, and a cell telephone while taking tests. Teachers talk about preparing students for adult life and jobs in our society. But, the assessment system used in schools is not authentic relative to adult life and jobs.

“The function of school is not to help kids do well in school. The function of school is to help kids do well in life.” ---Elliot Eisner Professor of Education Stanford University

"The problems of life are much more like the problems encountered in the arts. They are problems that seldom have a single correct solution; they are problems that are often subtle, occasionally ambiguous, and sometimes dilemma-like. One would think that schools that wanted to prepare students for life would employ tasks and problems similar to those found outside of schools. This is hardly the case. Life outside of school is seldom like school assignments--and hardly ever like a multiple-choice test." - from Elliot Eisner’s book, The Kind of Schools We Need

Nationwide and Statewide Assessment in ICT

Student learning in the discipline of ICT and in the applications of ICT throughout the curriculum have not yet been subjected to rigorous nation-wide assessment. Thus, there is no firm basis for either criterion-referenced or norm-referenced assessment in these areas for precollege students. However, some states and provinces, both in the United States and elsewhere, have tackled the problem of assessment of students in ICT and its applications.

For example, Leete (2003), discusses such assessment in New South Wales, Australia. Her document argues against the currently proposed implementation of such assessment because the curriculum has not been adequately developed and the teachers have not been adequately trained. The following list of areas to be assessed is quoted from her document:
The 10 competencies that are to be covered across the subject areas are:

1. Operate effectively within the desktop environment.
2. Perform basic operations within computer software packages.
3. Perform core tasks common to software applications.
4. Demonstrate basic word-processing skills as they create, work with and modify text documents.
5. Demonstrate basic spreadsheet skills as they create, work with and modify files.
6. Demonstrate basic database skills to create, work with and modify files.
7. Demonstrate basic multimedia skills to create, work with and modify multimedia-based files.
8. Demonstrate basic graphics skills to create, work with and modify images.
9. Conduct research using information and communication technologies.
10. Demonstrate internet/intranet communication skills, including use of email.

You will notice that there is no emphasis on problem solving and other higher-order cognition in this list.

North Carolina has implemented a statewide test that is required for graduation and that is first administered in the 8th grade. Information about this can be accessed at http://www.dpi.state.nc.us/accountability/testing/reports/. From that Website one can access The Report of Student Performance on the North Carolina Tests of Computer Skills: 2001-02(Acrobat 2.6 MB). And, within that report one can access sample questions used in the assessment. (The Table of Contents titles are clickable.)

The test consists of a combination of multiple choice and hands-on questions and is designed to be administered entirely in a hands-on computer mode. The following is quoted from http://www.ncpublicschools.org/accountability/testing/computerskills/handbook/.

North Carolina
Tests of Computer Skills
(Graduation Requirement)

Student Handbooks

Information in both student handbooks, including sample test items, electronic files, etc. must not be used for personal or financial gain. North Carolina LEA/school officials, teachers, parents, and students may download and duplicate the handbooks and electronic files for instructional and educational purposes only. Others may not duplicate the handbooks without prior written permission from the NCDPI Division of Accountability Services/Testing Section.

* The North Carolina Tests of Computer Skills Student Handbook (For Students Who Entered Grade 8 in the 2000-2001 School Year and Beyond), Published June 2002. This handbook for students explains the Tests of Computer Skills and provides sample questions and preparation strategies. This handbook contains sample items for the revised computer skills multiple-choice and performance tests.

Here are several sample questions quoted from that document:

1. Trish is editing the last paragraph of her essay. She has decided to add another sentence before the last sentence. Which of the following would be the most efficient process?
 A Type the sentence in another document and then place it in her essay where she wants it.
 B Type the sentence at the end of her essay and then move it to where she wants it.
C Type the sentence at the end of her essay, copy the new sentence, and then paste it where she wants it.
D Put the cursor at the point where she wants to add the sentence and then type the sentence.

2. Which search of an electronic phone directory would find only the Doe families living on Main Street in area code 919?
 A Name = “Doe” or Address = “Main Street” or Area Code = “919”
 B Name = “Doe” and Address = “Main Street” or Area Code = “919”
 C Name = “Doe” or Address = “Main Street” and Area Code = “919”
 D Name = “Doe” and Address = “Main Street” and Area Code = “919”

5. Why is a web site an effective way to present a report on an animal that you are studying?
 A People like to read reports on computers.
 B People can follow links to additional information, pictures, or animal sounds.
 C People do not have to read the report; they can just look at the pictures and listen to the sounds.
 D People can read a long report on one page by scrolling down so they do not have to go to another web page.

7. Which method is used to cite resource materials in multimedia projects?
 A bibliography of print resources
 B bibliography of three main sources
 C bibliography of online resources only
 D bibliography of all resources

One of the hands-on components of the assessment is on use of a word processor. Students are given a word processor document in electronic form. The directions are:

1. Center the newsletter title, The Social Studies TV Project Update, in bold 24-point type.

2. In the first article, The Big Four Became the Big Three, make the following edits:
 • Center the title in bold 14-point type
 • Single space and left-align the text in regular 12-point type
 • Indent the paragraph

3. In the second article, TV Study to Be Televised, italicize the title, The Social Effects of Television in 1958.

4. Use the spell checker to make certain all words are spelled correctly.

5. Below the last article, type the following article: Paying for Noticeable Names. [[Note to reader: A short article is provided to be typed in.]] Remember to:
 • Key as accurately as possible the title and paragraphs in the box below
 • Center and format the title in bold 14-point type
 • Indent the paragraph
 • Left-align the text in 12-point type
 • Use correct keyboarding techniques
 • Use word wrap and ignore any differences between what you key and how the paragraph appear on this page
 • Use the spell checker
Rubrics for Assessment

A rubric is a scoring tool that can be used by students (for self assessment), peers (peer assessment), teachers, and others. It lists important criteria applicable to a particular type or piece of work. It also lists varying levels of possible achievement of the criteria. Figure 7.1 gives a very general purpose, six level scoring rubric. This might be useful to the teacher, but it is not useful to the student. The student cannot use this to self-assess or to assess his/her peers.

<table>
<thead>
<tr>
<th>Level</th>
<th>Brief Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Emergent</td>
<td>Student displays few, if any, of the rudimentary knowledge and skills that are expected.</td>
</tr>
<tr>
<td>2: Limited</td>
<td>Student displays rudimentary knowledge and skills, but often requires substantial individual help and guidance.</td>
</tr>
<tr>
<td>3: Developing</td>
<td>Student displays a minimally adequate level of the expected knowledge and skills.</td>
</tr>
<tr>
<td>4: Capable</td>
<td>Student displays a functional, adequate level of the expected knowledge and skills.</td>
</tr>
<tr>
<td>5: Strong</td>
<td>Student displays a high level of the expected knowledge and skills.</td>
</tr>
<tr>
<td>6: Exceptional</td>
<td>Student displays an outstanding and creative/innovative level of the expected knowledge and skills.</td>
</tr>
</tbody>
</table>

Table 7.1. A generic 6-level rubric.

Table 7.2 is an adaptation of Table 7.1 to the situation of assessing student use of ICT tools while working on a project. It is a rubric that might be used when a student is producing a product such as a written report or an oral presentation accompanied by detailed handouts and supported by presentation media. Such a rubric might be useful in authentic assessment of a relatively authentic task-oriented assignment. This rubric contains considerable more detail than the rubric of Figure 7.1, but it is still has significant weaknesses.
<table>
<thead>
<tr>
<th>Level</th>
<th>Brief Description</th>
</tr>
</thead>
</table>
| 1: Emergent | • Selected technology tools to assist in creating the desired product that were inappropriate for the task or student is not able to operate tool.
• Technology was used but not to benefit the creation of a quality product.
• Technology tools were tried by the student, but the required product could not be produced.
• Was unable to resolve most technological obstacles relating to the project.
• Ethical and professional behavior was not shown or was inappropriately shown through lack of citations, copyright adherence, and ethics. |
| 2: Limited | • Selected lesser effective tools from what is available to create the desired product.
• Technology was used to address the tasks but few of the capabilities of the technologies were used to create the product.
• Technology tools are used and set up appropriately, but only with major outside assistance.
• Was able to solve only elementary technological obstacles.
• Ethical and professional behavior was occasionally shown through appropriate citations, copyright adherence, and ethics. |
| 3: Developing | • Selected appropriate tools from what was available to create the desired product, but only with outside assistance.
• Technologies were used but assistance was needed for the basic capabilities of the technology to create product.
• Technology tools were set up and used appropriately but required some outside assistance.
• Was able to solve most basic obstacles associated with the project.
• Ethical and professional behavior was generally shown through appropriate citations, copyright adherence, and ethics. |
| 4: Capable | • Selected adequate tools from what was available and appropriate for creating the desired product.
• Technology was used in an appropriate way and applied the basic capabilities of the technology to create the product.
• Technology tools were set up correctly and used appropriately with minor assistance.
• Was able to solve some of the technology related problems associated with the project.
• Ethical and professional behavior was shown through appropriate citations, copyright adherence, and ethics. |
| 5: Strong | • Selected quality tools from what was available that was appropriate to create quality a product.
• Technology was used in appropriate ways and applied many of the features to create a quality product.
• Technology tools were set up correctly and used appropriately without assistance following established guidelines.
• Solved most technology related problems associated with the project.
• Ethical and professional behavior was shown through appropriate citations, copyright adherence, and ethics. |
in proper form, copyright adherence, and ethics.

| 6: Exceptional | • Selected the most appropriate tools from what was available, to create high quality products.
| | • Technology was used in an innovative way to create higher quality product than assignment anticipated.
| | • Technology tools were not only set up correctly and used appropriately but often suggestions are provided for improvement in the procedures.
| | • Solved all technology related problems associated with the project.
| | • Ethical and professional behavior was shown through appropriate citations in proper form, copyright adherence, and ethics. |

Figure 7.2. A generic ICT tool use rubric.

To understand some of the weaknesses in the rubric of Figure 7.2, consider a student who receives a 4-Capable and who is looking at the details of 6-Exceptional. How does the student know that he or she did not select the most appropriate tools from what was available, to create high quality products? Does the student have any idea what was not “most appropriate” among the tools that he or she selected? If the student were to redo or to spend more time on his or her product, does the feedback provided by the rubric and a rating of 4-Capable helpful in moving toward producing a product that would be 5-Strong or 6-Exceptional?

The brief discussion of the rubrics given in Figures 7.1 and 7.2 helps to emphasize the difficulty in providing evaluation that supports increased learning and improvement in the quality of work that a student is doing.

Some people who have thought a lot about such difficulties have suggested that students should be involved in developing the rubrics that will be used in their assessment, and that there should be a significant effort to help students learn to evaluate their own work. Still another set of possibilities comes from the idea of computerizing (automating) certain aspects of the assessment-evaluation-feedback process. This topic is addressed in the next section.

ICT-Assisted Self-Assessment

The first part of this section focuses on self-assessment. The second part focuses on some ideas of ICT-assisted self-assessment.

Self-Assessment

You are an adult learner. Your previous education has provided you with some help in moving up a scale that reflects your knowledge and skills about assessing your own learning. Figure 7.3 represents this idea.
Think of yourself as a learner making use of this book to gain increased knowledge and skills in being a good teacher who makes effective use of ICT as an aid to student learning. Spend a few minutes doing metacognition on your learning of the materials in this book. Let your metacognition be guided by the following questions.

Am I learning well enough:

- so that the knowledge and skills will stay with me, for use in the future?
- to transfer the knowledge and skills to situations where and when they are applicable?
- to serve my current needs as a preservice or inservice teacher?
- so that I can build on the knowledge and skills in the future, as the field of ICT in education continues to change rapidly?
- so I have a much improved insight into what I don't know, why I might want to learn some of the things that I don't know, and pathways to doing the learning?

What are your thoughts and feelings about this metacognition exercise? Have you asked yourself such questions during some of your past learning experiences? Is there any value in asking yourself such questions?

The metacognition questions are hard questions, and the answers are quite personal to you. These types of questions closely relate to the ideas of constructivism. As an adult learner, you are able to take much more responsibility for your learning than an elementary school student can. You are more aware of what you know, what you want to know, and why you want to gain the increased knowledge and skills.

Is there value in helping your students learn to ask and answer the same kinds of questions? What might you do as a teacher to help your students increase in expertise as self-assessors of their learning?

Chapter 2 of this book contains six self-assessment questions on generic ICT tools. Look back at these questions to look for strengths and weaknesses in this approach to ICT self-assessment.
You will likely decide that each assessment question is quite general and does not assess detailed knowledge and skills that you have and/or that are relevant to the question. For example, the question about word processors does not ask you to assess yourself on details of use of Tables in a word processor. Do you know how to create and edit a table, size it to fit the data or information you are entering, format the table, and align (place) the table appropriately in your document as part of the process of preparing your document for desktop publication? Suppose that you decide that two columns of a table you have word processed need to be interchanged. Do you know an efficient way to do this? Do you know how to import a table or table data from the Web, from a spreadsheet, and from other word-processed documents? Do you know how to export a table from a word-processed document?

Another characteristic of the self-assessment instrument in Chapter 2 is that it is not “automated.” Contrast it with an assessment presented by computer, with the user entering responses via computer, and then the computer system “scoring” the results and providing detailed feedback to the user.

Still another characteristic of the self-assessment in Chapter 2 is that it is weak on authenticity. It does not ask you to actually complete various tasks on a computer.

The discussion given above provides an introduction to some of the ideas of self-assessment and of ICT-assisted self-assessment. In both cases we are particularly interested in the feedback (formative evaluation) aspects of self-assessment as an aid to the learner. A major goal is to help a person become more independent and self-sufficient as a learner and as a user of his or her learning. In school, students become highly dependent on teachers facilitating assessment processes, and providing formative and summative evaluation feedback. This approach is weak in helping students to be able to judge the quality of their own work, knowledge, and skills. Seldom is it well integrated, in a constructivist sense, with the specific learning progress that each individual student is engaged in.

Learning to self-assess is am important and difficult goal in any unit of instruction. There is some published literature on this topic, but to me the published research and craft knowledge seems inadequate. I don’t believe that our educational system is very successful in helping students learn to self-assess over the various curriculum areas that they study.

I found the following reference to be useful:

Bruce, Linda B. Student Self-Assessment. Making Standards Come Alive. Accessed 10/27/03: http://www.ascd.org/readingroom/classlead/0109/2Sept01.html. Quoting from this Website:

Incorporating a standards-based approach to teaching and learning can be a creative and enriching endeavor. What's one key approach? Ask students to assess their own work.

Five teachers in a suburban high school recently implemented student self-assessment (SSA) activities in their classes. The results of this experiment—in courses as different as physics and foreign language—revealed the potential of SSA to make standards come alive for students. The reactions of students and teachers in this project also indicated that student self-assessment practices offer solutions to some of the concerns about standards that have been expressed by both supporters and opponents of this approach to school reform.

...
In general, SSA refers to training students to evaluate their own work for the purpose of improving it (Rolheiser & Ross, 2000). To become capable evaluators of their work, students must have

- a clear target
- the opportunity to help create a definition of quality work
- feedback
- the opportunity to correct or self-adjust their work before they turn it in

SSA also includes reflective activities in which students are prompted to consider the strengths and weaknesses of their work, make plans for improvement, or integrate the assignment with previous learning (Paris & Ayres, 1994; Stiggins, 1997; Wiggins, 1998).

A Google search on Self-Assessment turns up about 1.8 million hits. Quite a few of the hits are self-assessment instruments, while very few of the hits are research results supporting either the general effectiveness of self-assessment or the reliability, validity, and fairness of the instruments that are discussed. Quite a few of the self-assessment instruments are available on and administered by the Web.

For example, the Western Governors University is a university in the in the U.S. offering competency-based, online degrees, and provides an online self-assessment instrument that a person can use to help decide whether he or she will be successful in this mode of learning. Accessed 11/1/03: http://www.wgu.edu/wgu/self_assessment.asp. You might want to do a compare and contrast with some of the instruments listed at http://illinois.online.uillinois.edu/IONresources/onlineLearning/StudentProfile.asp. You may notice, for example the varying quality of feedback or explanation provided by the various instruments.

From a teaching and learning point of view, a good self-assessment instrument provides high quality feedback designed to help the learner. Such self-assessment is a key component of good Computer-Assisted learning materials.

Note to self 11/4/03: It seems to me that we are talking about two relatively different types of self-assessment. I solve a problem or accomplish a task. How well did I do? I want to have the knowledge and skill to answer that question for myself, rather than requiring an outside “judge” to tell me. Contrast this with an instrument that helps me to understand whether I am apt to do well in a Distance Learning environment, or that helps me to determine my personal style.

Note to self 11/4/03: I have not discussed the type of feedback that a spelling and grammar checker provides. Those are examples of computerized assessment.

Computer-Assisted Testing

The remainder of this chapter focuses specifically on roles of ICT in Assessment and Evaluation.

A Computer-Assisted Testing System can be thought of as a computer-based system that presents test questions, receives and scores the answers, produces a report for the teacher, and produces a report for the students. It is easy to take any object test such as T/F or Multiple Choice, and implement it in a Computer-assisted Testing System.

In a Computer-Assisted Testing System, the report to the teacher may include information about the reliability of the test, an analysis of which questions were the best discriminators between students who did well and those who did poorly on the test, and other types of statistical
analysis. The report to the student may give details on why a particular answer was not correct, and it might contain suggestions for where the correct answer was discussed in the assigned readings.

Often a Computer-Assisted Testing System will make use of a large databank of exam questions. Questions presented to a student might be drawn at random from this databank of questions. This creates a situation in which each student is likely to be faced with a different set of questions, and it facilitates allowing a student to take the test more than once.

Computer-Adaptive Testing

A computer-Adaptive Testing System typically may include all of the features of a Computer-Assisted Testing System. However, there is one major difference. A Computer-Adaptive Testing System is designed to provide a student with a sequence of questions that allow the computer system to rapidly narrow in on a measure of the student’s knowledge in the area being tested.

Here is a simple explanation of how this is done. The first question asked of the student is at a “middle” level of difficulty. If the student answers correctly, a somewhat harder question is asked. If the student answers incorrectly, a somewhat easier question is asked. This process is repeated until the computer system narrows in on a good estimate of the student’s level of knowledge.

It tends to be both difficult and expensive to develop a valid, reliable, and fair Computer-Adaptive test. You can see this by thinking about how you might develop test questions in a particular discipline area. You need to rank the questions in terms of difficulty. Suppose, for example, you are making up social science questions designed for a Computer Adaptive Test to be used with fifth grade students. Then you would need to develop questions that span a wide range of difficulty—perhaps from first grade level to ninth grade level, or higher. The level of difficulty of a question depends on what the student has been taught by you, by previous teachers, and many other factors.

The following reference contains a computer-based tutorial (an example of CAL) on Computer Adaptive Testing.

Accountability

At the current time, the public PreK-12 school system in the United States is spending about two-percent of its budget on instructional uses of computers. While two-percent sounds like a small percentage, this translates into well over $6 billion per year. Many people have asked if these funds are being wisely spent. They want to see solid evidence that such instructional use of ICT is improving the education being received by our students. They view this as an accountability question.

Accountability is closely related to assessment and evaluation. Suppose that certain groups of students, or schools, or school districts, and so on perform poorly relative to some set of expectations. Then people ask the question, “who is responsible (accountable) for this, and what are they going to do about it?”
In education, there are many different stakeholder groups such as students, teachers, school administrators, school boards, parents, taxpayers, legislators at a state and national level, state governors, and so on. Each stakeholder group has its own views of the goals of education and how to assess and evaluate progress toward meeting these goals. Each stakeholder group talks in terms of accountability—which usually means holding some group other than themselves accountable or responsible for the outcomes that are being achieved.

This situation is made still more complex because different stakeholders have different goals, and so different analyses of assessment data and information will lead to different results. Without too much effort, essentially every school can be made to look like it a seriously deficient from some point of view.

You may detect a certain amount of tongue in cheek cynicism in the previous paragraphs. A stakeholder group could also assess and evaluate itself, and determine if it is meeting its accountability responsibilities. While that does happen occasionally in education, the more common occurrence is for one group to attempt to place blame on others. For example, many groups like to point to the poor performance of students living in core city areas. However, it is not a teacher’s fault if most of his or her students come from low socioeconomic neighborhoods that include many poor home situations. But such student backgrounds are a quite accurate measure of future difficulty in school and in doing well on statewide assessments.

As a current or future teacher, you are well aware of the current political aspects of accountability in education. You may not like some aspects of the significantly increased emphasis on accountability that has occurred in recent years. You may think that it is inappropriate to spend a lot of teacher and student time preparing for state and national assessment.

Regardless of your position on such accountability issues, you have a high level of personal responsibility (accountability to yourself) to be as good a teacher as you can be. A short paper by Lee Shulman (2003), President of the Carnegie Foundation for the advancement of Education, begins by discussing good or not good Samaritans who stop and offer assistance at an accident (or, just drive on by.) He then says:

My point is that excellent teaching, like excellent medical care, is not simply a matter of knowing the latest techniques and technologies. Excellence also entails an ethical and moral commitment--what I might call the "pedagogical imperative." Teachers with this kind of integrity feel an obligation to not just drive by. They stop and help. They inquire into the consequences of their work with students. This is an obligation that devolves on individual faculty members, on programs, on institutions, and even on disciplinary communities. A professional actively takes responsibility; she does not wait to be held accountable.

I am assuming that you have read the preceding chapters of this book. Thus, you now have relatively good insight into quite a range of ways in which ICT can be used to improve education. If you are a preservice teacher, pay careful attention to ICT use the next time you visit a school. If you are an inservice teacher, introspect and take a careful look at how ICT is being used by your fellow teachers. In either case, there is a good chance that you will be disappointed by what you see. On average, the ICT facilities that are available to students in school, at home, and in other locations are not being used nearly as well as they could be used to further the education of students (Moursund’s “Arguments Against” Website).

The reasons for this are many and varied. Many of the reasons are beyond your personal control. However, many of the reasons have to do with what individual teachers are doing or not
doing. You, personally, have individual accountability for yourself. Work to be an exemplar of effective use of ICT in education!

Activities for Chapter 7

1. Pretend you are talking to a parent, and the parent asks about accountability for the large amounts of money that are being spent on ICT in education. Summarize what you would say.

2. Do some self-assessment on your ICT knowledge and skills by making use of the sample questions at North Carolina’s Website http://www.dpi.state.nc.us/accountability/testing/reports/. Summarize your thoughts and feelings about your performance on these 8th grade questions.

3. Select a course or grade level that you teach or are preparing to teach. Suppose that it is the beginning of a school year and you have a new class of students. How would you determine their ICT knowledge and skills that are relevant to the uses you want to make of ICT with this class? In responding to this question, be relatively specific. Thus, for example, you might want to make a list of the prerequisite knowledge and skills you would like your students to have, and figure out how you will determine whether they actually meet these prerequisites.
Chapter 8
ICT in Special and Gifted Education

This chapter addresses ICT and Special Education and Talented & Gifted Education (TAG) as two separate topics. Of course, the topics overlap, and both are often included under the title Special Education. Many children have two or more exceptionalities, and may well be both TAG and Special Education. Very roughly speaking, approximately 8-percent of students fit standard definitions of TAG and approximately 8-10 percent fit standard definitions of special education.

One of the 16 Educational Resources Information Centers (ERIC) in the United States focuses on Special Education and TAG. See ERIC Clearinghouse on Disabilities and Gifted Education. Accessed 11/9/03: http://ericec.org/. Quoting from the Website:

ERIC is an acronym for the Educational Resources Information Center. The ERIC Clearinghouse on Disabilities and Gifted Education (ERIC EC) is one of 16 federally funded clearinghouses in the ERIC system, a nationwide information network sponsored by the U.S. Department of Education, Institute of Education Sciences (IES).

ERIC EC gathers and disseminates the professional literature, information, and resources on the education and development of individuals of all ages who have disabilities and/or who are gifted.

Please note the following information quoted from this ERIC site:

ERIC will begin a transition in late December as a new U.S. Department of Education contractor develops a new model for the ERIC database and services. ERIC clearinghouses, websites, including AskERIC, and their toll-free telephone numbers will close on December 19, 2003. Please change your bookmarks to http://www.eric.ed.gov, and use that one URL to:

1. search the ERIC database
2. search the ERIC Calendar of Education-Related Conferences
3. link to the ERIC Document Reproduction Service to purchase ERIC full-text documents
4. link to the ERIC Processing and Reference Facility to purchase ERIC tapes and tools

Advice to Preservice and Inservice Teachers

A general education teacher can ordinarily expect to have both Special Education and TAG students in his or her classes. Thus, a general education teacher needs to know how to be a good teacher in working with and meeting the needs of a highly diverse set of students. This chapter provides an overview of some of the roles of ICT in working with Special Education and TAG students.

A key issue to keep in mind as you read this chapter is summarized by the following quote:

… Instead of asking the following question: "How can I use computer technology at my disposal to help this particular handicapped person?", the problem ought to be tackled in a diametrically opposite manner, with the question being asked as follows: "I have before me a person whose handicap causes some difficulty. In light of what we know about this person and of his/her handicap, is there any way of helping him/her with the use of computer aided technology?".

This approach, which is based on the person and not on available technology, may lead to direct aids for the handicapped person or indirect aids for those working with the handicapped person. One becomes fairly rapidly aware of the obvious interaction and complementarity between these two ways of assisting the handicapped person. The computer aided technology may involve various fields. Taking autism as an example, the following fields will have to be looked at:

• assistance with the diagnosis,
• assessment of learning skills,
• computer aided teaching,
• assistance in communication and finally
• the development of research models for progress in the understanding of autism.

Exceptionalities

Many people tend to have a highly over simplified and incorrect mental model of students falling into one of three relatively distinct categories: 1) disabled; 2) normal; and 3) talented and gifted. This model does a major disservice for students with exceptionalities.

What is an exceptionality? This is a complex question. It can be addressed from a legal point of view by stating what the laws, rules, and regulations say at the federal, state, school district, and school level. It can be defined in terms of deviation from the mean on various measures. It can be defined in terms of an individual student attempting to accommodate to a specific school setting.

One possible starting point in thinking about exceptionalities is to think about the complexity of a person’s mind and physical body. A typical human brain contains more than 100 billion neurons and more than a trillion cells. A brain has a high level of plasticity and is constantly being changed as it receives and processes inputs and as it learns. Even identical twins who have been raised together have significant differences in their brains. For example, (and surprisingly) one of a pair of identical twins may be dyslexic while the other is not.

This type of approach to thinking about exceptionalities might lead to a conclusion that every student has significant exceptionalities.

The plasticity and intelligence of a typical person’s brain facilitates the development of internal and personal accommodations that overcome or circumvent a large number of problems that might be considered to be disabilities. Thus, we tend to talk about disabilities only when they are so severe that a person cannot readily accommodate to them on their own.

As a personal example, I am not very good at spelling. When I had to write essays in class as part of a Freshman English Composition course, I had to carefully plan my sentences so that they did not include words I could not spell correctly. I struggled in such “real time” assessments. However, much of the grade in the course was based on weekly writing assignments that were done outside of class. There, I could make use of a dictionary and I could put in the time to show that I could write reasonably well. Now, of course, I use a word processor with a good spelling checker.

Another major flaw in the three-part (disabled, normal, TAG) model is that many students have two or more exceptionalities. For example, a child may be both severely dyslexic and brilliant. Quoting from a 1999 ERIC Digest (Dual Exceptionalities, 1999):

Gifted students with disabling conditions remain a major group of underserved and understimulated youth (Cline, 1999). The focus on accommodations for their disabilities may preclude the recognition and development of their cognitive abilities. It is not unexpected, then, to find a significant discrepancy between the measured academic potential of these students and their actual performance in the classroom (Whitmore & Maker, 1985). In order for these children to reach their potential, it is imperative that their
intellectual strengths be recognized and nurtured, at the same time as their disability is accommodated appropriately.

Special education and TAG education systems in our country have not done well in meeting the needs of minority students. Quoting from Donovan and Christoper (2002):

Special education and gifted and talented programs were designed for children whose educational needs are not well met in regular classrooms. From their inceptions, these programs have had disproportionate representation of racial and ethnic minority students. What causes this disproportion? Is it a problem?

Minority Students in Special and Gifted Education considers possible contributors to that disparity, including early biological and environmental influences and inequities in opportunities for preschool and K-12 education, as well as the possibilities of bias in the referral and assessment system that leads to placement in special programs. It examines the data on early childhood experience, on differences in educational opportunity, and on referral and placement. The book also considers whether disproportionate representation should be considered a problem. Do special education programs provide valuable educational services, or do they set students off on a path of lower educational expectations? Would students not now placed in gifted and talented programs benefit from raised expectations, more rigorous classes, and the gifted label, or would they suffer failure in classes for which they are unprepared?

By examining this important problem in U.S. education and making recommendations for early intervention and general education, as well as for changes in referral and assessment processes, Minority Students in Special and Gifted Education will be an indispensable resource to educators throughout the nation, as well as to policy makers at all levels, from schools and school districts to the state and federal governments.

As a preservice or inservice teacher you want to do your best in meeting the individual needs of each of your students. As you gain in knowledge and skills (as you move up the “good teacher expertise scale”) you will get better at dealing better with a wide range of minor and major exceptionalities. You will also get better an knowing when you need the help of experts who have more training and experience than you in dealing with specific types of exceptionalities.

A Few Assistive Technology Success Stories

Assistive technology is defined by the 1997 Individuals with Disabilities Education Act (IDEA) as "any item, piece of equipment, or product system, whether acquired commercially off the shelf, modified, or customized, that is used to increase, maintain, or improve functional capabilities of children with disabilities." (Accessed 11/8/03: http://www.ideapractices.org/law/index.php.)

ICT plays a major role in the field of assistive technologies. This section contains a few examples of progress in assistive technologies that have made substantial contributions to the lives of a great many people.

Kurzweil Reading machine for the Blind

An excellent and compelling application of ICT for blind students was developed by Ray Kurzweil somewhat over 20 years ago. The Kurzweil reading machine could "read" text using a computer scanner, and "speak" the text as output. Initially it was a bulky, $50,000 device. Technological progress in the past two decade has led to handheld scanning devices costing well under $500 that can read and speak text. Learn more about Kurzweil and his work at http://www.kurzweilai.net/index.html?flash=1.
Steven Hawking and ALS

Steven Hawking, born in 1942, has been a worldwide role model of computer-based communication aids for people with severe speech communication disabilities. Quoting from his Website (accessed 11/8/03: http://www.hawking.org.uk/disable/dindex.html):

I am quite often asked: How do you feel about having ALS? The answer is, not a lot. I try to lead as normal a life as possible, and not think about my condition, or regret the things it prevents me from doing, which are not that many.

It was a great shock to me to discover that I had motor neurone disease. I had never been very well co-ordinated physically as a child. I was not good at ball games, and my handwriting was the despair of my teachers. Maybe for this reason, I didn't care much for sport or physical activities. But things seemed to change when I went to Oxford, at the age of 17. I took up coxing and rowing. I was not Boat Race standard, but I got by at the level of inter-College competition.

In my third year at Oxford, however, I noticed that I seemed to be getting more clumsy, and I fell over once or twice for no apparent reason. But it was not until I was at Cambridge, in the following year, that my father noticed, and took me to the family doctor. He referred me to a specialist, and shortly after my 21st birthday, I went into hospital for tests. I was in for two weeks, during which I had a wide variety of tests. They took a muscle sample from my arm, stuck electrodes into me, and injected some radio opaque fluid into my spine, and watched it going up and down with x-rays, as they tilted the bed. After all that, they didn't tell me what I had, except that it was not multiple sclerosis, and that I was an atypical case. I gathered, however, that they expected it to continue to get worse, and that there was nothing they could do, except give me vitamins. I could see that they didn't expect them to have much effect. I didn't feel like asking for more details, because they were obviously bad.

Cochlear Implant

The cochlear implant has restored some hearing capability to a number of deaf people. This technology has tended to be divisive in the deaf community. The following quote helps to explain some of the complexities of this situation.

The most basic aspect of the cochlear implant is to help the user perceive sound, i.e., the sensation of sound that is transmitted past the damaged cochlea to the brain. In this strictly sensorineural manner, the implant works: the sensation of sound is delivered to the brain. The stated goal of the implant is for it to function as a tool to enable deaf children to develop language based on spoken communication.

Cochlear implants do not eliminate deafness. An implant is not a "cure" and an implanted individual is still deaf. Cochlear implants may destroy what remaining hearing an individual may have. Therefore, if the deaf or hard of hearing child or adult later prefers to use an external hearing aid, that choice may be removed.

Unlike post-lingually deafened children or adults who have had prior experience with sound comprehension, a pre-lingually deafened child or adult does not have the auditory foundation that makes learning a spoken language easy. The situation for those progressively deafened or suddenly deafened later in life is different. Although the implant's signals to the brain are less refined than those provided by an intact cochlea, an individual who is accustomed to receiving signals about sound can fill in certain gaps from memory. While the implant may work quite well for post-lingually deafened individuals, this result just cannot be generalized to pre-lingually deafened children for whom spoken language development is an arduous process, requiring long-term commitment by parents, educators, and support service providers, with no guarantee that the desired goal will be achieved.

Dyslexia

The ordinary “garden variety” computer is an important augmentative device for a large number of people. Consider students who have poor handwriting and/or poor spelling skills. A word processor is a powerful aid to coming with each of these “disabilities.”
Sometimes the poor handwriting and spelling can be attributed to dyslexia. Brain scanning instruments have now made it clear that dyslexia occurs when a part of one’s brain not being “wired” correctly. Some place between five-percent and fifteen-percent of students have dyslexia. Dyslexia creates major difficulties in learning to read, and is typically also associated with poor spelling and poor handwriting. Here is the story of Richard Wanderman, a dyslexic person:

I'm a successful adult with a learning disability (dyslexia). Part of the reason for my success is that I use a variety of tools, including computers, to organize my life and express my ideas. In fact, if I didn't write with a computer, I wouldn't be able to share this web site with you because I wouldn't be able to record, work with, and share my ideas in writing. And I wouldn't know from personal experience how doing these things with a computer changes the thinking and writing process for people like me.

I had a hard time with school. Most of my memories of school are nightmarish. If I carried the learning disabilities seed (my genetics), then school did a great job of watering and fertilizing it. School made the experience of having a learning disability worse than it would have been otherwise.

Much of my success has come outside of school. I believe strongly in extracurricular, hands-on experience. I've been an artist, a potter, a rock climber, a car mechanic, a teacher, a software developer, and more. All of these experiences have helped me see the difference between my learning disability and my intelligence.

Accessed 11/8/03: http://www.ldresources.com/site_info/authors/wanderman.html

Special Education

There are many diagnostic categories of special education children, such as Developmental Disabilities, Neurological Impairments, Learning Disabilities, Physical Disabilities, and so on. Information and Communication Technology is making a significant contribution to helping to identify and meet the needs of children with special needs.

The United States and many other countries have made major commitments (both legally and fiscally) to help meet the needs of special education children. Research funding has made possible considerable progress in this field. This section provides a brief introduction to some of the roles of ICT in helping children with special needs.

Individual Education Program (IEP)

As you know, an Individual Education Program (IEP)—which is also often called an Individual Education Plan—is a central component work to help a special education student. Quoting from an ERIC Digest article (Smith, 2000):

The Individualized Education Program (IEP) is the cornerstone of the Individuals with Disabilities Education Act (IDEA), which ensures educational opportunity for students with disabilities. The IEP is a quasi-contractual agreement to guide, orchestrate, and document specially designed instruction for each student with a disability based on his or her unique academic, social, and behavioral needs.

In defining the IEP and making these requirements, the intent of Congress was to bring together teachers, parents, and students to develop an educational program that is tailored to the student's needs and provides documentation of a quality education based on those individual needs (Smith, 1990). Over the years, however, complying with the explicit tenets of the law (i.e., procedures related to developing and documenting an IEP) took precedence over developing a high quality program that educators can implement for each student who has special needs (Smith & Brownell, 1995). Planning and implementing a procedurally sound IEP will always be a challenge: The developers of IEPs must deliver a high-quality framework to help teachers perform at their best in providing specially designed instruction for each of their students with disabilities.
The IEP can be a dynamic process wherein professionals, parents, and sometimes students, can plan for an instructional future that is truly responsive to the student's unique individual needs. When professionals understand the necessity for the IEP and the opportunity it provides for collaboration, dynamic planning, and successful implementation, the lawful intent of specially designed instruction will be fulfilled. The IEP can be viewed as the product of the referral process and it can be viewed as an educational outline delineating the major part of the service and delivery process.

General discussions such as the one provided above do not provide much insight into possible roles of ICT in an IEP, nor difficulties in implementing appropriate use of ICT. Often the professionals, parents, and students involved in developing an IEP have limited knowledge of current capabilities of ICT as an aid to a student with disabilities.

CAL and DE

Computer-Assisted Learning, perhaps delivered over the Internet, may be a useful component of an IEP. Reasons for this are rooted in “individualization” and in the Craft and Science of Teaching and Learning. We know the benefits of students having one-on-one and small group tutoring by highly qualified teachers. CAL can achieve some of these benefits.

An excellent example is provided by the Fast ForWord software that was initially developed for use with students who are severely speech delayed because the phoneme processing components of their brains work too slowly. Quoting from:

Fast ForWord Family of Programs. Accessed 11/9/03:
http://www.gatewayin.com/ffw/fastforward.html:

It was Paula Tallal, Ph.D. who recognized the inability of language learning impaired children to process the short-duration sounds of spoken language. Dr. Tallal, cognitive neuroscientist and board-certified clinical psychologist, is the founder and co-director of the Center for Molecular and Behavioral Neuroscience at Rutgers University. She is a world-recognized authority on language learning impairment. With the hope of designing a remediation approach aimed at improving the speech processing and language comprehension ability of language learning impaired children, Dr. Tallal began collaborating with Michael Merzenich, Ph.D. Dr. Merzenich, a neuroscientist and professor of Otolaryngology and Physiology at the University of California at San Francisco, is an authority on brain plasticity, the ability of brain cells and circuits to change in response to new sensory experiences. Together, Dr. Tallal and Dr. Merzenich formed a research consortium involving scientists from five of the nation's leading research institutions and established Scientific Learning Corporation.

The fruit of this collaborative effort was the development of Fast ForWord Language, a CD-Rom and Internet-based training program designed to improve phonemic and phonological awareness so as to impact language development. Using interactive computer games and acoustically altered speech, the program is a means for training the brain to speed its processing of auditory information. Initially, speech sounds of short duration are stretched artificially, making them more readily distinguishable for a child with temporal auditory processing deficit. As the child becomes more proficient at recognizing the sounds, the Fast ForWord Language program adjusts to the child’s improving level of competence by continually shortening the duration of the sound, requiring the brain to process at faster rates of speech. Through a daily repetition of exercises spanning six to eight weeks, brain cells in the auditory cortex are developed and trained to respond. This formation of alternative brain pathways enables the child to recognize previously unheard speech sounds when they are a part of the everyday flow of speech.

The Fast ForWord software provides an excellent example of progress that is occurring in CAL. The software provides highly individualized instruction and is rooted in our developing understanding of the human brain. There has been substantial research that supports the effectiveness of this software in helping to meet needs of a wide range of learners. (See http://www.scilearn.com/scie/index.php3?main=research&cartid=.) Early uses of this software...
with severely speech delayed students produced results that were far better than what one-on-one help by speech therapists had been able to achieve. The software is now being used both for such students, but also for a much broader range of students who are having language and reading problems. The software has also been used effectively with people having cochlear implants.

Highly Interactive Intelligent Computer-Assisted Learning (HIICAL) has been briefly discussed earlier in this book. HIICAL is a “natural” for many students with learning disabilities. Accessed 11/9/03: http://www.cogs.susx.ac.uk/ideas/papers.htm provides access to some of the research in this area. For example, see:

du Boulay, B. and Luckin, R. (2001) Modelling human teaching tactics and strategies for tutoring systems. International Journal of Artificial Intelligence in Education, 12(3):235-256. This paper examines the way that studies of human expert teachers have informed the design of tutoring interactions in Intelligent Tutoring Systems and in Intelligent Learning Environments. Quoting from the Abstract of the paper:

This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the student’s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers.

Attention Deficit Hyperactive Disorder (ADHD)

Attention Deficit Disorder (ADD), also known as Attention Deficit Hyperactive Disorder (ADHD), affects a large number of students. Usually people attempt to distinguish the ADHD symptoms and behavior that are genetic from those cause by a mother’s use of drugs and other such causes. Substantial information is available at ADHD Information Library. Accessed 11/9/03: http://www.newideas.net/index.html.

Quoting from the Website:

Attention Deficit Hyperactivity Disorder - ADHD - might affect one, two, or several areas of the brain, resulting in several different "styles" or "profiles" of children (and adults) with ADHD.

These different profiles impact performance in these four areas:

- First, problems with Attention.
- Second, problems with a lack of Impulse Control.
- Third, problems with Over-activity or motor restlessness,
- Fourth, a problem which is not yet an "official" problem found in the diagnostic manuals, but ought to be: being easily Bored.

This Website provides the estimate that about five-percent of students in the United States are genetically ADHD. It also provides an estimate that another five to ten-percent of the student population may have neurological damage that result in approximately the same symptoms as ADHD.

Earlier in this chapter we briefly discussed dual exceptionalities. The following reference discusses students TAG, ADHD students.
Howard's teachers say he just isn't working up to his ability. He doesn't finish his assignments, or just puts down answers without showing his work; his handwriting and spelling are poor. He sits and fidgets in class, talks to others, and often disrupts class by interrupting others. He used to shout out the answers to the teachers' questions (they were usually right), but now he daydreams a lot and seems distracted. Does Howard have Attention Deficit Hyperactivity Disorder (ADHD), is he gifted, or both?

Frequently, bright children have been referred to psychologists or pediatricians because they exhibited certain behaviors (e.g., restlessness, inattention, impulsivity, high activity level, day-dreaming) commonly associated with a diagnosis of ADHD. Formally, the Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R) (American Psychiatric Association) lists 14 characteristics that may be found in children diagnosed as having ADHD. At least 8 of these characteristics must be present, the onset must be before age 7, and they must be present for at least six months.

While the child who is hyperactive has a very brief attention span in virtually every situation (usually except for television or computer games), children who are gifted can concentrate comfortably for long periods on tasks that interest them, and do not require immediate completion of those tasks or immediate consequences. [Boldface added for emphasis.]

One of the things we know about computers and computer games that many people find them to be attention grabbing and attention holding. Notice the last paragraph quoted above. It is suggestive of a possible role of ICT in working with ADHD students. The following reference specifically recommends “Use of a word processor or computer for schoolwork.”

Talented and Gifted (TAG)

Some General Considerations

TAG education existed well before the development of ICT. As computers became available, a variety of people explored uses of them in TAG education. In the early days of computers, it was often thought that if a TAG student was given access to a computer, then automatically and with little or no instruction, great things would happen. However, this is the exception, rather than the rule. It is true that Steve Jobs who helped found Apple Corporation and Bill Gates who founded Microsoft Corporation “made it” without the benefit of a lot of ICT help from their teachers. Indeed, a number of other examples can be found of TAG children who have had a high level of success in various aspects of ICT in business.

However, such success stories are few and far between when measured against the TAG population. Suppose, for example, one uses a somewhat stringent measure of giftedness, and that only five-percent of students meet this definition and are classified as TAG. This amounts to about 250,000 students at each grade level in U.S schools. Tend to learn much faster than average students.

Think about this from the point of view of David Perkins’ list of goals of education.

1. Acquisition and retention of knowledge and skills.
2. Understanding of one's acquired knowledge and skills.

3. Active use of one's acquired knowledge and skills. (Transfer of learning. Ability to apply one's learning to new settings. Ability to analyze and solve novel problems.)

As a teacher, what do you want to help your TAG students accomplish? You could focus on such students memorizing a much larger amount of data and information, and then practicing enough to facilitate long-term retention of what has been memorized.

You could focus on your TAG students gaining a broader and deeper understanding of the curriculum that you are teaching.

And, you could create an environment and set of requirements that pushed your TAG students toward the higher end of the scale, toward working on hard problems and tasks. This is one of the places in which ICT can make a major difference. Some problems and tasks take a very broad and mature level of knowledge (and wisdom) to address. Others are more narrowly focused.

Let’s take music composition for an example. Music is somewhat narrowly focused, which has allowed it to produce prodigies such as Mozart. However, think about the difficulties faced by a person who is going to develop musical composition knowledge and skills at a young age. One difficulty is having some way to perform one’s compositions, or to have them performed. Another difficulty is having some way to represent (for example, in musical notation) one’s compositions. Both of these difficulties are now being well addressed by music-specific ICT tools. With such tools, even average elementary school students can compose music and have it be performed by a computer system.

Next, lets consider the study of history. Causality is of the most important ideas in the study of history. This involves the generation and testing of hypotheses, somewhat akin to what one does in science and in other fields of inquiry. The traditional textbooks we make available to students studying history are severely limited in their usefulness in generating and testing hypotheses, or in exploring other aspects of causality. Contrast such resources with the rapidly growing collection of primary resources available on the Web. Keep in mind that history is part of every discipline. Thus, the Web opens up the “deep” study of history by students at every grade level and in every discipline.

Next, consider the field of hypermedia. We have long had sound recording equipment along with still and motion cameras. However, the equipment for editing photographs, video, and audio has been both expensive and difficult to learn to use. Now, ICT has made such facilities relatively inexpensive and easy to learn to use. Moreover, such equipment facilitates the development of animation and of interactivity. These capabilities open up an entire new range of opportunities for a person who is interested in communication using hypermedia.

Finally, consider the discipline of computer programming. With proper instruction, even primary school students can learn to program in Logo or BASIC. For such students, this opens up a new world of problems to be solved and tasks to be accomplished. In some sense, this world is self-contained, which means it facilitates the development of prodigies. However, this world overlaps with the problems and tasks in every academic discipline. Thus, computer programming is open ended both as an area of study in its own right and as a tool in other academic disciplines.

The examples share four things in common:
1. ICT is a powerful aid to representing and helping to solve the problems. However, creativity, deep and careful thinking, and persistence are all essential.

2. Role models of good (high level) performance are available to students.

3. Guidance and instruction from well-qualified people (teachers and other professionals) is of great help.

4. They are all open ended. There are no upper limits to what a student might learn and achieve.

Definitions of Giftedness

There are a variety of definitions and measures for gifted, highly gifted, and profoundly gifted students. The following quote from the ERIC Clearinghouse on Disabilities and Gifted Education defines these three categories in terms of scores on the Weschler Intelligence Scale for Children. Accessed 9/29/03: http://ericec.org/fact/gt-profound.html.

Highly and profoundly gifted students are children whose needs are so far beyond "typical" gifted that they require extraordinary resources. When tested with a Weschler Intelligence Scale for Children (WISC), their scores range from 145 to 159 for highly gifted and above 160 for profoundly gifted. In those ranges, these children are as different in intellectual abilities from gifted children (usually 130 to 144) as gifted are from a typical regular education population. IQ scores do not tell the whole story; however, they are a useful indicator of individual differences, particularly when used to inform instruction.

Gifted and talented children are those identified by professionally qualified persons who by virtue of outstanding abilities are capable of high performance. These are children who require differentiated educational programs and/or services beyond those normally provided by the regular school program in order to realize their contribution to self and society.

…

Children capable of high performance include those with demonstrated achievement and/or potential ability in any of the following areas, singly or in combination:

1. general intellectual ability
2. specific academic aptitude
3. creative or productive thinking
4. leadership ability
5. visual or performing arts
6. psychomotor ability."

…

Using a broad definition of giftedness, a school system could expect to identify 10% to 15% or more of its student population as gifted and talented. A brief description of each area of giftedness or talent as defined by the Office of Gifted and Talented will help you understand this definition.

General intellectual ability or talent. Laypersons and educators alike usually define this in terms of a high intelligence test score--usually two standard deviations above the mean--on individual or group measures. Parents and teachers often recognize students with general intellectual talent by their wide-ranging fund of general information and high levels of vocabulary, memory, abstract word knowledge, and abstract reasoning.
Specific academic aptitude or talent. Students with specific academic aptitudes are identified by their outstanding performance on an achievement or aptitude test in one area such as mathematics or language arts. The organizers of talent searches sponsored by a number of universities and colleges identify students with specific academic aptitude who score at the 97th percentile or higher on standard achievement tests and then give these students the Scholastic Aptitude Test (SAT). Remarkably large numbers of students score at these high levels.

Creative and productive thinking. This is the ability to produce new ideas by bringing together elements usually thought of as independent or dissimilar and the aptitude for developing new meanings that have social value. Characteristics of creative and productive students include openness to experience, setting personal standards for evaluation, ability to play with ideas, willingness to take risks, preference for complexity, tolerance for ambiguity, positive self-image, and the ability to become submerged in a task. Creative and productive students are identified through the use of tests such as the Torrance Test of Creative Thinking or through demonstrated creative performance.

Leadership ability. Leadership can be defined as the ability to direct individuals or groups to a common decision or action. Students who demonstrate giftedness in leadership ability use group skills and negotiate in difficult situations. Many teachers recognize leadership through a student's keen interest and skill in problem solving. Leadership characteristics include self-confidence, responsibility, cooperation, a tendency to dominate, and the ability to adapt readily to new situations. These students can be identified through instruments such as the Fundamental Interpersonal Relations Orientation Behavior (FIRO-B).

Visual and performing arts. Gifted students with talent in the arts demonstrate special talents in visual art, music, dance, drama, or other related studies. These students can be identified by using task descriptions such as the Creative Products Scales, which were developed for the Detroit Public Schools by Patrick Byrons and Beverly Ness Parke of Wayne State University.

Psychomotor ability. This involves kinesthetic motor abilities such as practical, spatial, mechanical, and physical skills. It is seldom used as a criterion in gifted programs.

Assessment for TAG Students

See (Te Kete Ipurangi) for a discussion of alternative assessments for TAG students. http://www.tki.org.nz/r/gifted/pedagogy/portfolio_e.php. The following is quoted from that Website:

The chances are that if you talk to someone about assessment in relation to giftedness it will not be long before they discuss intelligence testing and the I.Q. It is perhaps not surprising that this should be the case, since the early concept of giftedness was based on mental measurement and the I.Q. What is surprising, however, is that it is still so common.

For several years now, research has focused on multiple abilities and on cognitive and metacognitive processes (Cariner, 1993; Sternberg & Zhang, 1995).

Likewise, the concept of giftedness has broadened to include a wide range of abilities including the creative, social, visual and performing arts, etc. Assessments related to these wider dimensions have also been developed, although seldom with the degree of reliability associated with tests of "intelligence" or scholastic abilities.

…

Norm-referenced tests allow students with special abilities to excel, to be "tops". However, criterion referenced assessments do not offer such opportunities. Assessment tasks related to this form of assessment often have low "ceilings" (little challenge) and progress in small step-by-step increments and sequences. In a recent study, gifted students reported that assessments based on unit standards in school trials in maths and geography (secondary schools) lacked challenge and were "boring" (Coutts & McAlpine, 1996). A wide range of assessment procedures is available to teachers today. Some of these procedures are relevant and promising for students with special abilities and many teachers in New Zealand are utilising them well with this and other groups of students. I have selected three forms of assessments, which are particularly relevant for students with special abilities, for brief discussion over three issues of Tall Poppies. These are:

• portfolio assessment
• authentic assessment
• self assessment.

Each of these approaches to assessment requires learning on the part of the person being assessed. A good teacher is a very valuable resource in such learning endeavors.

Federal and State Support for TAG Students

Both Special Education and TAG education have been addressed by a variety of state and federal laws. The following is quoted from the website of the Special and Gifted Education Center (Legal Resources):

Special education is governed by both federal and state regulations. …

The Legal Resources page contains many links related to laws that govern eligibility, IEPs, evaluations, placement, educational progress, transition plans, discipline, and educational records. These laws may be vitally important to parents of disabled children, educators, child advocates, school psychologists, health care providers, and school administrators.

Special education law is more than a legal specialty niche. Parents of children with disabilities often describe their first experience with special education law as entering a confusing labyrinth resulting in uncertainty and bewilderment. Teachers and administrators are overwhelmed with the complexity of regulations and paperwork, fearing that failure to do things perfectly will result in a lawsuit. We hope this section will provide practical and pertinent information necessary to survive and interpret the myriad of rules and regulations surrounding the needs of disabled children.

Unlike children with disabilities, Talented and Gifted children receive relatively little protection under U.S. Federal Law. Without a federal law to protect the legal rights of gifted children, the responsibility for such mandates rests with the states. More than 30 states have a mandate to serve gifted children, while the remaining ones have permissive legislation (Council of State Directors of Programs for the Gifted, Accessed 9/29/03: http://nces.ed.gov/pubs2003/digest02/tables/dt054.asp). The nature and extent of TAG services funded at a state level vary widely from state to state. In Oregon, for example, the funding level is approximately $2.50 per student per year. The state mandates that TAG students be served, but the fiscal burden falls entirely on the local schools and school districts. Needless to say, this leads to tremendous variations within the state as to how well these students are served.

The Federal Government does support one major TAG program.

In FY 2002, under the reauthorization of the ESEA (the No Child Left Behind Act), absolute priorities were established to encourage activities that contribute to an understanding of the most effective ways to educate gifted and talented students who are economically disadvantaged, limited English proficient, or who have disabilities. This shift in focus builds upon the outcomes of nearly 125 demonstration programs and practices for educating talented students nationwide since the inception of the Javits program in 1989.

Absolute Priorities: Grants are awarded under two priorities. Priority One supports initiatives to develop and "scale-up" models serving students who are under-represented in gifted and talented programs. Priority Two supports state and local efforts to improve services for gifted and talented students.

…

The Javits program funds the National Research Center on the Gifted and Talented located at the University of Connecticut at Storrs, in collaboration with the University of Virginia, Yale University, and Columbia University. The consortium includes over 360 public and private schools, 337 school districts, 52 State and territorial departments of education, and a consultant bank of 167 researchers associated with 86 universities throughout the United States and Canada.
CAL and DE

Many TAG students are not adequately challenged by the traditional curriculum and its accompanying assessments. Computer-Assisted Learning and Distance Learning open up many possibilities for challenging the abilities of TAG students. Such courses can be used to broaden the breadth and/or the depth of a TAG student’s education.

Consider a TAG student who is approximately 33-percent faster and better at learning and displaying knowledge of school curriculum materials, as compared to an average student. Over the course of 13 years of grades K-12 education, such a student might easily complete high school and a couple of years of college. Or, such a student might gain approximately 1/3 greater breadth of education at the precollege level, as compared to the average student. Or, the student might gain both substantially increased breadth and complete a year of college coursework. Many students do the latter by taking advantage of Advanced Placement tests and/or through taking coursework at a local community college or college. Distance Learning is now becoming of significant value to such students.

How the TAG student uses his or her talents will be determined by a combination of parents, schools, teachers, and the students themselves. As a “rule of thumb,” substantial effort should be made to help the student learn about his or her talents and to make informed choices about developing and using these talents.

There is quite a lot of literature on “inclusion” of TAG students in the regular classroom curriculum. Here is a good example of this type of resource:

This is a complete book (available free) from the Northwest Regional Educational Laboratory. Quoting from the Preface:

Meeting the Needs of Gifted Students: Differentiating Mathematics and Science Instruction offers teachers a variety of strategies and resources for providing different levels of content and activities that will challenge all students, including gifted learners. A consistent theme throughout this publication is that while many of the ideas come from the body of literature and research on gifted education, the strategies are appropriate and effective for a wide range of students. Another important theme emerging from the research base on gifted students is the need to re-examine the criteria and processes used to designate some students as gifted, and thus by implication all other students as not gifted. Clearly, relying on a narrow definition such as those who score in the top 10 percent on a standardized achievement test can exclude students with special talents who may have difficulty in taking tests.

This publication is part of the Northwest Regional Educational Laboratory's series, It's Just Good Teaching. This series of publications and videos offers teachers research-based instructional strategies with real-life examples from Northwest classrooms. Meeting the Needs of Gifted Students: Differentiating Mathematics and Science Instruction is one of a three-issue focus on the diverse needs of students in inclusive classrooms. Two other publications in the series address strategies for teaching students with learning disabilities and students who are English-language learners. We hope readers will find this publication useful in their efforts to provide all students with high-quality mathematics and science learning experiences.

Some General Sources of Special Education Information

Center for Accessible Technology. Accessed 11/9/03: http://www.cforat.org/. Quoting from the Website:
The Center for Accessible Technology (CforAT) began life in 1983 when a group of parents of children with disabilities came together to develop strategies for including their children into mainstream elementary school settings. With an initial focus on computer technology, these parents developed models whereby kids with disabilities could be fully included in the school curriculum.

The Center has kept its inclusion focus, and over time has broadened its goals to include participation in higher education, employment and community. We recognize that participation requires access to the tools of expression, and Center programs are founded on the belief that individuals must make their own decisions about which tools work for them, and that hands-on experience is essential to making an informed decision.

We provide access to assistive technology that gives people with disabilities access to computers; provide art programs to provide access to artistic expression; and offer ongoing consultation and support to assist people with disabilities in maintaining and enhancing access. We are a 501(c)(3) non-profit organization.

Council for Exceptional Children (Technology and Media Division) [Online]. Accessed 2/28/01: http://www.tamcec.org/. Goals quoted from their Website:

- Promoting collaboration among educators and others interested in using technology and media to assist individuals with exceptional educational needs.
- Encouraging the development of new applications, technologies, and media that can benefit individuals with exceptionalities.
- Disseminating relevant and timely information through professional meetings, training programs, and publications.
- Coordinating the activities of educational and governmental agencies, business, and industry.
- Developing and advancing appropriate technical standards.
- Providing technical assistance, inservice, and preservice education on the uses of technology.
- Monitoring and disseminating relevant research.
- Advocating for funds and policies that support the availability and effective use of technology in this field.
- Supporting the activities, policies, and procedures of CEC and the other CEC divisions.

CPB/WGBH National Center for Accessible Media (NCAM). Accessed 9/29/03: http://www.wgbh.org/wgbh/pages/ncam. Quoting from the Website:

The CPB/WGBH National Center for Accessible Media (NCAM) is a research and development facility dedicated to the issues of media and information technology for people with disabilities in their homes, schools, workplaces, and communities.

NCAM's mission is: to expand access to present and future media for people with disabilities; to explore how existing access technologies may benefit other populations; to represent its constituents in industry, policy and legislative circles; and to provide access to educational and media technologies for special needs students.

Family Center on Technology & Disability provides assistance to programs & organizations to respond to the technology needs of parents & families of children & youth with disabilities. Accessed 9/29/03: http://www.fctd.info/. Quoting from the website:

The Center serves organizations and programs that work with families of children and youth with disabilities. We offer a range of information and services on the subject of assistive technology (AT). Whether you're an organization, a parent, an educator, or an interested friend, we hope you'll find information that supports you in your efforts to bring the highest quality education to children with disabilities.

LD Online. Accessed 11/9/03: http://www.ldonline.org/. Quoting from the Website:

National Center on Accessing the General Curriculum (NCAC) is seeking to provide a vision of how new curricula, teaching practices, & policies can be woven together to create practical approaches for improved access to the general curriculum by students with disabilities. Accessed 9/29/03: http://www.cast.org/ncac. Quoting from the Website:

In a collaborative agreement with the U.S. Department of Education's Office of Special Programs (OSEP), CAST has established a National Center on Accessing the General Curriculum to provide a vision of how new curricula, teaching practices, and policies can be woven together to create practical approaches for improved access to the general curriculum by students with disabilities.

National Center to Improve the Tools of Educators (NCITE) aims to advance the quality & effectiveness of technology, media, & materials for individuals with disabilities. Accessed 9/29/03: http://idea.uoregon.edu/~ncite/. Quoting from the Website:

NCITE's purpose is to advance the quality and effectiveness of technology, media, and materials for individuals with disabilities. NCITE creates a marketplace demand for the selection and appropriate use of research-based technology, media, and materials (TMM).

Since 1985, Apple Computer Corporation has been deeply committed to helping people with special needs attain an unparalleled level of independence through a personal computer

Activities for Chapter 8

1. Do a careful introspection on your mental and physical strengths and weaknesses. Look for examples of “exceptionalities” that you are aware of and have accommodated to.

2. Select a state and explore its rules, regulations, and funding for TAG. The Web is an excellent resource for conducting such a study.

3. Steven Hawking is an excellent example of a highly gifted person whose has severe disabilities. ICT adaptive technologies have made major contributions to his work and quality of life. Explore what he has done during his career and look for other examples of highly successful individuals with Dual Exceptionalities who are making substantial use of ICT adaptive technologies.
Chapter 9
ICT and a Teacher’s Other Professional Work

ICT provides a wide range of aids to the (personal) professional work of teachers. This chapter covers some of these aids and their related areas.

Brief Overview
Being an educator is a challenging and demanding career. An educator is faced by a steady stream of day-to-day problems, as well as some overarching career-long problems. ICT can help you to address some of these problems. Here are a few examples:

- Lesson plans and student handouts can be stored as word processor files. They are easily modified and brought up to date. You can use the Internet (email and the Web) for sharing with your fellow educators.
- An electronic grade book can aid in storing, processing, and reporting student records and grades. It can also aid in developing and storing seating charts and pictures of students, and in automatic emailing of reports to students.
- Test generation software and databanks of exam questions are useful in assessment.
- You can create and maintain a website as an aid to communication with students, parents, your fellow educators, and others.
- The Web can give you access to the literature on the Craft and Science of Teaching and Learning. Distance Learning can provide you with aids to gaining new knowledge and skills relevant to your professional career.

ICT can also create problems in your life. A teacher should be above reproach in areas such as:

- Stealing software and other intellectual property. This includes all aspects of making and/or using illegal copies of software, music, and video.
- Plagiarizing. It is exceedingly easy to do "cut and paste" without referencing the source and without paying attention to copyright laws.
- Damaging, destroying, stealing, and illegally using ICT facilities and files that belong to others.

Self-Assessment Instrument for ICT as a Personal Productivity Tool in a Teacher's Professional Work and Career
[[Note to self: Some of these questions belong in other chapters.]]

This self-assessment instrument focuses on a teacher's use of ICT as a personal productivity tool. Please rate yourself using the following 7-point scale for each question.
Each question is accompanied by a brief discussion of the topic being assessed. If you do not understand the details given in a particular brief discussion, the chances are that you are at the (1) or (2) level on this topic. After you give yourself a numerical rating on the 7-point scale, write a paragraph that explains and justifies your numerical rating.

1. **Using ICT in preparing handouts for students: 1 2 3 4 5 6 7**

 Handouts for students need to be legible, at the students' reading level, and designed for effective communication with students. Usually the handouts need to be saved for future revision and reuse in subsequent years. Thus, a word processor is an important aid to teacher productivity of such handouts.

2. **Using ICT in preparing quizzes and exams for students: 1 2 3 4 5 6 7**

 Some textbook publishers make available electronic copies of databanks of exam questions that are aligned with their textbooks. There are many free and commercial electronic databanks of exam questions. Software for use in generating exams is widely available. Typically, quizzes and exams should be nicely desktop published and should be saved in electronic format for possible revision and reuse in the future.

3. **Electronic Gradebook: 1 2 3 4 5 6 7**

 Electronic gradebooks, that may include seating charts, pictures of students, contact information for parents, space for written comments about students, and so on, are quite popular with teachers. Some schools and school districts require teachers to prepare and submit grades in electronic format.
4. Using ICT in preparing documents to send to parents: 1 2 3 4 5 6 7

Many teachers (especially elementary teachers) find it necessary and/or desirable to periodically provide their students with written messages to be delivered to parents. Of course, these documents should be carefully written, carefully proofread, and nicely desktop published. Many teachers find it useful to develop electronic templates for a variety of such documents.

5. Preparing multimedia material for use in teaching: 1 2 3 4 5 6 7

Many teachers make routine use of an overhead projector and/or a computer display system in their everyday teaching. Thus, they need to have the knowledge and skill to efficiently develop materials in electronic format to use as aids in instruction. Increasingly, teachers are finding it helpful to place such materials on a personal Website for ease in saving, revision, and sharing with colleagues.

6. Building and maintaining a class or course Website: 1 2 3 4 5 6 7

Many teachers make use of a classroom Website that can be accessed by their students, parents, colleagues, and other people. The Website may include assignments, resource materials, and samples of current and previous students' work. Such a "public" Website needs to be of appropriate quality so that it is not an embarrassment to the teacher, the school, and the school district, and so that it accomplishes the tasks it is designed to accomplish.

7. Electronic professional vita and portfolio of your work: 1 2 3 4 5 6 7

There is a trend toward preservice teacher education programs to require their preservice teachers to develop an electronic portfolio of their work. This may include a vita, work samples, videos of micro teaching, videos of field experiences, videos of student teaching, projects and papers done for a variety of courses, and so on.
8. Using ICT in communication with colleagues: 1 2 3 4 5 6 7

An important component in developing one's professional career as a teacher is building a network of colleagues. Many teachers make routine use of Email in communicating with their colleagues. They join Distribution Lists, they join and participate in discussion groups, and they use a personal or classroom Website to help share materials with their colleagues.

9. Using ICT in your continuing professional development: 1 2 3 4 5 6 7

All teachers are faced by the twin problems of "keeping up to date" and "continued professional growth (capacity building)." ICT is both part of the problem and part of the solution. There is a trend toward professional development workshops and courses being made available on the Web. There is a huge amount of materials available on the Web that can help a teacher in personal capacity building and in continuing professional development.

10. Legal and Ethical Issues: 1 2 3 4 5 6 7

ICT has given rise to a host of legal and ethical issues. Preservice and inservice teachers need to know a reasonable amount about these issues. Because of their positions as teachers or potential teachers, they need to be above reproach in their personal uses of ICT.

Thinking About Your Self-Assessment

The topics covered in this self-assessment instrument are many and varied. They were chosen to help illustrate how ICT can be an important component of the everyday professional life of a teacher.

The instrument should help you to identify some of your relative strengths and weaknesses in uses of ICT.
Activities for Chapter 9

1. Do you maintain a personal professional Website as an aid to communication with your students, their parents, your professional colleagues, and others? If “yes,” what might you do to make it more useful? If “no,” why not?

2. The goal of this book is to help improve our educational systems. David Perkins' 1992 book contains an excellent overview of education and a wide variety of attempts to improve our educational system. He analyzes these attempted improvements in terms of how well they have contributed to accomplishing the following three major goals of education (Perkins, 1992, p5):

 E. Acquisition and retention of knowledge and skills.
 F. Understanding of one's acquired knowledge and skills.
 G. Active use of one's acquired knowledge and skills. (Transfer of learning. Ability to apply one's learning to new settings. Ability to analyze and solve novel problems.)

“Off the top of your head,” briefly discuss roles of ICT in each of A, B, and C.
References

Moursund, D.G. Moursund’s Arguments Against ICT in Education Website. Accessed 10/18/03: http://otec.uoregon.edu/arguments_against.htm.

Ryder, Martin. *Constructivism*. Accessed 9/22/03:

http://www.carnegiefoundation.org/perspectives/perspectives.v01.n01..htm.

http://www.ldonline.org/ld_indepth/iep/ed449636.html

Wiggins, Grant. The Case for Authentic Assessment. *ERIC Digest*. Accessed 10/27/03:
http://ericae.net/db/edo/ED328611.htm.
Index

assessment, 78
asynchronous, 71
BASIC, 53
behaviorism, 19
brain scientists, 8, 17
CIS. See Computer and Information Science
COBOL, 52
Computer and Information Science Department, 52
computer-assisted learning, 63
constructivism, 18, 22
Correspondence Courses, 69
Craft and Science of Teaching and Learning, 8, 17
distance learning, 30, 39, 40, 43, 69
DL. See Distance Learning
dyslexic students, 8, 17
educational practice, 24
educational theory, 24
effect size, 64
extrinsic motivation, 19
far transfer, 20
FORTRAN, 52
generic tool, 12
goals of education, 5, 123
high road transfer, 20
Highly Interactive Intelligent Computer-Assisted Learning, 22, 66
HIICAL. See Highly Interactive Intelligent Computer-Assisted Learning. See Highly Interactive Intelligent
Computer-Assisted Learning
ICT. See Information and Communication Technology
Information and Communication Technology, 2, 15
International Society for Technology in Education, 12
Internet, 4
Internet I, 69
Internet II, 69
intrinsic motivation, 19
ISTE NETS. See National Educational Technology Standards for Students
keyboarding, 20
Kulik, James, 63
Logo programming language, 53
low road transfer, 20
memorize, regurgitate, and quickly forget, 20
metastudy, 63
mind tool, 3, 4
mindfulness, 21
mission of this book, 2
motivation, 18, 19, 23
movable type printing press, 122
National Educational Technology Standards for Students, 122
near transfer, 20
Pascal programming language, 52
PCAST. See President’s Council of Advisors on Science and Technology
President’s Council of Advisors on Science and Technology, 18
procedural thinking, 52
procedure, 52
Process Procedure, 21
process writing, 7, 21
Reading, writing, and arithmetic, 122
Science of Teaching and Learning, 17