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Anisotropic Triebel-Lizorkin Spaces with
Doubling Measures

By Marcin Bownik

ABSTRACT. We introduce and study anisotropic Triebel-Lizorkin spaces associated with general expan-
sive dilations and doubling measures on R

n with the use of wavelet transforms. This work generalizes the
isotropic methods of dyadic ϕ-transforms of Frazier and Jawerth to nonisotropic settings.

We extend results involving boundedness of wavelet transforms, almost diagonality, smooth atomic
and molecular decompositions to the setting of doubling measures. We also develop localization techniques
in the endpoint case of p = ∞, where the usual definition of Triebel-Lizorkin spaces is replaced by its
localized version. Finally, we establish nonsmooth atomic decompositions in the range of 0 < p ≤ 1,
which is analogous to the usual Hardy space atomic decompositions.

1. Introduction and statements of main results

Many areas of analysis involve the study of specific function spaces. In harmonic analysis,
the well-known scale ofLp spaces is augmented by the Hardy spaces, the space BMO, and various
forms of Lipschitz spaces. Despite inherent differences in the original definitions many of these
spaces are closely related and can be studied from a unified perspective by the Littlewood-Paley
theory. This gives rise to the study of Besov and Triebel-Lizorkin spaces which form a unifying
class of function spaces containing many well-known classical function spaces such as Lebesgue
spaces Lp, Hardy spaces Hp, and Hardy-Sobolev spaces.

There were several efforts of extending classical function spaces arising in harmonic analysis
from Euclidean spaces to other domains and nonisotropic settings. The usual isotropic dilations
can be replaced by more complicated nonisotropic dilation structures as in the study of parabolic
Hardy spaces of Calderón and Torchinsky [10, 11] or Hardy spaces on homogeneous groups
of Folland and Stein [17]. The nonisotropic variants of Triebel-Lizorkin and Besov spaces for
diagonal dilations have been studied by Besov et al [1], Schmeisser and Triebel [32, 33, 34, 35, 36],
and Farkas [14]. The other direction is the study of weighted function spaces associated with
general Muckenhoupt A∞ weights. This direction of research for Besov and Triebel-Lizorkin
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spaces was carried over by Bui, Paluszyńskiet al [7, 8, 9] and Rychkov [30]. One should also note
that a significant portion of the theory of function spaces can also be done on the large class of
spaces of homogeneous type introduced by Coifman and Weiss [13]; for example, see [25, 26, 27].
However, this high level of generality imposes restrictions on possible values of the index p, i.e.,
p > 1 − δ for some possibly small δ > 0.

Several aspects of the above mentioned developments can be extended to a larger class
(than previously considered diagonal setting) of nonisotropic dilation structures associated with
expansive dilations. In the context of Hardy spaces this goal was achieved by the author in [2],
where it was demonstrated that significant portion of a real-variable isotropic Hp theory extends
to such anisotropic setting. Analogous extensions to anisotropic Triebel-Lizorkin spaces with
A∞ weights and anisotropic Besov spaces with doubling measures were done in [3, 5]. These
studies show that the isotropic methods of dyadic ϕ-transforms of Frazier and Jawerth [18, 20]
can be extended to nonisotropic setting associated with general expansive dilations. Among other
things proved in [3, 5], weighted anisotropic Triebel-Lizorkin and Besov spaces are characterized
by their wavelet transform coefficients and smooth atomic and molecular decompositions of these
spaces are established.

It is commonly known that Triebel-Lizorkin spaces are much harder to work with than Besov
spaces due to their particular structure. For these reasons weighted Triebel-Lizorkin spaces are
often studied with A∞ weights instead of more general doubling weights as in the case of Besov
spaces. The goal of this work is to show that one can also build a coherent theory of weighted
anisotropic Triebel-Lizorkin spaces associated with expansive dilations and doubling weights
further generalizing the results of [5, 20]. More specifically, this article:

• Extends results from [5, 20] involving boundedness of wavelet transforms, almost diago-
nality, smooth atomic and molecular decompositions to the setting of doubling measures,

• develops necessary localization techniques for the endpoint case p = ∞,

• establishes nonsmooth atomic decompositions (analogous to the Hardy space atomic
decompositions) in the range 0 < p ≤ 1.

In addition, a subsequent work [4] continues this direction of research by showing duality and
real and complex interpolation results for Ḟα,qp spaces. In what follows, we summarize the results
obtained in this article.

In this work we study function spaces on R
n associated with an expansive dilation A, that

is an n × n real matrix all of whose eigenvalues λ satisfy |λ| > 1. The starting point is the
Littlewood-Paley decomposition asserting that any tempered distribution f ∈ S ′(Rn) can be
decomposed as

f =
∑
j∈Z

ϕj ∗ f, where ϕj (x) = | detA|j ϕ(
Ajx

)
,

with the convergences in S ′ (modulo polynomials). Here, ϕ ∈ S(Rn) is a test function as in
Lemma 2.13. Given a smoothness parameter α ∈ R, an integrability exponent 0 < p < ∞,
and a summability exponent 0 < q ≤ ∞, we introduce the anisotropic Triebel-Lizorkin space
Ḟα,qp (Rn, A,µ) norm as

‖f ‖Ḟα,qp
=

∥∥∥∥( ∑
j∈Z

(| detA|jα|f ∗ ϕj |
)q)1/q∥∥∥∥

Lp(µ)

< ∞ . (1.1)

Here, µ is a doubling measure respecting the action of A. That is,

µ(BρA(x, 2r)) ≤ Cµ(BρA(x, r)) for all x ∈ R
n, r > 0 ,
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where the ballsBρA(x, r) are defined with respect to a quasi-norm ρA associated withA. Later we
show that this definition is independent of the choice ofϕ satisfying natural support conditions (3.2)
and (3.3).

The corresponding discrete Triebel-Lizorkin sequence space ḟα,qp (A,µ) is defined as the
collection of all complex-valued sequences s = {sQ}Q∈Q, which is indexed by the collection of
dilated cubes

Q = {
A−j ([0, 1]n + k

) : j ∈ Z, k ∈ Z
n
}
,

such that

‖s‖ḟα,qp
=

∥∥∥∥( ∑
Q∈Q

(|Q|−α|sQ|χ̃Q
)q)1/q∥∥∥∥

Lp(µ)

< ∞ . (1.2)

Here, χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the dilated cube Q.

Suppose that (ϕ, ψ) is an admissible pair of dual frame wavelets as in Definition 2.12. The
corresponding wavelet systems consisting of translates and dilates of ϕ and ψ are customarily
denoted by {ϕQ : Q ∈ Q} and {ψQ : Q ∈ Q}, resp. Following Frazier and Jawerth, we
define the ϕ-transform, which maps the distribution f to the sequence of its wavelet coefficients
Sϕf = {〈f, ϕQ〉}Q∈Q. For any sequence s = {sQ}Q∈Q of complex numbers, we define formally
the inverse ϕ-transform, which maps s to a distribution Tψs = ∑

Q∈Q sQψQ. Then, the following
generalization of the fundamental result of Frazier and Jawerth [5, 20] holds.

Theorem 1.1. Suppose that α ∈ R, 0 < p, q ≤ ∞, and a µ is a doubling measure. The
ϕ-transform Sϕ : Ḟα,qp → ḟα,qp , and the inverse ϕ-transform Tψ : ḟα,qp → Ḟα,qp are bounded, and
Tψ ◦ Sϕ is the identity on Ḟα,qp .

One should emphasize that in the endpoint case of p = ∞, the definitions (1.1) and (1.2)
must be replaced by their localized versions (3.8) and (3.9), respectively, which were originally
introduced in the dyadic case in [20]. This is far more than a cosmetic change. A substantial
portion of this work deals with the case of p = ∞, which requires special considerations. As a
consequence of Theorem 1.1, we deduce that Ḟα,qp spaces are complete quasi-normed spaces with
equivalent norms independent of the choice of a test function ϕ.

Once Theorem 1.1 is established, we study operators on Ḟα,qp by transferring them with the
use of wavelet transforms to the corresponding sequence spaces ḟα,qp . Since ḟα,qp norms depend
only on the magnitude of coefficients, consequently, the analysis on the sequence space level is
much easier than in the original space Ḟα,qp . In particular, in Section 4 we study a very useful class
of almost diagonal operators on ḟα,qp , which was originally introduced by Frazier and Jawerth [20].
We show that the expected boundedness result holds also for ḟα,qp spaces with doubling weights
by generalizing a result in [5]. As an application, in Section 5 we extend smooth atomic and
molecular decompositions results in [5, 20] to the setting of Ḟα,qp spaces with doubling weights.

In Section 6 we establish nonsmooth atomic decompositions of Ḟα,qp spaces which are anal-
ogous to the usual Hardy space atomic decompositions. The main advantage of such decomposi-
tions is that coefficients are controlled by �p norms, rather than harder to deal ḟα,qp norms as in the

case of smooth atomic decompositions. In the next section we identify unweighted Ḟ0,2
p (Rn, A)

spaces with the anisotropic Hardy spacesHp
A for 0 < p < ∞ in the context of expansive dilations

A. The last section contains the proofs of several lemmas required in the proof of Theorem 1.1.
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2. Some background tools

We start by recalling basic definitions and properties of the Euclidean spaces associated with
general expansive dilations.

2.1. Quasi-norms for expansive dilations

Definition 2.1. We say that a real n × n matrix is expansive if all of its eigenvalues satisfy
|λ| > 1. A quasi-norm associated with an expansive matrix A is a Borel measurable mapping
ρA : R

n → [0,∞) satisfying

ρA(x) > 0, for x �= 0,

ρA(Ax) = | detA|ρA(x) for x ∈ R
n , (2.1)

ρA(x + y) ≤ H(ρA(x)+ ρA(y)) for x, y ∈ R
n ,

where H ≥ 1 is a constant.

In the standard dyadic case A = 2Id, a quasi-norm ρA satisfies ρA(2x) = 2nρA(x) instead
of the usual scalar homogeneity. In particular, ρA(x) = |x|n is an example of a quasi-norm for
A = 2Id, where | · | represent the Euclidean norm in R

n. One can show that all quasi-norms
associated to a fixed dilation A are equivalent, see [2, Lemma 2.4]. Moreover, it is possible to
choose a quasi-norm ρA such that ρA-balls {x ∈ R

n : ρA(x) < r} are convex.

We also need to introduce some convenient notation.

Definition 2.2. SupposeA is expansive matrix and σ(A) is its spectrum. IfA is diagonalizable
over C, let

λ− := min
λ∈σ(A) |λ|, λ+ := max

λ∈σ(A)
|λ| .

Otherwise, let λ− and λ+ be any positive real numbers such that 1 < λ− < minλ∈σ(A) |λ| and
maxλ∈σ(A) |λ| < λ+ < | detA|. Define

ζ+ := ln λ+
ln | detA| , ζ− := ln λ−

ln | detA| .

The parameters ζ− and ζ+ measure the eccentricity of a dilation A. In general, we have
0 < ζ− ≤ 1/n ≤ ζ+ < 1. For example, in the standard dyadic case A = 2Id, we have ζ− =
ζ+ = 1/n.

Definition 2.3. Let B be the collection of all ρA-balls

BρA(x, r) = {
y ∈ R

n : ρA(x − y) < r
}
, x ∈ R

n, r > 0 .

Let Q be the collection of all dilated cubes

Q = {
Q = Aj

([0, 1]n + k
) : j ∈ Z, k ∈ Z

n
}

adapted to the action of a dilation A. Obviously, if A = 2Id we obtain the usual collection of
dyadic cubes. Let

xQ = Ajk, Q = Aj
([0, 1]n + k

) ∈ Q,
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be the “lower-left corner” of Q. The scale of a ball B = BρA(x0, r) ∈ B is defined as

scale(B) = 
log| detA| r� .
The scale of a dilated cube Q = Aj([0, 1]n + k) ∈ Q is defined as scale(Q) = j . Alternatively,
scale(Q) = log| detA| |Q|.

By renormalizing ρA, it is convenient to assume that |BρA(x, 1)| = 1. Consequently,∣∣BρA(
x, | detA|j )∣∣ = | detA|j for any j ∈ Z .

Therefore,

| detA|scale(B) ≤ |B| ≤ | detA|scale(B)+1 ,

and

|Q| ≤ |B| ≤ | detA||Q| for any Q ∈ Q, B ∈ B with scale(Q) = scale(B) .

Note that for any Q ∈ Q,

diamρA(Q) := sup{ρA(y1 − y2) : y1, y2 ∈ Q} = |Q| diamρA

([0, 1]n) = C|Q| . (2.2)

The following concept is very useful in the study of the localized norms of Ḟα,q∞ spaces.

Definition 2.4. The tent T (P ) over P ∈ Q is defined as

T (P ) = {Q ∈ Q : |Q ∩ P | > 0 and scale(Q) ≤ scale(P )} .

2.2. Doubling measures for expansive dilations

Definition 2.5. We say that a nonnegative Borel measureµ on R
n is ρA-doubling if there exists

β = β(µ) > 0 such that

µ(BρA(x, | detA|r)) ≤ | detA|βµ(BρA(x, r)) for all x ∈ R
n, r > 0 . (2.3)

The smallest such β is called a doubling constant of µ.

Remark 2.6. We remark that ρA-doubling measureµ does not have to be absolutely continuous
with respect to the Lebesgue measure on R

n. For an example of a measure µ on R, which is
doubling and singular with respect to Lebesgue measure see [6]. Moreover, it is not hard to show
that the doubling constant β is always ≥ 1.

We also remark that any weight w in A∞ (with respect to a quasi-distance ρA) defines a
ρA-doubling measureµ by dµ = w dx, see [5, Definition 2.2]. Hence, by working with doubling
measures instead of A∞ weights we will generalize the results about Triebel-Lizorkin spaces
in [5]. To achieve this we will work with a weighted Hardy-Littlewood maximal function. This
step is necessary due to the collapse of weighted norm inequalities, and in particular, weighted
vector-valued Fefferman-Stein inequality outside A∞ class.

For any Borel measurable function f define its Hardy-Littlewood maximal function MρAf

with respect to ρA-doubling measure µ by

MρAf (x) = sup
x∈B∈B

1

µ(B)

∫
B

|f (y)| dµ(y) .
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It is easy to verify that we have the following fact. For rudimentary facts about spaces of
homogeneous type we refer the reader to [13, 22, 25].

Proposition 2.7. (Rn, ρA, µ) is a space of homogeneous type, where ρA is a quasi-norm
associated with an expansive dilation A, and µ is a ρA-doubling measure on R

n.

As a consequence, the Fefferman-Stein vector-valued inequality holds in our setting.

Theorem 2.8. Suppose that 1 < p < ∞, 1 < q ≤ ∞, and µ is a ρA-doubling measure. Then
there exists a constant C such that∥∥∥∥( ∑

i

|MρAfi |q
)1/q∥∥∥∥

Lp(µ)

≤ C

∥∥∥∥( ∑
i

|fi |q
)1/q∥∥∥∥

Lp(µ)

holds for any (fi)i ⊂ Lp(µ).

We will also need several results about doubling measures and families B and Q. For
Q = Aj([0, 1]n + k) ∈ Q, define its center cQ = Aj(k + (1/2, . . . , 1/2)).

Lemma 2.9. Given families of dilated balls B and dilated cubes Q, there exist CB, CQ > 0
such that:

(a) For any Q ∈ Q we have

B0 ⊂ Q ⊂ B1, where B0 = BρA
(
cQ, |Q|| detA|−CB

)
, B1 = BρA

(
cQ, |Q|| detA|CB

)
,

(b) for any B ∈ B, the collection

QB = {Q ∈ Q : Q ∩ B �= ∅, scale(Q) = scale(B)}
has at most CQ elements. Furthermore,

µ(Q) ≤ Cµ(B) for all Q ∈ QB .

The proof of Lemma 2.9 is quite elementary, and hence, it is skipped. As a corollary of
doubling of µ, (2.2), and Lemma 2.9 we have

µ(Q) � µ(BρA(cQ, |Q|))) � µ(BρA(xQ, |Q|))) for all Q ∈ Q . (2.4)

Proposition 2.10. Suppose that µ is ρA-doubling measure. Then:

(a) For every η > 0 there exists a constant c > 0 such that

j ∈ Z, k0, k1 ∈ R
n, |k0 − k1| < η �⇒ µ

(
Aj

([0, 1]n + k0
)) ≤ cµ

(
Aj

([0, 1]n + k1
))
.

(b) For fixed x0 ∈ R
n, let Pj ∈ Q be such that scale(Pj ) = j and x0 ∈ Pj . Then

lim
j→∞µ(Pj ) = ∞ .

Proposition 2.10 is a simple consequence of the doubling property of µ. Indeed, by (2.4) we
can replace each occurrence ofµ(Q) byµ(BρA(xQ, |Q|))with a gain of a multiplicative constant.
Finally, we will need a slight variation of [3, Lemma 4.1].
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Lemma 2.11. Suppose that µ is ρA-doubling measure and δ ∈ R. Then, there exist L,C > 0
such that∑
Q∈Q, scale(Q)=j

µ(Q)δ

(1 + ρA(xQ)/max(1, |Q|))L ≤ C| detA|(2β|δ|+1)|j | for all j ∈ Z . (2.5)

Proof. We claim that for any P,Q ∈ Q, P = Aj([0, 1]n+k),Q = Aj([0, 1]n+ l), k, l ∈ Z
n,

we have

µ(Q) ≤ C(1 + ρA(k − l))βµ(P ) . (2.6)

Indeed, (2.6) is a consequence of (2.4) and

µ
(
BρA

(
Ajk, | detA|j )) ≤ µ

(
BρA

(
Aj l,H | detA|j (1 + ρA(k − l)

))
≤ C(1 + ρA(k − l))βµ

(
BρA

(
Aj l, | detA|j )) ,

since µ is ρA-doubling measure. Suppose that j ≥ 0. By (2.6) we have for L > β|δ| + 1,∑
Q∈Q, scale(Q)=j

µ(Q)δ

(1 + ρA(xQ)/|Q|)L ≤ Cµ
(
Aj

([0, 1]n))δ ∑
k∈Zn

(1 + ρA(k))
β|δ|−L

≤ C| detA|jβ max(δ,0)µ
([0, 1]n)δ .

Likewise, suppose that j < 0. Then for L > β|δ| + 1,∑
Q∈Q, scale(Q)=j

µ(Q)δ

(1 + ρA(xQ))L
≤ Cµ

(
Aj

([0, 1]n))δ ∑
k∈Zn

(1 + ρA(k))
β|δ|(

1 + ρA(k)| detA|j )L
≤ Cµ

(
Aj

([0, 1]n))δ| detA|−jβ|δ| ∑
k∈Zn

(
1 + ρA

(
Ajk

))β|δ|−L

≤ C| detA|j (β min(δ,0)−β|δ|−1)µ
([0, 1]n)δ .

In the last step we used that for ε > 0, there exists C = C(ε) > 0, such that∑
k∈Zn

(
1 + ρA

(
Ajk

))−1−ε ≤ C| detA|−j for all j ≤ 0 .

Combining the above estimates yields (2.5).

2.3. Wavelet transforms for expansive dilations

Definition 2.12. We say that (ϕ, ψ) is an admissible pair of dual frame wavelets if ϕ,ψ are
test functions in the Schwartz class S(Rn) satisfying

supp ϕ̂, supp ψ̂ ⊂ [−π, π ]n \ {0} (2.7)∑
j∈Z

ϕ̂
((
A∗)j ξ)ψ̂((

A∗)j ξ) = 1 for all ξ ∈ R
n \ {0} , (2.8)

where A∗ is the adjoint (transpose) of A. Here,

supp ϕ̂ = {
ξ ∈ Rn : ϕ̂(ξ) �= 0

}
,
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and the Fourier transform of f is

f̂ (ξ) =
∫

Rn

f (x)e−i〈x,ξ〉 dx .

For ϕ ∈ S(Rn), we define its wavelet system as

ϕQ(x) = | detA|j/2ϕ(
Ajx − k

)
, Q = A−j ([0, 1]n + k

) ∈ Q . (2.9)

It is not hard to show that the conditions (2.7), (2.8) imply that (ϕ, ψ) is a pair of dual frame
wavelets in L2(Rn). This means that the wavelet systems {ϕQ : Q ∈ Q} and {ψQ : Q ∈ Q} are
Bessel sequences, i.e., there exists a constant C > 0 such that∑

Q∈Q
|〈f, ϕQ〉|2,

∑
Q∈Q

|〈f,ψQ〉|2 ≤ C||f ||2
L2 for all f ∈ L2(

R
n
)
, (2.10)

and we have the reconstruction formula

f =
∑
Q∈Q

〈f, ϕQ〉ψQ, for all f ∈ L2(
R
n
)
, (2.11)

where the above series converges unconditionally in L2.

The above formula has a counterpart in the form of the reproducing identity (2.15) valid for
tempered distributions modulo polynomials S ′/P . For the basic properties of this space we refer
to [28, Section 3.3] or [33, Section 5.1]. Here, we only recall that S ′/P can be identified with the
space of all continuous functionals on the closed subspace S0(R

n) of the Schwartz class S(Rn)
given by

S0
(
R
n
) =

{
ϕ ∈ S :

∫
ϕ(x)xα dx = 0 for all multi-indices α

}
. (2.12)

Lemmas 2.13 and 2.14 show that any distribution f ∈ S ′/P admits the Littlewood-Paley
decomposition and the wavelet reproducing formula adapted to an expansive dilation A. Both of
these results are anisotropic modifications of their well-known dyadic analogues, see [18, 20, 21].
For the proof of these formulas we refer the reader to [5].

Lemma 2.13. Suppose that A is an expansive matrix and ϕ ∈ S(Rn) is such that∑
j∈Z

ϕ̂
((
A∗)j ξ) = 1 for all ξ ∈ R

n \ {0} , (2.13)

and supp ϕ̂ is compact and bounded away from the origin. Then for any f ∈ S ′(Rn),

f =
∑
j∈Z

ϕj ∗ f , (2.14)

where ϕj (x) = | detA|j ϕ(Ajx), and the convergence is in S ′/P .

Lemma 2.14. If ϕ,ψ ∈ S ′(Rn) satisfy (2.7), (2.8), then

f =
∑
Q∈Q

〈f, ϕQ〉ψQ, for any f ∈ S ′
/P , (2.15)
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where the convergence of the above series, as well as the equality, is in S ′/P . More precisely,
there exists a sequence of polynomials {Pk}∞k=1 ⊂ P and P ∈ P such that

f = lim
k→∞

( ∑
Q∈Q, | detA|−k≤|Q|≤| detA|k

〈f, ϕQ〉ψQ + Pk

)
+ P ,

with convergence in S ′.

3. Anisotropic Ḟα,qp spaces with doubling measures and the case p = ∞
In this section we extend the class of anisotropic Triebel-Lizorkin spaces studied in [5] to the

setting of doubling measures and the endpoint case ofp = ∞. In the case of 0 < p < ∞ the usual
definition is perfectly satisfactory. However, in the endpoint case we adopt a localized definition
of Ḟα,qp spaces which was originally introduced in the dyadic case by Frazier and Jawerth [20]. We
show that the resulting spaces are well defined quasi-Banach spaces and they can be characterized
by the magnitude of wavelet coefficients.

We start by recalling the usual definition of Ḟα,qp spaces in the range 0 < p < ∞.

Definition 3.1. For α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and a ρA-doubling measure µ, we
define the anisotropic Triebel-Lizorkin space Ḟα,qp = Ḟα,qp (Rn, A,µ) as the collection of

‖f ‖Ḟα,qp
=

∥∥∥∥( ∑
j∈Z

(| detA|jα|f ∗ ϕj |
)q)1/q∥∥∥∥

Lp(µ)

< ∞ , (3.1)

where ϕj (x) = | detA|j ϕ(Ajx) and ϕ ∈ S(Rn) satisfies (3.2), (3.3)

supp ϕ̂ := {
ξ ∈ Rn : ϕ̂(ξ) �= 0

} ⊂ [−π, π ]n \ {0} , (3.2)

sup
j∈Z

∣∣ϕ̂((
A∗)j ξ)∣∣ > 0 for all ξ ∈ R

n \ {0} . (3.3)

To emphasize the dependence on ϕ we will use the notation Ḟα,qp (Rn, A,µ)(ϕ) for (3.1). Later
we will show that this definition is independent of ϕ.

The discrete Triebel-Lizorkin sequence space ḟα,qp (A,µ) is defined as the collection of all
complex-valued sequences s = {sQ}Q∈Q such that

‖s‖ḟα,qp
=

∥∥∥∥( ∑
Q∈Q

(|Q|−α|sQ|χ̃Q
)q)1/q∥∥∥∥

Lp(µ)

< ∞ , (3.4)

where χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the dilated cube Q.

It is known that the naive definition of the space Ḟα,qp using the norm (3.1) when p = ∞
is unsatisfactory. Indeed, Triebel [33, p. 46] remarks that when p = ∞ the norm (3.1) is
dependent of the choice of the function ϕ. Moreover, Frazier and Jawerth [20, Section 5] point
out that one should expect to have Ḟ0,2∞ ≈ BMO, which is not the case for the naive definition
of Ḟ0,2∞ . To overcome this problem Frazier and Jawerth [20] had proposed a localized definition
of the norm when p = ∞ by considering averages only over small scales. This approach works
well for isotropic theory and the goal of this section is to show that it also works for general
expansive dilations.
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3.1. Localized definition in the case p = ∞
Definition 3.2. For α ∈ R, 0 < q ≤ ∞, and a ρA-doubling measure µ, we define the
anisotropic Triebel-Lizorkin space Ḟα,q∞ = Ḟα,q∞ (Rn, A,µ) as the collection of all f ∈ S ′

/P
such that,

‖f ‖Ḟα,q∞ (Rn,A,µ)= sup
P∈Q

(
1

µ(P )

∫
P

∞∑
j=−scale(P )

(| detA|jα|f ∗ ϕj (x)|
)q
dµ(x)

)1/q

< ∞ , (3.5)

where ϕ ∈ S(Rn) satisfies (3.2) and (3.3). To emphasize the dependence on ϕ we will use the
notation Ḟα,q∞ (Rn, A,µ)(ϕ) for (3.5). Later we will show that this definition is independent of ϕ.

The sequence space, ḟα,q∞ = ḟα,q∞ (A,µ) is the collection of all complex-valued sequences
s = {sQ}Q∈Q such that

‖s‖ḟα,q∞ (A,µ)= sup
P∈Q

(
1

µ(P )

∫
P

∑
Q∈Q, scale(Q)≤scale(P )

(|Q|−α|sQ|χ̃Q(x)
)q
dµ(x)

)1/q

< ∞ . (3.6)

Naturally, if q = ∞, then (3.5) and (3.6) are interpreted as

‖f ‖Ḟα,∞∞ = sup
j∈Z

| detA|jα||f ∗ ϕj ||∞ < ∞, ‖s‖ḟα,∞∞ = sup
Q∈Q

|Q|−α−1/2|sQ| < ∞ . (3.7)

In other words, when p = q = ∞, the spaces Ḟα,∞∞ and ḟα,∞∞ coincide with Besov spaces Ḃα,∞∞
and ḃα,∞∞ , resp., and there is no need for localization.

Remark 3.3. For the sake of simplicity it is convenient to consider the spaces Ḟα,q∞ and ḟα,q∞ ,
where the averaging process takes places with respect to the Lebesgue measure instead of µ.
More precisely, we consider the unweighted spaces Ḟα,q∞ and ḟα,q∞ defined by the norms

‖f ‖Ḟα,q∞ = sup
P∈Q

(
1

|P |
∫
P

∞∑
j=−scale(P )

(| detA|jα|f ∗ ϕj (x)|
)q
dx

)1/q

< ∞ , (3.8)

‖s‖ḟα,q∞ = sup
P∈Q

(
1

|P |
∫
P

∑
Q∈Q, scale(Q)≤scale(P )

(|Q|−α|sQ|χ̃Q(x)
)q
dx

)1/q

< ∞ . (3.9)

There is a much deeper reason why we may insist on the above unweighted definitions. This is
because one can show that the norms (3.5) and (3.6) do not depend effectively on the choice of
µ, as long as dµ = w dx for some w ∈ A∞, see [4, Corollary 3.5]. Consequently, not much
generality is gained by the introduction of µ in the case when p = ∞. Since this is a very
nontrivial fact we will stick to more general norms as in Definition 3.2 in this article.

Remark 3.4. In the case when the family of dilated cubes Q is nested, i.e.,

Q,P ∈ Q and |Q ∩ P | > 0 �⇒ P ⊂ Q or Q ⊂ P

the tent T (P ) = {Q ∈ Q : Q ⊂ P } and the definition (3.9) overlaps with the usual dyadic
definition of ḟα,q∞ by Frazier and Jawerth in [20]. In this case we simply have

‖s‖ḟα,q∞ = sup
P∈Q

(
1

µ(P )

∫
P

∑
Q⊂P

(|Q|−α|sQ|χ̃Q(x)
)q
dµ(x)

)1/q

. (3.10)
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In the case when the family of dilated balls Q is not nested, the norm (3.10) is obviously dominated
by (3.6). However, it does not seem that the norms (3.6) and (3.10) are equivalent for a general

dilation A, e.g., consider A =
(

2 0
2 2

)
. In order to circumvent this problem one could modify

the definition of the collection of dilated cubes. Take any δ > 0, and define

Q̃ = {
Q = Aj

([−δ, 1 + δ]n) : j ∈ Z, k ∈ Z
n
}
.

Then, it is not difficult to see that by replacing Q by Q̃, we get equivalent norms for discrete
spaces ḟα,qp for p < ∞; the proof boils down to the vector-valued Fefferman-Stein inequality.
Moreover, it is possible to show that the norms (3.6) and (3.10) are in fact equivalent after this
replacement. We will skip the proof of this fact, since it is not used elsewhere in this article.

Remark 3.5. For q < ∞, we can perform integration in (3.6) to obtain

‖s‖ḟα,q∞ = sup
P∈Q

(
1

µ(P )

∑
|Q|≤|P |

(|Q|−α−1/2|sQ|)qµ(Q ∩ P)
)1/q

.

Then it is not difficult to see using Proposition 2.10 that we have the equivalence of norms

‖s‖ḟα,q∞ � sup
P∈Q

(
1

µ(P )

∑
Q∈T (P )

(|Q|−α−1/2|sQ|)qµ(Q))1/q

, (3.11)

where T (P ) is the tent over P .

To confirm these observations we will prove the following lemma.

Lemma 3.6. Supposeµ is ρA-doubling measure with a doubling constant β. Then, there exists
a constant C > 0 such that for any integer M ≥ 0 and for any f ∈ Ḟα,q∞

sup
P∈Q

(
1

µ(P )

∫
P

∞∑
j=−scale(P )−M

(| detA|jα |f ∗ ϕj (x)|
)q
dµ(x)

)1/q
≤ C| detA|βM/q‖f ‖Ḟα,q∞ . (3.12)

Moreover, for any s ∈ ḟα,q∞

sup
P∈Q

(
1

µ(P )

∫
P

∑
Q∈TM(P )

(|Q|−α|sQ|χ̃Q(x)
)q
dµ(x)

)1/q

≤ C| detA|βM/q‖s‖ḟα,q∞ , (3.13)

where

TM(P ) = {Q ∈ Q : scale(Q) ≤ scale(P )+M} .

Proof. The key to proving (3.12) and (3.13) is the observation that the collection of dilated
balls Q in (3.5) and (3.6) can be replaced by the family of dilated balls B. In fact, a more general
result holds.

Suppose that {Fj (x) : j ∈ Z} is a collection of Borel measurable functions on R
n with

nonnegative values. Then we claim that we have the equivalence of the norms

sup
P∈Q

1

µ(P )

∫
P

∞∑
j=−scale(P )

Fj (x) dµ(x) � sup
B∈B

1

µ(B)

∫
B

∞∑
j=−scale(B)

Fj (x) dµ(x) . (3.14)
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Indeed, to prove the lower bound in (3.14) take any B ∈ B. By Lemma 2.9 we know that

QB = {P ∈ Q : P ∩ B �= ∅, scale(P ) = scale(B)}
has at most CQ. Therefore,

1

µ(B)

∫
B

∞∑
j=−scale(B)

Fj (x) dµ(x) ≤ CQC
∑
P∈QB

1

µ(P )

∫
P

∞∑
j=−scale(P )

Fj (x) dµ(x)

since B ⊂ ⋃
P∈QB P and µ(P ) ≤ Cµ(B) for P ∈ QB. Conversely, to prove the upper bound

in (3.14) take any P ∈ Q and let

B0 = BρA(xP , |P || detA|−CB ), B1 = BρA(xP , |P || detA|CB ) ∈ B .
Then, by Lemma 2.9

1

µ(P )

∫
P

∞∑
j=−scale(P )

Fj (x) dµ(x) ≤ | detA|2βCB 1

µ(B1)

∫
B1

∞∑
j=−scale(B1)

Fj (x) dµ(x)

since µ(B1) ≤ | detA|2βCBµ(B0) ≤ | detA|2βCBµ(P ), which proves (3.14).

Take any P ∈ Q, and define the ball B2 = BρA(xP , | detA|M+CB |P |) ∈ B, where M ≥ 0.
Then, using (3.14)

1

µ(P )

∫
P

∞∑
j=−scale(P )−M

Fj (x) dµ(x) ≤ C
1

µ(B1)

∫
B1

∞∑
j=−scale(B1)−M

Fj (x) dµ(x)

≤ C| detA|βM 1

µ(B2)

∫
B2

∞∑
j=−scale(B2)

Fj (x) dµ(x)

≤ C| detA|βM sup
Q∈Q

1

µ(Q)

∫
Q

∞∑
j=−scale(Q)

Fj (x) dµ(x) ,

(3.15)

where the constant C is independent of M .

Hence, choosing Fj (x) = (| detA|jα|f ∗ ϕj (x)|)q , (3.14) yields

||f ||Ḟα,q∞ (Rn,A,µ) � sup
B∈B

(
1

µ(B)

∫
B

∞∑
j=−scale(B)

(| detA|jα|f ∗ ϕj (x)|
)q
dµ(x)

)1/q

. (3.16)

Moreover, (3.15) yields (3.12).

Likewise, choosing Fj (x) = (
∑
Q∈Q, scale(Q)=−j |Q|−α|sQ|χ̃Q(x))q , (3.14) yields

‖s‖ḟα,q∞ (A,µ) = sup
P∈Q

(
1

µ(P )

∫
P

scale(P )∑
j=−∞

∑
Q∈Q, scale(Q)=j

(|Q|−α|sQ|χ̃Q(x)
)q
dµ(x)

)1/q

= sup
P∈Q

(
1

µ(P )

∫
P

∞∑
j=−scale(P )

Fj (x) dµ(x)

)1/q

� sup
B∈Q

(
1

µ(B)

∫
B

∞∑
j=−scale(B)

Fj (x) dµ(x)

)1/q

= sup
B∈B

(
1

µ(B)

∫
B

∑
Q∈Q, scale(Q)≤scale(B)

(|Q|−α|sQ|χ̃Q(x)
)q
dµ(x)

)1/q

.

(3.17)
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Moreover, a direct calculation shows that (3.15) yields (3.13).

3.2. Wavelet transforms for Ḟα,qp (Rn, A,µ)

Our next goal is to establish boundedness of ϕ-transforms for Triebel-Lizorkin spaces for
the entire range of parameters α ∈ R, 0 < p, q ≤ ∞ including the special case of p = ∞. As a
consequence of this result we will deduce two other fundamental results:

–The definition of Ḟα,qp spaces is independent of the choice of a test function ϕ;

–the completeness of Ḟα,qp spaces.

Definition 3.7. Suppose that ϕ,ψ ∈ S(Rn) are such that supp ϕ̂, supp ψ̂ are compact and
bounded away from the origin. Recall that theϕ-transform Sϕ , often called the analysis transform,
is the map taking each f ∈ S ′

/P to the sequence Sϕf = {(Sϕf )Q}Q∈Q defined by (Sϕf )Q =
〈f, ϕQ〉. Here, we follow the convention 〈f, ϕ〉 = f (ϕ) for f ∈ S ′ and ϕ ∈ S. The inverse ϕ-
transform, Tψ , often called the synthesis transform, is the map taking the sequence s = {sQ}Q∈Q
to Tψs = ∑

Q∈Q sQψQ.

To see that Tψ is well-defined for any s ∈ ḟα,qp , we will prove the following lemma.

Lemma 3.8. Suppose thatα ∈ R, 0 < p, q ≤ ∞,µ is ρA-doubling measure, andψ ∈ S0(R
n),

where S0(R
n) is given by (2.12). Then for any s ∈ ḟα,qp (A,µ), Tψs = ∑

Q∈Q sQψQ converges

in S ′/P . Moreover, the synthesis transform Tψ : ḟα,qp (A,µ) → S ′/P is continuous.

Proof. Take any φ ∈ S0(R
n). We will use the following elementary estimate: For any L > 0

there exist constants N,C > 0 such that

|〈ψQ, φP 〉| ≤ C||ψ ||N ||φ||N
(

1 + ρA(xQ − xP )

max(|P |, |Q|)
)−L

min

( |Q|
|P | ,

|P |
|Q|

)L
for all Q,P ∈ Q. (3.18)

Here, the constant C depends only on L > 0 and ||φ||N = supx∈Rn sup|γ |≤N(1 + |x|)N |∂γ φ(x)|
is a norm in S(Rn). The estimate (3.18) can be proved directly using decay, smoothness, and
vanishing moments of φ,ψ ∈ S0(R

n). Alternatively, (3.18) follows immediately from the almost
diagonal estimates established in [5]. Indeed, modulo a multiplicative constant c > 0 the wavelet
systems {ψQ/c}Q∈Q and {φQ/c}Q∈Q form families of smooth analysis and synthesis molecules
in the sense of Definition 5.1 of arbitrary smoothness, decay, and number of vanishing moments.
Moreover, the constant c > 0 depends linearly on the norms ||ψ ||N and ||φ||N for some sufficiently
large N . Consequently, by [5, Lemma 5.1] the matrix {〈ψQ, φP 〉}Q,P∈Q is almost diagonal on

ḟα
′,q ′

p′ for every range of parameters α′ ∈ R, 0 < p′, q ′ < ∞. A quick inspection of almost
diagonal condition, see Definition 4.1, yields (3.18).

Take any s ∈ ḟα,qp (A,µ). By (3.4) we have for 0 < p < ∞,

|sQ| ≤ ||s||ḟα,qp |Q|α+1/2µ(Q)−1/p for all Q ∈ Q .

Likewise, by (3.6) we have for p = ∞,

|sQ| ≤ ||s||ḟα,q∞ |Q|α+1/2 for all Q ∈ Q .

Applying (3.18) for P = [0, 1]n yields

|〈ψQ, φ〉| ≤ C||φ||N
(

1 + ρA(xQ)

max(1, |Q|)
)−L

min
(|Q|, |Q|−1)L for Q ∈ Q ,
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where the constant C is independent of φ and Q. Combining the above estimates with Lemma
2.11 yields∑
Q∈Q

|sQ||〈ψQ, φ〉|

≤ C||φ||N ||s||ḟα,qp
∑
j∈Z

∑
scale(Q)=j

|Q|α+1/2 min
(|Q|, |Q|−1)L µ(Q)−1/p

(1 + ρA(xQ)/max(1, |Q|))L

≤ C||φ||N ||s||ḟα,qp
∑
j∈Z

| detA|j (α+1/2)+|j |(2β/p+1)−|j |L ≤ C||φ||N ||s||ḟα,qp

for sufficiently large L > 0. Hence, the series Tψs = ∑
Q∈Q sQψQ converges in S ′/P . That is,

if we define Tψs by

〈Tψs, φ〉 =
∑
Q∈Q

sQ〈ψQ, φ〉 for all φ ∈ S0
(
R
n
)
,

then we have

|〈Tψs, φ〉| ≤ C||φ||N ||s||ḟα,qp for all φ ∈ S0
(
R
n
)
.

This shows the continuity of Tψ and completes the proof of the lemma.

Definition 3.9. Given a sequence s = {sQ}Q and r, λ > 0, define its majorant sequence s∗r,λ =
{(s∗r,λ)Q}Q by

(
s∗r,λ

)
Q

=
( ∑
P∈Q, |P |=|Q|

|sP |r/(1 + |Q|−1ρA(xQ − xP )
)λ)1/r

.

Clearly, we always have |sQ| ≤ (s∗r,λ)Q for any Q ∈ Q.

In order to prove the boundedness of Sϕ and Tψ , we need the following two lemmas which
are generalizations of their dyadic analogues shown by Frazier and Jawerth [20]. Lemma 3.10 was
already shown in [5] when p < ∞ and dµ = w dx with w ∈ A∞. The proofs of Lemmas 3.10
and 3.11 can be found in Section 8.

Lemma 3.10. Suppose α ∈ R, 0 < p, q ≤ ∞, and µ is ρA-doubling measure with a constant
β. Then for any r > 0 and λ > β max(1, r/q, r/p), there is a constant C > 0 such that

‖s‖ḟα,qp (A,µ) ≤ ∥∥s∗r,λ∥∥ḟα,qp (A,µ)
≤ C‖s‖ḟα,qp (A,µ) for all s = {sQ}Q .

Lemma 3.11. Suppose ϕ ∈ S(Rn) is such that supp ϕ̂ is compact and bounded away from
the origin. For any f ∈ S ′/P and γ ∈ N define the sequences sup(f ) = {supQ(f )}Q∈Q and
inf(f ) = {infQ(f )}Q∈Q by setting

supQ(f ) = |Q|1/2 sup
y∈Q

∣∣ϕ̃j ∗ f (y)∣∣
inf Q(f ) = |Q|1/2 sup

{
inf
y∈P

∣∣ϕ̃j ∗ f (y)∣∣ : scale(P ) = scale(Q)− γ, P ∩Q �= ∅
}
,

where j = −scale(Q) and Q ∈ Q.
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Suppose that α ∈ R and 0 < p, q ≤ ∞. Then for sufficiently large γ we have

||f ||Ḟα,qp (Rn,A,µ)(ϕ̃) � || sup(f )||ḟα,qp (A,µ) � || inf(f )||ḟα,qp (A,µ) , (3.19)

with constants independent of f .

We are now ready to prove the anisotropic version of the fundamental wavelet transform
boundedness result of Frazier and Jawerth [20]. In the case of p < ∞ and dµ = w dx with
w ∈ A∞, Theorem 3.12 was already shown in [5] and it remains to prove the case when µ is
a ρA-general doubling measure or p = ∞. However, we will take a slightly different approach
than in [5] to accommodate the special case of p = ∞. One should add that our argument works
without any changes also when q = ∞; this case was inadvertently claimed without the proof
in [5]. In fact, a result such as Lemma 3.8 is needed there, since sequences with finite support are
not dense in ḟα,qp when p = ∞ or q = ∞.

Theorem 3.12. Suppose that α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA-doubling measure.
Assume that ϕ,ψ ∈ S(Rn) are such that supp ϕ̂, supp ψ̂ are compact and bounded away from
the origin. Then the operators Sϕ : Ḟα,qp (Rn, A,µ)(ϕ̃) → ḟα,qp (A,µ) and Tψ : ḟα,qp (A,µ) →
Ḟα,qp (Rn, A,µ)(ϕ) are bounded, ϕ̃(x) = ϕ(−x). In addition, if ϕ,ψ satisfy (2.7), (2.8) then
Tψ ◦ Sϕ is the identity on Ḟα,qp (Rn, A,µ)(ϕ) = Ḟα,qp (Rn, A,µ)(ϕ̃).

Proof. To prove the boundedness of Tψ , take any s = {sQ}Q ∈ ḟα,qp (A,µ). We will show
that f = Tψs = ∑

Q sQψQ converges in Ḟα,qp and we have the bound ||Tψs||Ḟα,qp ≤ C||s||ḟα,qp .

By Lemma 3.8, the series f = ∑
Q sQψQ converges in S ′/P . Therefore, the following estimate

established in [5, Theorem 3.5] holds for any λ > 1

|f ∗ ϕj (x)| ≤ C

i=j+M∑
i=j−M

∑
scale(Q)=−i

(
s∗1,λ

)
Q
χ̃Q(x) ,

where M is the smallest integer such that

supp ϕ̂j ∩ supp ψ̂i = ∅ for |i − j | > M .

Consequently, by choosing λ > β max(1, 1/q, 1/p), Lemma 3.10 yields the required bound in
the case p < ∞ by exactly the same argument as in [5, Theorem 3.5]. To deal with the case
p = ∞, take any P ∈ Q. Applying (3.13) and Lemma 3.10 with λ > β max(1, 1/q), yields

1

µ(P )

∫
P

∞∑
j=−scale(P )

(| detA|jα|f ∗ ϕj (x)|
)q
dµ(x)

≤ C
1

µ(P )

∫
P

∞∑
j=−scale(P )

(
| detA|jα

i=j+M∑
i=j−M

∑
scale(Q)=−i

(
s∗1,λ

)
Q
χ̃Q(x)

)q
dµ(x)

≤ C

M∑
l=−M

1

µ(P )

∫
P

∞∑
j=−scale(P )

∑
scale(Q)=−j+l

(| detA|jα∣∣(s∗1,λ)Q∣∣χ̃Q(x))q dµ(x)
= C

M∑
l=−M

| detA|lα 1

µ(P )

∫
P

∑
Q∈Q, scale(Q)≤scale(P )+l

(|Q|−α∣∣(s∗1,λ)Q∣∣χ̃Q(x))q dµ(x)
≤ C| detA|M(|α|+β)∥∥s∗1,λ∥∥qḟα,q∞

≤ C′‖s‖q
ḟα,q∞

.
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Taking the supremum over all P ∈ Q shows ||Tψs||Ḟα,q∞ ≤ C′||s||ḟα,q∞ for all s ∈ ḟα,q∞ .

The boundedness of Sϕ follows immediately from Lemma 3.11. Indeed, suppose that f ∈
Ḟα,qp (Rn, A,µ)(ϕ̃) and Q = A−j ([0, 1]n + k), j ∈ Z, k ∈ Z

n. Then

|(Sϕf )Q| = |〈f, ϕQ〉| = |Q|1/2∣∣(ϕ̃j ∗ f )
(xQ)

∣∣ ≤ supQ(f ) ,

and it suffices to invoke (3.19). We remark here that the boundedness of Sϕ in the case p < ∞
can be shown more directly without the use of Lemma 3.11, see [5]. However, in the case p = ∞
this lemma is indispensable.

Finally, if we assume additionally that ϕ and ψ satisfy (2.7) and (2.8), then by Lemma 2.14,
Tψ ◦ Sϕ is the identity on Ḟα,qp . More precisely, Ḟα,qp (Rn, A,µ)(ϕ̃) ↪→ Ḟα,qp (Rn, A,µ)(ϕ) is a
bounded inclusion. Hence, by reversing the roles of ϕ and ϕ̃ we have

Ḟα,qp (Rn, A,µ)(ϕ̃) = Ḟα,qp (Rn, A,µ)(ϕ) ,

which completes the proof of Theorem 3.12.

3.3. Completeness of Ḟα,qp (Rn, A,µ) and canonical representatives in S ′

As a corollary of Theorem 3.12 we obtain that the definition of Ḟα,qp spaces is independent
of ϕ ∈ S. The proof of Corollary 3.13 is identical as the proof of the same result in the range
0 < p < ∞, see [5, Corollary 3.7].

Corollary 3.13. Suppose that α ∈ R, 0 < p, q ≤ ∞, and µ is ρA-doubling measure. Then
the space Ḟα,qp is well-defined in the sense that, for any ϕ1 and ϕ2 satisfying (3.2) and (3.3), their
associated quasi-norms in Ḟα,qp (Rn, A,µ)(ϕi), i = 1, 2, are equivalent, i.e., there exist constants
C1, C2 > 0 such that

C1‖f ‖Ḟα,qp (Rn,A,µ)(ϕ1) ≤ ‖f ‖Ḟα,qp (Rn,A,µ)(ϕ2) ≤ C2‖f ‖Ḟα,qp (Rn,A,µ)(ϕ1) . (3.20)

Finally, Theorem 3.12 also yields the completeness of Ḟα,qp (Rn, A,µ) spaces.

Corollary 3.14. Suppose that α ∈ R, 0 < p, q ≤ ∞, and µ is ρA-doubling measure. The
inclusion map i : Ḟα,qp = Ḟα,qp (Rn, A,µ) ↪→ S ′/P is continuous. Moreover, Ḟα,qp equipped with
|| · ||Ḟα,qp is a complete quasi-normed space.

Proof. Suppose thatϕ andψ satisfy (2.7) and (2.8). By Lemma 3.8 the map Tψ : ḟα,qp → S ′/P
is continuous and by Theorem 3.12 the map Sϕ : Ḟα,qp → ḟα,qp is also continuous. Hence, by
Lemma 2.14, i = Tψ ◦ Sϕ : Ḟα,qp → S ′/P is a continuous inclusion.

Once the continuity of the inclusion map i is established, the completeness of Ḟα,qp (Rn, A,µ)

follows by a standard argument using Fatou’s Lemma.

Note that the proof of Corollary 3.14 is much less involved than that of the corresponding
result in [5]. This is because the current proof relies on Lemma 3.8 and it is a consequence of the
main Theorem 3.12. In [5] the completeness of Ḟα,qp spaces was established before and in fact it
was used in the proof of Theorem 3.12.

When studying smooth molecular decompositions we will need the following result borrowed
from [5, 20], which resolves all sorts of issues caused by the fact the elements of Ḟα,qp are
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equivalence classes of tempered distributions S ′/P . Proposition 3.15 guarantees the existence of
canonical representatives of elements in Ḟα,qp modulo polynomials of degree ≤ L = 
α/ζ−�.

Proposition 3.15. Suppose that α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA-doubling measure.
Let f ∈ Ḟα,qp (Rn, A,µ). For any ϕ1 ∈ S(Rn) such that supp ϕ̂1 is compact and bounded
away from the origin, and (2.13) holds, there exists a sequence of polynomials {P 1

k }∞k=1 with
degP 1

k ≤ L = 
α/ζ−� such that

g1 := lim
k→∞

( ∞∑
j=−k

(
ϕ1)

j
∗ f + P 1

k

)
(3.21)

exists in S ′. Moreover, if g2 is the corresponding limit in (3.21) for some other ϕ2 ∈ S(Rn) such
that supp ϕ̂2 is compact and bounded away from the origin, and (2.13) holds, then

g1 − g2 ∈ P and deg
(
g1 − g2) ≤ L . (3.22)

Proof. The key estimate in the proof of Proposition 3.15 is that for any j < 0 and a multi-index
γ we have

sup
x∈Rn

∣∣∂γ ((
ϕ1

)
j

∗ f )
(x)

∣∣
(1 + |x|)N ≤ C| detA|j (|γ |ζ−−α)||f ||Ḟα,qp (Rn,A,µ) . (3.23)

In the case p < ∞, (3.23) is shown exactly in the same way as [5, Proposition 3.8] using [3,
Corollary 3.2], which is an improved version of [5, Corollary 3.1], valid in the setting of ρA-
doubling measures. However, in the case p = ∞ we need a minor modification of our argument.
Using the same arguments as in [5] for any j < 0 and M ∈ N we have

sup
|γ |=M

∥∥∂γ ((
ϕ1)

j
∗ f )∥∥∞ ≤ C| detA|jMζ− sup

|γ |=M
∥∥(
∂γ ϕ1)

j
∗ f )∥∥∞

≤ C| detA|j (Mζ−−α) sup
|γ |=M

||f ||Ḟα,∞∞ (Rn,A,µ)(∂γ ϕ1)

≤ C| detA|j (Mζ−−α)||f ||Ḟα,∞∞ ≤ C| detA|j (Mζ−−α)||f ||Ḟα,q∞ ,

where in the last step we used [4, Corollary 3.7]. This shows that the crucial estimate (3.23)
holds also for p = ∞ and the rest of the proof is identical as in [5, Proposition 3.8] and hence it
is skipped.

As a corollary of Lemma 2.14 and Proposition 3.15, we have the following.

Corollary 3.16. Let f ∈ Ḟα,qp (Rn, A,µ). For any admissible pair of dual frame wavelets
(ϕ1, ψ1), there exists a sequence of polynomials {P 1

k }∞k=1 with degP 1
k ≤ L = 
α/ζ−�, such that

g1 := lim
k→∞

( ∑
Q∈Q, | detA|−k≤|Q|≤| detA|k

〈
f,

(
ϕ1)

Q

〉(
ψ1)

Q
+ P 1

k

)
(3.24)

exists in S ′. Moreover, if g2 is the corresponding limit in (3.24) for some other such pair (ϕ2, ψ2),
then (3.22) holds.
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4. Almost diagonal operators

In this section we probe the boundedness of almost diagonal operators on ḟα,qp (A,µ). Almost
diagonal operators were introduced in the dyadic case by Frazier and Jawerth [20] with the aim
of proving boundedness results for operators in Ḟα,qp spaces. That is, one can always translate a
problem of a boundedness of an operator on Ḟα,qp to the equivalent problem in the corresponding
wavelet domain ḟα,qp by using Theorem 3.12. Since operators on sequence spaces are in general
more tractable, this approach results in greater simplicity.

We start by recalling the definition of almost diagonal operators in the setting of expansive
dilations. Since we deal with a more general situation than in [5] it is compulsory to adjust the
definition of the decay parameter J which depends on the doubling constant of µ instead of the
regularity of a weight w ∈ A∞.

Definition 4.1. Suppose α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA-doubling measure. Let
J = β max(1, 1/p, 1/q). We say that an operator A, with an associated matrix {aQP }Q,P∈Q,
where aQP = (AeP )Q, is an almost diagonal operator on ḟα,qp (A,µ), if there exists an ε > 0
such that,

sup
Q,P∈Q

|aQP |/κQP (ε) < ∞ (4.1)

where

κQP (ε) =
( |Q|

|P |
)α+1/2(

1 + ρA(xQ − xP )

max(|P |, |Q|)
)−J−ε

min

[( |Q|
|P |

)ε
,

( |P |
|Q|

)J+ε]
.

Theorem 4.2. Suppose α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and µ is a ρA-doubling measure.
An almost diagonal operator A is bounded as a linear operator on ḟα,qp (A,µ).

Proof. By a standard rescaling argument it suffices to prove Theorem 4.2 in the case α = 0,
see [5, Theorem 4.1].

First, we consider the case min(p, q) > 1, which implies that J = β in Definition 4.1. In
addition we also assume that p < ∞. Let A be an almost diagonal operator on ḟ0,q

p with matrix
{aQP }Q,P satisfying condition (4.1). We write A = A0 + A1, with

(A0s)Q =
∑

P∈Q, |P |≥|Q|
aQP sP and (A1s)Q =

∑
P∈Q, |P |<|Q|

aQP sP

for s = {sP }P ∈ ḟ0,q
p . For Q ∈ Q, scale(Q) = j , and x ∈ Q, we have

|(A1s)Q| ≤ C
∑

|P |<|Q|
κQP (ε)|sP | ≤ C

∑
|P |<|Q|

( |P |
|Q|

)−1/2+J+ε |sP |(
1 + |Q|−1ρA(xP − xQ)

)β+ε

= C
∑
i<j

| detA|(i−j)(−1/2+β+ε) ∑
scale(P )=i

|sP |(
1 + |Q|−1ρA(xP − xQ)

)β+ε

≤ C
∑
i<j

| detA|(j−i)(1/2−ε)MρA

( ∑
scale(P )=i

|sP χP |
)
(x)

using Lemma 8.1 with a = r = 1 and λ = β + ε. Hence, we have∑
scale(Q)=j

∣∣(A1s)Qχ̃Q
∣∣q ≤ C

( ∑
i<j

| detA|(i−j)εMρA

( ∑
scale(P )=i

∣∣sP χ̃P ∣∣))q
.
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Therefore, by Minkowski’s inequality for �q spaces

‖A1s‖ḟ0,q
p

≤ C

∥∥∥∥( ∑
j∈Z

( ∑
i<0

| detA|iεMρA

( ∑
scale(P )=j−i

∣∣sP χ̃P ∣∣))q)1/q∥∥∥∥
Lp(µ)

≤ C

∥∥∥∥( ∑
j∈Z

(
MρA

( ∑
scale(P )=j

∣∣sP χ̃P ∣∣))q)1/q∥∥∥∥
Lp(µ)

.

By Theorem 2.8 we conclude that

‖A1s‖ḟ0,q
p

≤ C

∥∥∥∥( ∑
P

∣∣sP χ̃P ∣∣q)1/q∥∥∥∥
Lp(µ)

= C‖s‖
ḟ0,q
p
.

To show the corresponding estimate for A0, we apply the same argument as for A1 using the con-
dition

κQP (ε) ≤ C

( |Q|
|P |

)1/2+ε(
1 + |P |−1ρA(xP − xQ)

)−β−ε
.

Therefore, both A0 and A1 are bounded on ḟ0,q
p and, hence, A is also bounded when p < ∞.

The case min(p, q) ≤ 1 can be shown in two ways. One can estimate ||As||
ḟ0,q
p

directly

using Lemma 8.1 for appropriate choices of parameters a, r, λ as in the proof of Lemma 3.10.
Alternatively, the case r = min(p, q) ≤ 1 can be reduced to the case r > 1 as in [20, Theorem 3.3]
and [5, Theorem 4.1]. For the sake of completeness we recall this argument.

We observe that A = {aQP }Q,P is almost diagonal on ḟ0,q
p , i.e., (4.1) holds for some ε > 0

if and only if
A′ = {

a′
QP

}
Q,P

= {|aQP |r (|Q|/|P |)1/2−r/2}
Q,P

is almost diagonal on ḟ0,q/r
p/r , i.e., (4.1) holds for {a′

QP }Q,P and ε′ = rε. Hence, we can pick
an r̃ < r so close to r that the almost diagonal condition (4.1) still holds with r = min(p, q)
replaced by r̃ . This means that p/r̃ > 1, q/r̃ > 1, and that the matrix

Ã = {
ãQP

}
Q,P

=
{
|aQP |r̃

( |Q|
|P |

)1/2−r̃/2}
Q,P

satisfies the almost diagonal condition (4.1) on ḟ0,q/r̃
p/r̃

for a smaller value of ε̃ than ε′ = rε, since

J̃ = β max(1, r̃/p, r̃/q) = β. Indeed, we have

∣∣ãQP ∣∣ ≤ C

( |Q|
|P |

)1/2(
1 + ρA(xQ − xP )

max(|Q|, |P |)
)−βr̃/r−r̃ε

min

[( |Q|
|P |

)r̃ε
,

( |P |
|Q|

)βr̃/r+r̃ε]
.

Given s ∈ ḟ0,q
p , define t = {tQ}Q by tQ = |Q|1/2−r̃/2|sQ|r̃ . Then

‖t‖1/r̃

ḟ0,q/r̃
p/r̃

=
∥∥∥∥( ∑

Q∈Q

(|Q|1/2−r̃/2|sQ|r̃ χ̃Q
)q/r̃)r̃/q∥∥∥∥1/r̃

Lp/r̃ (µ)

= ‖s‖
ḟ0,q
p
. (4.2)

The equality (4.2) also holds for p = ∞, where the localized definition (3.6) is used instead
of (3.4). By the r̃-inequality, we have

|(As)Q| ≤
( ∑

P

|aQP |r̃ |sP |r̃
)1/r̃

=
(

|Q|r̃/2−1/2
∑
P

∣∣ãQP ∣∣|tP |
)1/r̃

= (|Q|r̃/2−1/2(Ãt)
Q

)1/r̃
.
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Hence, using (4.2) twice

‖As‖
ḟ0,q
p

≤ ∥∥Ãt
∥∥1/r̃

ḟ0,q/r̃
p/r̃

≤ C‖t‖1/r̃

ḟ0,q/r̃
p/r̃

= C‖s‖
ḟ0,q
p

since Ã is bounded on ḟ0,q/r̃
p/r̃

(A,µ), by Theorem 4.2 in the already shown case min(p, q) > 1.

Finally, the case p = ∞ and q > 1 requires a special argument due to localized definition
of ḟα,qp spaces. A direct approach is quite complicated since it must involve local estimates as in
the proof of Lemma 3.10 when p = ∞. Instead, it is easier to apply the duality argument using
the results established in [4]. By [4, Corollary 3.5], the spaces ḟα,q∞ (A,µ) do not depend on the
choice ofµ, at least when dµ = w dx for somew ∈ A∞. Hence, without much loss of generality
we can restrict ourselves to the unweighted case. By [4, Corollary 4.5] we have the duality

(ḟ0,q ′
1 )∗ ≈ ḟα,q∞ , where 1/q + 1/q ′ = 1. Define the transpose of A by A′ = {aPQ}Q,P∈Q. Since

A is almost diagonal on ḟα,q∞ by the symmetry and J = 1, so is A′ on ḟ0,q ′
1 . By the already shown

case A′ is bounded on ḟ0,q ′
1 . Hence, its adjoint operator (A′)∗ = A is bounded on (ḟ0,q ′

1 )∗ ≈ ḟα,q∞ .
Note that the identification (A′)∗ = A follows from the duality pairing given by the usual scalar
product of sequences indexed by Q. This completes the proof of Theorem 4.2.

5. Smooth atomic and molecular decompositions

In this section we extend smooth atomic and molecular decompositions of Frazier and Jaw-
erth [20] to the setting of expansive dilations and doubling measures. The corresponding results
for A∞ weights in the case p < ∞ were shown in [5] and here we describe the necessary
modifications which are needed for these arguments to work.

We start by recalling the definitions of smooth molecules.

Definition 5.1. Supposeα ∈ R, 0 < p, q ≤ ∞, andµ is a ρA-doubling measure with doubling
constant β. Let J = β max(1, 1/p, 1/q) and N = max(
(J − α − 1)/ζ−�,−1).

We say that�Q(x) is a smooth synthesis molecule for Ḟα,qp (Rn, A,µ) supported nearQ ∈ Q
with scale(Q) = −j and j ∈ Z, if there exist M > J such that∣∣∂γ [

�Q
(
A−j · )]

(x)
∣∣ ≤ | detA|j/2(

1 + ρA
(
x − AjxQ

))M for |γ | ≤ 
α/ζ−� + 1 , (5.1)

|�Q(x)| ≤ | detA|j/2(
1 + ρA

(
Aj(x − xQ)

))max(M,(M−α)ζ+/ζ−) , (5.2)∫
xγ�Q(x) dx = 0 for |γ | ≤ N . (5.3)

We say that�Q(x) is a smooth analysis molecule for Ḟα,qp (Rn, A,µ) supported nearQ ∈ Q
with scale(Q) = −j and j ∈ Z, if there exists M > J such that∣∣∂γ [

�Q
(
A−j · )]

(x)
∣∣ ≤ | detA|j/2(

1 + ρA
(
x − AjxQ

))M for |γ | ≤ N + 1 , (5.4)

|�Q(x)| ≤ | detA|j/2(
1 + ρA

(
Aj(x − xQ)

))max(M,1+αζ+/ζ−+M−J ) , (5.5)∫
xγ�Q(x) dx = 0 for |γ | ≤ 
α/ζ−� . (5.6)
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We say that {�Q}Q∈Q is a family of smooth synthesis (analysis) molecules, if each �Q is a
smooth synthesis (analysis) molecule supported near Q.

Remark 5.2. Note that the above definition of smooth molecules is identical with [5, Defi-
nition 5.1]. The only exception is the method of determining the decay parameter J , and con-
sequently, the vanishing moment parameter N . Recall from [5] that when w ∈ A∞, the decay
parameter defined by J = max(1, r0/p, 1/q), where r0 = inf{r : w ∈ Ar}, coincides with the
decay parameter in the definition of almost diagonal operators in [5, Definition 4.1]. Therefore,
in both situations the decay parameter J originates in the same way.

The key ingredient in proving smooth molecular decompositions is the following lemma,
which is a nonisotropic variant of [20, Corollary B.3].

Lemma 5.3. Suppose that {�Q}Q and {�Q}Q are families of smooth analysis and synthesis
molecules for Ḟα,qp , respectively. Then the matrix {aQP }, given by aQP = 〈�P ,�Q〉, is almost
diagonal on ḟα,qp . More precisely, there exist C > 0 and ε > 0, such that

|〈�P ,�Q〉| ≤ CκQP (ε) for all Q,P ∈ Q .

In the setting of nonexpansive dilations and A∞ weights Lemma 5.3 was proved in [5].
In fact, a close inspection of this argument shows that given any J ≥ 1, α ∈ R, and families
of functions {�Q} and {�Q} satisfying (5.1)–(5.6), the matrix {〈�P ,�Q〉}Q,P satisfies almost
diagonality estimate (4.1) for some ε > 0. Therefore, Remark 5.2 shows that Lemma 5.3 holds
in the current setting of ρA-doubling measures.

As a consequence of Lemma 5.3 we obtain the following result.

Theorem 5.4 (Smooth Molecular Analysis and Synthesis). Suppose that A is an expansive
matrix, α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA-doubling measure. Then there exists a constant
C > 0, such that:

(i) If {�Q}Q is a family of smooth synthesis molecules for Ḟα,qp (Rn, A,µ), then∥∥∥∥ ∑
Q∈Q

sQ�Q

∥∥∥∥
Ḟα,qp

≤ C‖s‖ḟα,qp
for all s = {sQ}Q ∈ ḟα,qp (A,µ) .

(ii) If {�Q}Q is a family of smooth analysis molecules, then

‖{〈f,�Q〉}Q‖ḟα,qp
≤ C‖f ‖Ḟα,qp

for all f ∈ Ḟα,qp (Rn, A,µ) .

The proof of Theorem 5.4 follows along the lines of the corresponding results in [5] with the
use of Lemma 5.3. The biggest technical difficulty in the proof of the above theorem is to justify
the meaningfulness of the pairing 〈f,�Q〉 since f ∈ Ḟα,qp is an equivalence class in S ′/P , and
�Q may not even belong to S. However, the usual pairing procedure as in [5, Lemma 5.7] works.

Lemma 5.5. Suppose that f ∈ Ḟα,qp (Rn, A,µ) and �Q is a smooth analysis molecule for
Ḟα,qp (Rn, A,µ) supported near Q ∈ Q. Then for any ϕ,ψ ∈ S(Rn) satisfying (2.7) and (2.8),
the series

〈f,�Q〉 :=
∑
j∈Z

〈
ϕ̃j ∗ ψj ∗ f,�Q

〉 =
∑
P∈Q

〈f, ϕP 〉〈ψP ,�Q〉 (5.7)
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converges absolutely and its value is independent of the choice of ϕ and ψ satisfying (2.7)
and (2.8).

The proof of Lemma 5.5 is exactly the same as that of [5, Lemma 5.7] and uses Proposi-
tion 3.15 and Corollary 3.16, and hence it is skipped. Finally, we assert that the elements of
Ḟα,qp (Rn, A,µ) admit smooth atomic decompositions.

Definition 5.6. A function aQ(x) is said to be a smooth atom supported near a cube Q =
A−j ([0, 1]n + k) ∈ Q if it satisfies

supp aQ ⊂ A−j ([−δ0, 1 + δ0]n + k
)
, (5.8)

where δ0 > 0 is some fixed constant, and∣∣∂γ [
aQ

(
A−j · )]

(x)
∣∣ ≤ |Q|−1/2 for |γ | ≤ K̃ , (5.9)∫

Rn

xγ aQ(x) dx = 0 for |γ | ≤ Ñ , (5.10)

where Ñ ≥ N is the same as in Definition 5.1 and K̃ ≥ max(
α/ζ−� + 1, 0). Recall that

N = max(
(J − α − 1)/ζ−�,−1) where J = β max(1, 1/p, 1/q).

We say that {aQ}Q∈Q is a family of smooth atoms, if each function aQ is a smooth atom supported
near Q.

Theorem 5.7 (Smooth Atomic Decomposition). Suppose that A is an expansive matrix,
α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA-doubling measure. For any f ∈ Ḟα,qp there exists a family
of smooth atoms {aQ} and a sequence of coefficients s = {sQ} ∈ ḟα,qp , such that,

f =
∑
Q∈Q

sQaQ, and ‖s‖ḟα,qp
≤ C‖f ‖Ḟα,qp

, (5.11)

where the above series converges unconditionally in Ḟα,qp . Conversely, for any family of smooth
atoms {aQ}, ∥∥∥∥ ∑

Q

sQaQ

∥∥∥∥
Ḟα,qp

≤ C‖s‖ḟα,qp
. (5.12)

The proof of Theorem 5.7 uses Theorems 3.12 and 5.4 and is a verbatim copy of the corre-
sponding result in [5]. Hence, it is skipped.

Remark 5.8. At this point, it should be clear that the theory of anisotropic Triebel-Lizorkin
spaces introduced in [5] extends to the setting of doubling measures. In particular, the results
for inhomogeneous Triebel-Lizorkin spaces can be deduced from the corresponding results for
homogeneous Ḟα,qp spaces by the same arguments as in [5, 20]. Moreover, we conjecture that
the results in the inhomogeneous case are valid under a weaker hypothesis of local doubling, i.e.,
(2.3) holds only for r < 1. Indeed, Rychkov [30] extended several results on inhomogeneous
Triebel-Lizorkin and Besov spaces to the weighted (but isotropic) setting for the class of local
Muckenhoupt weights Aloc

p . Hence, it seems very plausible that similar results can be obtained
in the nonisotropic setting. However, we will not pursue this direction here.
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Remark 5.9. Despite certain gain of generality of this work compared to its predecessor [5],
one should emphasize that the results obtained here and there have some fundamental differences.
For example, the decay and vanishing moment parameters in the definition of smooth molecules
depend on the doubling constant of a measure µ instead of the regularity of a weight w ∈ A∞
as in [5]. Consequently, the results of [5] have better quantitative characteristics than the ones
obtained here as long as we stay in the realm ofA∞ weights. This is a prize to be paid by studying
Triebel-Lizorkin spaces with doubling measures instead of A∞ weights.

6. Nonsmooth atomic decompositions of Ḟα,qp spaces for 0 < p ≤ 1

The goal of this section is to establish a more traditional type of atomic decomposition of
Ḟα,qp spaces than Theorem 5.7, where the coefficients in atomic decompositions are controlled by
the �p norms rather than more cumbersome ḟα,qp norms. Obviously, there is a prize to pay for this.
One must restrict the range to 0 < p ≤ 1 and allow less regular atoms in our decompositions.

We will follow a more direct approach to nonsmooth atomic decompositions as described
by Grafakos [24] instead of a slightly roundabout approach via real interpolation by Frazier and
Jawerth [20, Section 7]. Naturally, we will work on the sequence space level and hence we start
by introducing the concept of atoms for ḟα,qp (A,µ) spaces.

Definition 6.1. Suppose that α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and µ is a ρA-doubling
measure. We say that a sequence r = {rQ}Q is a p1-atom for ḟα,qp (A,µ), where p ≤ p1 ≤ ∞, if
there exists Q̄ ∈ Q such that

rQ = 0 if scale(Q) > scale
(
Q̄

)
or

∣∣Q ∩ Q̄∣∣ = 0 , (6.1)∥∥Gα,q(r)∥∥
Lp1 (µ)

≤ µ
(
Q̄

)1/p1−1/p
, (6.2)

where

Gα,q(r) =
( ∑
P∈Q

(|P |−α|rP |χ̃P
)q)1/q

. (6.3)

Remark 6.2. In other words, (6.1) says that the support of an atom r must be located at the
tent T (Q̄) over Q̄. That is, rQ could be nonzero only on the cubes Q ∈ Q which have nonzero
intersection with Q̄, |Q ∩ Q̄| > 0, and lie at scales at most of scale(Q̄).

For any p ≤ p1 < p2 ≤ ∞, every p2-atom r for ḟα,qp is also a p1-atom modulo a multi-
plicative constant c independent of r , i.e., cr is a p1-atom for ḟα,qp . To see this, it suffices to use
Hölder’s inequality, and observe that the support of Gα,q(r) is contained in a dilated ball B with
scale(B) controlled by scale(Q̄) due to Lemma 2.9. Hence, we will work mostly with ∞-atoms
r , which satisfy ∥∥Gα,q(r)∥∥

L∞ ≤ µ
(
Q̄

)−1/p
. (6.4)

Note that we adopt a slightly more restrictive definition of ∞-atoms than the original approach
of Frazier and Jawerth [20] by following [24, Section 6.6.c]. Indeed, (6.4) is replaced in [20] by

||r||ḟα,q∞ ≤ µ
(
Q̄

)−1/p
.

The following concept of order between cubes, introduced by the author in [2], plays an
important role in our arguments.
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Definition 6.3. We say that a cubeQ ∈ Q is stacked below the cube P ∈ Q, and writeQ � P ,
if there is a chain of cubes Q = Q0,Q1, . . . ,Qs = P ∈ Q such that

scale(Qi) < scale(Qi+1) and |Qi ∩Qi+1| > 0 for all i = 0, . . . , s − 1 .

The relation � induces a partial order in Q.

Remark 6.4. Suppose that Q′ is a subfamily of Q. Let max(Q′) be the set of maximal elements
in Q′ with respect to the relation �. If a subfamily Q′ does not contain arbitrary large cubes, i.e.,
supQ∈Q′ scale(Q) < ∞, then for any cube Q ∈ Q′ there is always a cube P ∈ max(Q′) with
Q � P . In general, a maximal cube P is not unique unless, for example, the dilation A = 2Id
and we work with nicely nested dyadic cubes.

We shall need a simple geometric lemma; for the proof see [2, p. 105].

Lemma 6.5. There is a universal constant η ∈ N such that whenever we have two cubes
Q,P ∈ Q with Q � P = Aj0([0, 1]n + k0) then

Q ⊂
⋃

|k−k0|<η
Aj0

([0, 1]n + k
)
.

The main technical result of this section is the following theorem which is a generalization
of a result which can be found in [24, Theorem 6.6.5].

Theorem 6.6. Suppose α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and µ is a ρA-doubling measure.
Then for any s ∈ ḟα,qp (A,µ), there exists a sequence of scalars {λj }, and ∞-atoms {rj } for ḟα,qp
such that

s =
∑
j

λj rj , and

( ∑
j

|λj |p
)1/p

≤ C||s||ḟα,qp , (6.5)

for some constant C independent of s.

Proof. Suppose s is an arbitrary element of ḟα,qp (A,µ). As a preliminary step, we wish to
replace s by its majorant sequence s∗ = s∗r,λ, where r > 0 and λ > β max(1, r/q, r/p) are the
same as in Lemma 3.10. The advantage of s∗ over s is that the sequence s∗ is locally almost
constant within each scale, and yet, it still belongs to ḟα,qp (A,µ). This allows us to remedy some
serious difficulties arising from the fact the family of dilated cubes Q is generally not nested.

For j ∈ Z, define a function gα,qj (s∗) by

g
α,q
j (s∗) =

( ∑
P∈Q, scale(P )≥j

(|P |−α∣∣s∗P ∣∣χ̃P )q)1/q

.

For the purposes of the proof, it is useful to insist that P ∈ Q are of the form P = Aj([0, 1)n+k)
and hence dilated cubes are disjoint (versus having common faces) within each scale. Note that
for every x ∈ R

n, gα,qj (s∗)(x) ≥ g
α,q

j+1(s
∗)(x), and

lim
j→∞ g

α,q
j

(
s∗

)
(x) = 0, lim

j→∞ g
α,q
j

(
s∗

)
(x) = Gα,q

(
s∗

)
(x) . (6.6)
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Indeed, (6.6) is obvious when 0 < q < ∞. When q = ∞, one must use that Gα,q(s∗) ∈ Lp(µ)
and the fact that

lim
j→∞µ

(
Aj

([0, 1]n)) = lim
j→∞µ

(
Aj

([−1, 1]n)) = µ
(
R
n
) = ∞ , (6.7)

which is a consequence of Proposition 2.10.

For k ∈ Z, we define a family of dilated cubes

Qk = {
Q ∈ Q : sup

x∈Q
g
α,q

scale(Q)

(
s∗

)
(x) > 2k

}
.

Clearly, Qk ⊂ Qk+1, and by (6.6),

�k := {
x ∈ R

n : Gα,q(s∗)(x) > 2k
} ⊂

⋃
Q∈Qk

Q . (6.8)

Moreover, we claim that there ism ∈ N, independent of k, such that the converse inclusion holds⋃
Q∈Qk

Q ⊂ �k−m . (6.9)

Indeed, take any Q ∈ Qk and x = x(Q) ∈ Q such that gα,qj (s∗)(x) > 2k , where j = scale(Q).
Then for any P1, P2 ∈ Q, scale(P1) = scale(P2) ≥ j , and |P1 ∩Q|, |P2 ∩Q| > 0, by Lemma 6.5
we have(
s∗P1

)r =
∑

P∈Q, |P |=|P1|
|sP |r(1 + |P1|−1ρA(xP1 − xP )

)−λ

≥
∑

P∈Q, |P |=|P2|
|sP |r(1 +H |P2|−1ρA(xP1 − xP2)+H |P2|−1ρA(xP2 − xP )

)−λ

≥ sup
|k|<η

(
H +HρA(k)

)−λ ∑
P∈Q, |P |=|P2|

|sP |r(1 + |P2|−1ρA(xP2 − xP )
)−λ = c

(
s∗P2

)r
.

Here, c is the value of supremum above, and η is the same as in Lemma 6.5. Hence,

Gα,q(y) ≥ g
α,q
j

(
s∗

)
(y) ≥ c1/rg

α,q
j

(
s∗

)
(x) > c1/r2k > 2k−m for all y ∈ Q ,

where m ∈ N is chosen so that 2m > c−1/r , which proves (6.9).

Observe that the definition of family Qk implies that( ∑
P∈Q\Qk

(|P |−α∣∣s∗P ∣∣χ̃P (x))q)1/q

≤ 2k for all x ∈ R
n . (6.10)

Indeed, take any x0 ∈ R
n and suppose that Gα,q(s∗)(x0) > 2k; otherwise, the conclusion is

trivial. By (6.6), let j0 ∈ Z be the unique integer such that

g
α,q
j0

(
s∗

)
(x0) > 2k and g

α,q

j0+1

(
s∗

)
(x0) ≤ 2k .

For any scale j ∈ Z, let Pj be the unique dilated cube such that scale(Pj ) = j and x0 ∈ Pj . Note
that Pj ∈ Qk for every j ≤ j0, and hence( ∑

j∈Z

∑
Pj∈Q\Qk

(|Pj |−α∣∣s∗Pj ∣∣χ̃Pj (x0)
)q)1/q

=
( ∑
j>j0

∑
Pj∈Q\Qk

(|Pj |−α∣∣s∗Pj ∣∣χ̃Pj (x0)
)q)1/q

≤ g
α,q

j0+1

(
s∗

)
(x0) ≤ 2k ,
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which shows (6.10).

Let Mk = max(Qk \ Qk+1) be the family of maximal cubes in Qk \ Qk+1 with respect to
the partial order �. We claim that for any cube P ∈ Qk \ Qk+1, there is Q ∈ Mk , such that
P � Q. Indeed, take anyQ ∈ Qk \ Qk+1 with P � Q. Fix x0 ∈ P , and letQ′ ∈ Q be such that
x0 ∈ Q′ and scale(Q′) = scale(Q). Then by Lemma 6.5, µ(Q′) ≤ cµ(Q), where c is the same
constant as in Proposition 2.10(a). By (6.9), Q ⊂ �k−m and consequently,

µ
(
Q′) ≤ cµ(Q) ≤ c2(m−k)p∥∥Gα,q(s∗)∥∥p

Lp(µ)
= c2(m−k)p∥∥s∗∥∥p

ḟα,qp (A,µ)
< ∞ .

Therefore, by Proposition 2.10(b), scale(Q′) must be bounded from above. Consequently,

sup{scale(Q) : Q ∈ Qk \ Qk+1, P � Q} < ∞ ,

which proves the claim.

Let M′
k be the inflated version of Mk defined by

M′
k = {

P ∈ Q : ∃Q ∈ Mk, scale(Q) = scale(P ), |k − k0| < η ,

where P = Aj
([0, 1)n + k

)
,Q = Aj

([0, 1)n + k0
)}
.

Let {Qk,l}l∈Lk be any enumeration of cubes in M′
k . Lemma 6.5 guarantees that for any P ∈

Qk \ Qk+1 there is Qk,l ∈ M′
k such that |P ∩ Qk,l | > 0. Thus, we can inductively define a

partition of the family Qk \ Qk+1 into subfamilies {Qk,l}l such that

P ∈ Qk,l �⇒ scale(P ) ≤ scale(Qk,l) and |P ∩Qk,l | > 0 . (6.11)

Hence, a subfamily Qk,l consists of a certain portion of cubes in Qk \ Qk+1 which have nonzero
intersection with Qk,l and scales lower than scale(Qk,l). Note that it might happen that some
subfamilies Qk,l’s are empty due to the fact that either all cubes in Qk \ Qk+1 lying below Qk,l

were assigned to a different subfamily or there were no such cubes in the first place.

By (6.8) and (6.9), {Qk \ Qk+1}k∈N is a partition of the entire family Q. Consequently,
{Qk,l}k∈Z,l∈Lk is also a partition ofQ. This partition induces sequences sk,l = {sk,lP }P∈Q by setting

s
k,l
P =

{
sP P ∈ Qk,l ,

0 otherwise .

Obviously,

s =
∑
k∈Z

∑
l∈Lk

sk,l .

By (6.10),

Gα,q
(
sk,l

)
(x) ≤

( ∑
P∈Qk\Qk+1

(|P |−α∣∣s∗P ∣∣χ̃P (x))q)1/q

≤ 2k+1 for all x ∈ R
n . (6.12)

Finally, define atoms {rk,l}k,l as appropriate normalizations of {sk,l}k,l ,
r
k,l
P = 2−k−1µ(Qk,l)

−1/ps
k,l
P for P ∈ Q .

To verify that each rk,l is an ∞-atom for ḟα,qp with respect to the cubeQk,l it suffices to use (6.11)
and (6.12), ∥∥Gα,q(rk,l)∥∥∞ = 2−k−1µ(Qk,l)

−1/p
∥∥Gα,q(sk,l)∥∥∞ ≤ µ(Qk,l)

−1/p .
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Clearly,

s =
∑
k∈Z

∑
l∈Lk

λk,ls
k,l , where λk,l = 2k+1µ(Qk,l)

1/p .

Note that for each k ∈ Z,∑
l∈Lk

µ(Qk,l) =
∑

Q∈M′
k

µ(Q) ≤ cK
∑

Q∈Mk

µ(Q) ≤ cKµ

( ⋃
Q∈Qk\Qk+1

Q

)
,

where the constant c is the same as in Proposition 2.10(a), andK is the cardinality of Z
n∩B(0, η).

Therefore, by (6.9),∑
k∈Z

∑
l∈Lk

|λk,l |p =
∑
k∈Z

2(k+1)p
∑
l∈Lk

µ(Qk,l) ≤ cK
∑
k∈Z

2(k+1)pµ(�k−m)

= cK2(m+2)p 1

p

∑
k∈Z

p2kpµ
({
x : Gα,q(s∗)(x) > 2k+1})

≤ C

∫ ∞

0
pλp−1µ

({
x : Gα,q(s∗)(x) > λ

})
dλ

= C
∥∥s∗∥∥p

ḟα,qp (A,µ)
≤ C′||s||p

ḟα,qp (A,µ)
,

where the last step follows from Lemma 3.10. This shows (6.5) and completes the proof of
Theorem 6.6.

As a corollary, we obtain an atomic characterization of ḟα,qp -spaces which is a generalization
of [20, Theorem 7.2].

Theorem 6.7. Suppose 0 < p ≤ 1, p ≤ q ≤ ∞, α ∈ R, and µ is a ρA-doubling measure.
Then for any p ≤ p1 ≤ ∞,

||s||ḟα,qp � inf

{( ∑
j

|λj |p
)1/p

: s =
∑
j

λj rj and each rj is a p1-atom for ḟα,qp

}
. (6.13)

Proof. By Remark 6.2, every ∞-atom r is also a p1-atom (modulo a multiplicative constant).
Hence, the lower bound for ||s||ḟα,qp follows immediately from Theorem 6.6. To prove the upper
bound one must use

||s + t ||p
ḟα,qp

≤ ||s||p
ḟα,qp

+ ||t ||p
ḟα,qp

,

which is a consequence of p-triangle inequality and Minkowski’s inequality with exponent q/p.
By Remark 6.2, every p1-atom r is also a p-atom (modulo a multiplicative constant) and hence,
||r||ḟα,qp ≤ C. If s is as in (6.13), then

||s||p
ḟα,qp

=
∥∥∥∥ ∑

j

λj rj

∥∥∥∥p
ḟα,qp

≤
∑
j

|λj |p||rj ||pḟα,qp ≤ C
∑
j

|λj |p .

Obviously, Theorem 6.7 is most interesting when p1 = ∞, since it yields atomic decom-
position into the most restrictive class of ∞-atoms. Hence, we will restrict ourselves to this
case.
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Finally, we define nonsmooth atoms for Ḟα,qp spaces as conglomerates of smooth atoms for Ḟα,qp
with coefficients given by atoms for ḟα,qp .

Definition 6.8. Suppose that 0 < p ≤ 1 and p ≤ q ≤ ∞. We say that b is a nonsmooth atom
for Ḟα,qp if b = ∑

Q∈Q rQaQ, where r = {rQ}Q∈Q is an ∞-atom for ḟα,qp for some fixed cube

Q̄ ∈ Q, and each aQ is a smooth atom supported near a cube Q.

Obviously, one can also define nonsmooth atoms for Ḟα,qp with more general normalizations,
where r = {rQ}Q∈Q is a p1-atom for ḟα,qp , instead of an ∞-atom and p1 ≥ p. As a consequence
of (5.8) and (6.1), observe that there exists a universal constant R > 0 such that

supp b ⊂ A−j ([−R,R]n + k
)

(6.14)

for any atom b corresponding to Q̄ = A−j ([0, 1]n + k). By Theorem 5.7, every atom b for Ḟα,qp
satisfies ||b||Ḟα,qp ≤ C for some universal constant C.

Finally, we can prove nonsmooth atomic decomposition of Ḟα,qp spaces.

Theorem 6.9. Suppose that 0 < p ≤ 1, p ≤ q ≤ ∞, α ∈ R, and µ is a ρA-doubling measure.
Then for any f ∈ S ′/P ,

||f ||Ḟα,qp � inf

{( ∑
j

|λj |p
)1/p

: f =
∑
j

λj bj and each bj is a nonsmooth atom for Ḟα,qp

}
. (6.15)

Proof. The lower bound of ||f ||Ḟα,qp is a direct consequence of smooth atomic decomposition

for Ḟα,qp -spaces and Theorem 6.7. Indeed, for any f ∈ Ḟα,qp find its decomposition f = ∑
sQaQ

into smooth atoms {aQ} and group them according to atomic decomposition of s = {sQ} ∈ ḟα,qp .

To prove the upper bound one must use

||f + g||p
Ḟα,qp

≤ ||f ||p
Ḟα,qp

+ ||g||p
Ḟα,qp

,

which is a consequence of p-triangle inequality and Minkowski’s inequality with exponent q/p.
Since every (nonsmooth) atom b for Ḟα,qp satisfies ||b||Ḟα,qp ≤ C, the upper bound of ||f ||Ḟα,qp
follows immediately.

In the next section we explore the connections between atomic decompositions of Hardy
spaces and Theorem 6.9.

7. Identification with anisotropic Hardy spaces

The goal of this section is to identify unweighted Ḟ0,2
p (A,Rn) spaces with the (real) Hardy

spaces Hp
A for 0 < p < ∞ in the context of expansive dilations A. The corresponding isotropic

result is well known and boils down to the square function characterization of Hardy spaces, e.g.,
[24, Theorem 6.4.15].

For various equivalent ways of introducing the usual isotropic Hardy spaces on R
n we refer

to [16, 31]. In the context of expansive dilations A, anisotropic Hardy space Hp
A(R

n) were
studied by the author [2]. There are several equivalent definitions of Hardy spaces using maximal
functions or atomic decompositions. Theorem 7.1 establishes the square function characterization
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stated informally as

f ∈ Hp
A

(
R
n
) ⇐⇒ S(f ) :=

( ∑
j∈Z

|ϕj ∗ f |2
)1/2

∈ Lp ,

where ϕ ∈ S satisfies (3.2) and (3.3).

Theorem 7.1. Suppose that A is an expansive dilation and ϕ ∈ S(Rn) satisfies

supp ϕ̂ ⊂ [−π, π ]n \ {0} and
∑
j∈Z

∣∣ϕ̂((
A∗)j ξ)∣∣2 = 1 for all ξ �= 0 . (7.1)

Then Hp
A(R

n) = Ḟ0,2
p (Rn, A) for all 0 < p < ∞. More precisely, any f ∈ Ḟ0,2

p ⊂ S ′/P is
identified with its canonical representative

f =
∑
Q∈Q

〈f, ϕQ〉ϕQ

where the series converges in S ′ and we have

||f ||Hp
A

� ||f ||Ḟ0,2
p

for all f ∈ S ′ . (7.2)

Proof. The condition (7.1) assures that ϕ is a tight frame wavelet associated with A with all
vanishing moments. Hence, by [2, Lemma 6.3 and Theorem 6.7 in Ch. 2] for 0 < p ≤ 1 and [2,
Lemma 6.10 and Theorem 6.13 in Ch. 2] for 1 < p < ∞, the following diagram commutes and
the maps Sϕ and Tϕ are bounded

ḟ0,2
p (A)

�
�

�
�

�
��

Sϕ

�
�

�
�

�
��

Tϕ

H
p
A

(
R
n
) Id � H

p
A

(
R
n
)
. (7.3)

Here, Sϕ and Tϕ are the usual analysis and synthesis transform. Moreover, for any s ∈ ḟ0,2
p (A),

the series Tϕs = ∑
Q∈Q sQϕQ converges unconditionally in Hp

A(R
n) and hence in S ′. On the

other hand, Theorem 3.12 shows that we a similar commutative diagram

ḟ0,2
p (A)

�
�

�
�

�
��

Sϕ

�
�

�
�

�
��

Tϕ

Ḟ0,2
p (Rn, A)

Id � Ḟ0,2
p (Rn, A) .

. (7.4)

A priori, Theorem 3.12 says that Tϕs ∈ Ḟ0,2
p and hence it is an element of S ′/P . Since the

sequence space is the same in both cases, Tϕs can be identified with a specific element ofHp
A and

hence S ′ by (7.3). Combining diagrams (7.3) and (7.4) shows (7.2).

As an immediate corollary of Theorems 3.12 and 7.1 we have the following.
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Corollary 7.2. Suppose that 0 < p < ∞ and ϕ ∈ S satisfies (3.2) and (3.3). Then for any
f ∈ S ′, there exists a unique polynomial P ∈ P such that

||f − P ||Hp
A

�
∥∥∥∥( ∑

j∈Z

|ϕj ∗ f |2
)1/2∥∥∥∥

Lp
. (7.5)

Note that the square function S(f ) on right-hand side of (7.5) does not “detect” polynomials,
i.e., S(f ) = S(f − P). Hence, an appropriate representative in the equivalence class of f in
S ′/P must be chosen to yield a valid member f − P of the Hardy space Hp

A .

Finally, we are ready to discuss Theorem 6.9 in the setting of Hardy spaces. Let b = ∑
rQaQ

be any nonsmooth atom for Ḟ0,2
p , 0 < p ≤ 1, supported around cube Q̄. Then for any 1 < p0 <

∞,

||b||Lp0 � ||b||Ḟ0,2
p0

≤ C||r||ḟ0,2
p0

≤ C
∣∣Q̄∣∣1/p1−1/p

.

By (6.14) the support of b is contained in enlarged copy of Q̄. Since the series b = ∑
rQaQ

converges in Ḟ0,2
p1 = Lp1 norm, the vanishing moments of aQ’s are inherited by b, i.e.,∫

Rn

xγ b(x) dx = 0 for |γ | ≤ Ñ ,

where Ñ ≥ N = max(
(J − 1)/ζ−�,−1) = 
(1/p − 1)/ζ−�. Hence, up to a multiplicative
constant, a nonsmooth atom b for Ḟ0,2

p is a (p, p1, N)-atom in the setting of anisotropic Hardy
spaces, see [2, Definition 4.1]. Therefore, Theorem 6.9 yields the atomic decomposition of Hp

A

spaces into Lp1 -atoms for 1 < p1 < ∞. Furthermore, when p1 = ∞, Theorem 6.9 yields the
atomic decomposition into “BMO-atoms” instead of more familiarL∞-atoms, see [20, Section 7].

8. Proofs of auxiliary results

8.1. Proof of Lemma 3.10

To prove Lemma 3.10 we need two auxiliary lemmas. Lemma 8.1 is a generalization of [5,
Lemma 6.2] for maximal functions associated with ρA-doubling measures. Lemma 8.2 is a
geometric result on the family of dilated cubes Q.

Lemma 8.1. Suppose 0 < a ≤ r < ∞, λ > βr/a, and i, j ∈ Z. Then for any sequence
s = {sP }P and for each cube Q ∈ Q with scale(Q) = j we have( ∑

scale(P )=i
|sP |r/

(
1 + ρA(xQ − xP )

max(|P |, |Q|)
)λ)1/r

(8.1)

≤ C| detA|(j−i)+β/a
(
MρA

( ∑
scale(P )=i

|sP |aχP
)
(x)

)1/a

for all x ∈ Q ,

where the constant C depends only on λ− βr/a. In particular, if i = j , then

∑
scale(Q)=j

(
s∗r,λ

)
Q
χ̃Q ≤ C

(
MρA

( ∑
scale(Q)=j

|sQ|χ̃Q
)a)1/a

(8.2)
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with the same constant C.

Proof. Fix Q ∈ Q with scale(Q) = j . Consider the first case when i ≥ j . Define

A0 = {P ∈ Q : scale(P ) = i and ρA(xQ − xP )/|P | ≤ 1} ,
Ak = {

P ∈ Q : scale(P ) = i and | detA|k−1 < ρA(xQ − xP )/|P | ≤ | detA|k} k ≥ 1 .

Then∑
P∈Ak

|sP |r
(1 + ρA(xQ − xP )/|P |)λ ≤ C| detA|−kλ

∑
P∈Ak

|sP |r ≤ C| detA|−kλ
( ∑
P∈Ak

|sP |a
)r/a

= C| detA|−kλ
( ∫

B̃

∑
P∈Ak

|sP |a
µ(P )

χP dµ

)r/a
,

where ⋃
P∈Ak

P ⊂ B̃ := BρA
(
xQ, 2H | detA|k+i) .

Since µ is ρA-doubling

µ
(
B̃

) ≤ C| detA|βkµ(P ) for any P ∈ Ak, k ≥ 0 .

Hence, by the definition of the maximal operator, we have

∑
P∈Ak

|sP |r
(1 + ρA(xQ − xP )/|P |)λ ≤ C| detA|−kλ+βkr/a

 1

µ
(
B̃

) ∫
B̃

∑
P∈Ak

|sP |aχP dµ
r/a

≤ C| detA|−k(λ−βr/a)
(
MρA

( ∑
scale(P )=i

|sP |aχP
)
(x)

)r/a
for any x ∈ Q ⊂ B̃. Summing over k ≥ 0, yields (8.1).

In the second case i < j , we redefine Ak’s by

A0 = {P ∈ Q : scale(P ) = i and ρA(xQ − xP )/|Q| ≤ 1} ,
Ak = {

P ∈ Q : scale(P ) = i and | detA|k−1 < ρA(xQ − xP )/|Q| ≤ | detA|k} k ≥ 1 .

Then, as before

∑
P∈Ak

|sP |r
(1 + ρA(xQ − xP )/|Q|)λ ≤ C| detA|−kλ+β(k+j−i)r/a

 1

µ
(
B̃

) ∫
B̃

∑
P∈Ak

|sP |aχP
r/a

≤ C| detA|(j−i)βr/a−k(λ−βr/a)
(
MρA

( ∑
scale(P )=i

|sP |aχP
)
(x)

)r/a
for any x ∈ Q ⊂ B̃. Here, we used that⋃

P∈Ak
P ⊂ B̃ := BρA

(
xQ, 2H | detA|k+j )
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and

µ
(
B̃

) ≤ C| detA|β(k+j−i)µ(P ) for any P ∈ Ak, k ≥ 0 .

Summing over k ≥ 0, yields (8.1).

To see (8.2), multiply both sides of (8.1) by χ̃Q, and sum over allQ ∈ Q with scale(Q) = j ,

∑
scale(Q)=j

(
s∗r,λ

)
Q
χ̃Q ≤ C

∑
scale(Q)=j

(
MρA

( ∑
scale(P )=j

|sP |χ̃P
)a)1/a

χQ

= C

(
MρA

( ∑
scale(P )=j

|sP |χ̃P
)a)1/a

,

since {Q ∈ Q : scale(Q) = j} is a partition of R
n.

Lemma 8.2. Suppose that P = Aj0([0, 1]n + k0) ∈ Q, where j0 ∈ Z, k0 ∈ Z
n. Whenever

Q, Q̃ ∈ Q satisfy

j = scale(Q) = scale
(
Q̃

) ≤ scale(P ) = j0 (8.3)

and

Q ∩ P �= ∅, Q̃ ∩ (
P + Aj0k

) �= ∅ for some k ∈ Z
n, ρA(k) > K , (8.4)

then we have

|Q|−1ρA(xQ − x
Q̃
) ≥ | detA|j0−j ρA(k)

2H
. (8.5)

Moreover, the constant K > 0 is independent of the choice of P , Q, and Q̃.

Proof. Let K = 2H supy∈U ρA(y), where U = 2(U0 − U0) and U0 = ⋃
l≤0 A

l([0, 1]n).
Since U0, and hence U , are compact we have K < ∞. Take any Q = Aj([0, 1]n + k1) and
Q̃ = Aj([0, 1]n + k2), j ≤ j0 and k1, k2 ∈ Z

n, satisfying (8.3) and (8.4). Since

Aj−j0
([0, 1]n + k1

) ∩ ([0, 1]n + k0
) �= ∅, Aj−j0

([0, 1]n + k2
) ∩ ([0, 1]n + k0 + k

) �= ∅
we have

Aj−j0k1 − k0 ∈ U0 − U0, Aj−j0k2 − k0 − k ∈ U0 − U0 .

Hence, Aj−j0(k1 − k2)+ k ∈ U . Thus,

ρA
(
Aj−j0(k1 − k2)

) ≥ (1/H)ρA(k)− sup
y∈U

ρA(y) = (1/H)ρA(k)−K/(2H) ≥ ρA(k)

2H
,

since ρA(k) > K . This shows (8.5), since |Q|−1ρA(xQ − x
Q̃
) = ρA(k1 − k2).

Proof of Lemma 3.10. The case p < ∞ is a consequence of Lemma 8.1. Indeed, take
any r > 0 and λ > β max(1, r/q, r/p). If r < min(q, p), then we set a = r . Otherwise, if
r ≥ min(q, p), then take a such that βr/λ < a < min(r, q, p). It is possible to choose such an
a, since λ > β max(1, r/q, r/p) implies βr/λ < min(r, q, p). In both cases we have that

0 < a ≤ r < ∞, λ > βr/a, q/a > 1, p/a > 1 .
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Therefore, (8.2) in Lemma 8.1 yields

∥∥s∗r,λ∥∥ḟα,qp (A,µ)
≤ C

∥∥∥∥( ∑
j∈Z

(
MρA

( ∑
|Q|=| detA|−j

|Q|−α|sQ|χ̃Q
)a)q/a)a/q∥∥∥∥1/a

Lp/a(µ)

.

Since q/a > 1 and p/a > 1, by the Fefferman-Stein vector-valued maximal inequality we can
remove MρA from the above estimate (by increasing a constant C) to obtain∥∥s∗r,λ∥∥ḟα,qp (A,µ)

≤ C‖s‖ḟα,qp (A,µ) .

Next, we consider the case p = ∞. Without any loss we can also assume that 0 < q < ∞,
since the proof of the case p = q = ∞ is immediate.

Take any r > 0 and λ > β max(1, r/q). Fix a dilated cube P = Aj0([0, 1]n + k0) ∈ Q and
let P̄ be the union of neighboring dilated cubes to P , i.e.,

P̄ =
∑

k∈Zn, ρA(k)≤K

(
P + Aj0k

)
,

where K is the same as in Lemma 8.2. Define sequences t = {tQ}Q∈Q and u = {uQ}Q∈Q by

tQ =
{
sQ Q ⊂ P̄ , |Q| ≤ |P | ,
0 otherwise ,

uQ = sQ − tQ .

Then we have (
s∗r,λ

)r
Q

= (
t∗r,λ

)r
Q

+ (
u∗
r,λ

)r
Q

for all Q ∈ Q ,

and hence there is a constant c (dependent on q and r) such that(
s∗r,λ

)
Q

≤ c
((
t∗r,λ

)q
Q

+ (
u∗
r,λ

)q
Q

)1/q for all Q ∈ Q .

Consequently, the estimate of ḟα,q∞ -norm of s∗r,λ will follow from the corresponding bounds on t∗r,λ
and u∗

r,λ. By the already proved Lemma 3.10 and p = q < ∞ we have

1

µ(P )

∫
P

∑
|Q|≤|P |

(|Q|−α(t∗r,λ)Qχ̃Q(x))q dµ(x) ≤ 1

µ(P )

∫
P

∑
Q∈Q

(|Q|−α(t∗r,λ)Qχ̃Q(x))q dµ(x)
= 1

µ(P )

∥∥t∗r,λ∥∥qḟα,qq ≤ C
1

µ(P )
||t ||q

ḟα,qq
= C

µ(P )

∫
Rn

∑
Q⊂P̄ , |Q|≤|P |

(|Q|−α|sQ|χ̃Q(x)
)q
dµ(x)

≤
∑

P ′⊂P̄ , |P ′|=|P |

C

µ
(
P ′) ∫

P ′

∑
|Q|≤|P ′|

(|Q|−α|sQ|χ̃Q(x)
)q
dµ(x) ≤ C‖s‖q

ḟα,q∞
.

To estimate u∗
r,λ we must invoke Lemma 8.2. Namely, if for Q, Q̃ ∈ Q, |Q| = |Q̃| ≤ |P |,

Q ∩ P �= ∅ and Q̃ �⊂ P̄ , then (8.5) holds. Hence,

1

µ(P )

∫
P

∑
|Q|≤|P |

(|Q|−α(u∗
r,λ

)
Q
χ̃Q(x)

)q
dµ(x)
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= 1

µ(P )

j0∑
j=−∞

∑
scale(Q)=j

µ(Q ∩ P)
∑

|Q̃|=|Q|

(|Q|−α−1/2|u
Q̃

|)q(
1 + |Q|−1ρA(xQ − x

Q̃
)
)λ

≤
j0∑

j=−∞

∑
k∈Zn

ρA(k)>K

∑
scale(Q̃)=j

Q̃∩(P+Aj0 k)�=∅

(2H)λ(| detA|j0−j ρA(k)
)λ (∣∣Q̃∣∣−α−1/2∣∣u

Q̃

∣∣)q

≤ (2H)λ
j0∑

j=−∞

∑
k∈Zn

ρA(k)>K

| detA|(β−λ)(j0−j)

ρA(k)λ

[
1

µ
(
P + Aj0k

) ∑
scale(Q̃)=j

Q̃∩(P+Aj0 k) �=∅

µ
(
Q̃

)(∣∣Q̃∣∣−α−1/2∣∣u
Q̃

∣∣)q]

≤ C||u||q
ḟα,q∞

≤ C||s||q
ḟα,q∞

.

Here, we used that µ(P + Aj0k) ≤ C| detA|β(j0−j)µ(Q̃), the expression in the bracket is
dominated by ||u||q

ḟα,q∞
by (3.11), and the fact that the series outside the bracket is finite. Combining

the above estimates yields ||s∗r,λ||ḟα,q∞ ≤ C||s||ḟα,q∞ , which completes the proof of Lemma 3.10.

8.2. Proof of Lemma 3.11

To prove Lemma 3.11 we need the following adaptation of Peetre’s mean value inequality,
see [20, Lemma A.4].

Lemma 8.3. Let K be a compact subset of R
n and r, λ > 0. Suppose that f ∈ S ′ and

supp f̂ ⊂ K . For γ ∈ N, define sequences {aQ}Q∈Q and {bQ}Q∈Q by

aQ = sup
y∈Q

|f (y)| bQ = sup{ inf
y∈P |f (y)| : scale(P ) = scale(Q)− γ, P ∩Q �= ∅} . (8.6)

Then for sufficiently large γ we have

(
a∗
r,λ

)
Q

� (
b∗
r,λ

)
Q

for all Q ∈ Q, scale(Q) = 0 , (8.7)

with constants independent of f and Q.

Proof. Assume thatQ = [0, 1]n + k0, where k0 ∈ Z
n. Initially, we will show that (8.7) holds

for f ∈ S with supp f̂ ⊂ K . Take any P ∈ Q with scale(P ) = 0. By the mean value theorem

aP ≤ bP + diam
(
A−γ ([0, 1]n)) sup

y∈P
|∇f (y)| ≤ bP + c(λ−)−γ dP , (8.8)

where dP = supy∈P |∇f (y)|. In the last step we used that A is expansive, i.e., for γ ≥ 0,

∣∣A−γ x
∣∣ ≤ c(λ−)−γ |x|, x ∈ R

n .

Pick g ∈ S such that supp ĝ is compact and ĝ(ξ) = 1 for ξ ∈ K . Note that f = f ∗ g and for
arbitrary M > 0, |∇g(z)| ≤ C(1 + ρA(z))

−M , where C = C(M) > 0. Hence, if r > 1, then by
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Hölder’s inequality 1/r + 1/r ′ = 1,

dP ≤ sup
x∈P

∫
Rn

|f (y)||∇g(x − y)| dy

≤ C sup
x∈P

( ∫
Rn

|f (y)|r (1 + ρA(x − y))−r(M−1) dy

)1/r( ∫
Rn

(1 + ρA(x − y))−r ′ dy
)1/r ′

≤ C

( ∑
L∈Q, scale(L)=0

(aL)
r (1 + ρA(xP − xL))

−r(M−1)
)1/r

.

In the last step we split integration over cubes L = l+[0, 1]n, l ∈ Z
n, and we used the inequality

ρA(xP − xL) ≤ H 2
(

2 diamρA

([0, 1]n) + inf
x∈P, y∈L ρA(x − y)

)
.

Hence, taking M > 2 + λ yields(
d∗
r,λ

)
Q

≤ C

( ∑
scale(P )=0

∑
scale(L)=0

(aL)
r (1 + ρA(xP − xL))

−r(M−1)(1 + ρA(xQ − xP ))
−λ

)1/r

≤ C

( ∑
scale(L)=0

(aL)
r (1 + ρA(xQ − xL))

−λ ∑
scale(P )=0

(1 + ρA(xP − xL))
−r(M−1)+λ

)1/r

≤ C
(
a∗
r,λ

)
Q
.

Here, we used the estimates∑
k∈Z

(1 + ρA(k))
−1−δ < ∞, δ > 0 ,

and

H(1 + ρA(xP − xL))(1 + ρA(xQ − xP )) ≥ (1 + ρA(xQ − xL)) .

Likewise, if 0 < r < 1, then it suffices to use r-triangle inequality to obtain the same estimate
(d∗
r,λ)Q ≤ C(a∗

r,λ)Q. Thus, by (8.8),(
a∗
r,λ

)
Q

≤ 21/r((b∗
r,λ

)
Q

+ c(λ−)−γ
(
d∗
r,λ

)
Q

) ≤ 21/r((b∗
r,λ

)
Q

+ cC(λ−)−γ
(
a∗
r,λ

)
Q

)
.

Sincef ∈ S, (a∗
r,λ)Q < ∞. Therefore, by taking sufficiently largeγ we have (a∗

r,λ)Q ≤ C(b∗
r,λ)Q,

where the constant C is independent of f andQ. This shows (8.7) for f ∈ S, since the converse
estimate (b∗

r,λ)Q ≤ (a∗
r,λ)Q is trivial.

To remove the assumption that f ∈ S, we apply a standard regularization argument. Let
h ∈ S satisfy supp ĥ ⊂ B(0, 1), ĥ(ξ) ≥ 0, and h(0) = 1. By the Fourier inversion formula,
|h(x)| ≤ 1 for all x ∈ R

n. For 0 < δ < 1, let fδ(x) = f (x)h(δx). Then supp f̂δ ⊂ K +B(0, 1),
fδ ∈ S, |fδ(x)| ≤ |f (x)| for all x, and fδ(x) → f (x) uniformly on compact sets as δ → 0.
Applying (8.7) to fδ and letting δ → 0, we obtain (8.7) for a general f ∈ S ′.
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Recall that in Lemma 3.11 we require that ϕ ∈ S(Rn) is such that supp ϕ̂ is compact and
bounded away from the origin. For any f ∈ S ′/P and γ ∈ N we also recall that the sequence
inf(f ) = {infQ(f )}Q∈Q is given by

inf Q(f ) = |Q|1/2 sup
{

inf
y∈P

∣∣ϕ̃j ∗ f (y)∣∣ : scale(P ) = scale(Q)− γ, P ∩Q �= ∅}
,

where j = −scale(Q) and Q ∈ Q. Under these assumptions we have the following lemma.

Lemma 8.4. Suppose that α ∈ R and 0 < p, q ≤ ∞. Then for any γ ≥ 0 we have

|| inf(f )||ḟα,qp (A,µ) ≤ C||f ||Ḟα,qp (Rn,A,µ)(ϕ̃) ,

where C is independent of f ∈ S ′/P .

Proof. For fixed γ ≥ 0 define the sequence s = {sP } by

sP = |P |1/2 inf
y∈P

∣∣ϕ̃i−γ ∗ f (y)∣∣ for P ∈ Q, scale(P ) = −i .

Clearly, we have

|Q|−1/2 inf Q(f ) = sup
{|P |−1/2|sP | : P ∩Q �= ∅, scale(P ) = scale(Q)− γ

}
.

Fix j ∈ Z and Q ∈ Q with scale(Q) = −j . Suppose that P1, P2 ∈ Q are such that

scale(P1) = scale(P2) = −j − γ, y1 ∈ P1 ∩Q �= ∅, y2 ∈ P2 ∩Q �= ∅ . (8.9)

Then by (2.2)

ρA(xP1 − xP2) ≤ H 2(ρA(xP1 − y1)+ ρA(y1 − y2)+ ρA(y2 − xP2)) ≤ C|Q| .
Then for any 0 < r < ∞ and λ > 1,

sP1 ≤ (1 + ρA(xP1 − xP2)/|P1|)λ/r
(
s∗r,λ

)
P2

≤ C| detA|γ λ/r(s∗r,λ)P2
.

Combining this with (8.9) yields∑
scale(Q)=−j

inf Q(f )χ̃Q ≤ C| detA|γ λ/r
∑

P∈Q, scale(P )=−j−γ

(
s∗r,λ

)
P
χ̃P .

Choosing r > 0 and λ > β max(1, r/q, r/p) as in Lemma 3.10 we have

|| inf(f )||ḟα,qp ≤ C| detA|γ (λ/r−α)∥∥s∗r,λ∥∥ḟα,qp
≤ C| detA|γ (λ/r−α)||s||ḟα,qp

≤ C| detA|γ (λ/r−α)
∥∥∥∥( ∑

i∈Z

(| detA|iα∣∣ϕ̃i−γ ∗ f ∣∣)q)1/q∥∥∥∥
Lp(µ)

= C| detA|γ λ/r ||f ||Ḟα,qp (Rn,A,µ)(ϕ̃) .

Note that the last estimate works also in the case p = ∞ with Ḟα,qp and ḟα,qp norms replaced by
their localized analogues Ḟα,q∞ and ḟα,q∞ .

Lemma 3.11 is now a simple consequence of Lemmas 8.3 and 8.4.
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Proof of Lemma 3.11. The estimate

||f ||Ḟα,qp (Rn,A,µ)(ϕ̃) ≤ || sup(f )||ḟα,qp (A,µ)

is easily verified from the definitions.

Fix any Q0 ∈ Q with scale(Q0) = −j , j ∈ Z. Define g(x) = (ϕ̃j ∗ f )(A−j x). Note that
supp ĝ ⊂ K := supp ϕ̂. Define sequences {aQ} and {bQ} by (8.6) with f replaced by g. A direct
calculation shows that

aAjQ = |Q|−1/2 supQ(f ), bAjQ = |Q|−1/2 inf Q(f ), Q ∈ Q .

Hence, by Lemma 8.3 applied to the cube AjQ0,(
sup(f )∗r,λ

)
Q0

= |Q0|1/2
(
a∗
r,λ

)
AjQ0

≤ c|Q0|1/2
(
b∗
r,λ

)
AjQ0

= c
(

inf(f )∗r,λ
)
Q0
.

Since Q0 ∈ Q is arbitrary, by choosing r > 0 and λ > 1 as in Lemma 3.10 we have

|| sup(f )||ḟα,qp (A,µ) ≤ c|| inf(f )||ḟα,qp (A,µ) .

Combining the above with Lemma 8.4 completes the proof of Lemma 3.11.
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