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Abstract

We investigate Riesz wavelets in the context of generalized multiresolution analysis (GMRA). In particular, we
show that Zalik’s class of Riesz wavelets obtained by an MRA is the same as the class of biorthogonal wavelets
associated with an MRA.
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1. Introduction

The goal of this note is, among other things, to clarify what it means for a Riesz wavelet to be generated
by an MRA. There are at least two ways in which we can say that a Riesz wavelet is associated with an
MRA.

Probably the most natural definition is the following which has appeared in the nhumber of papers
[1,13,15,18]. We say that a Riesz wavelet L?(R) (with respect to dilation factor 2) @ssociated with
an MRAIf (V;) ez given by

Vi=Y Wi whereW;=spar{2/%y(2'x —k): k € Z}
i<j
is an MRA. Here,
ZWi = {f € LZ(R) f:ZU)j, w; € Wi},
i<j i<j

where the above series converges unconditionally.
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On the other hand, Zalik proposed the following definition. We say that a Riesz wavaetbtained
by an MRAIf there is an MRA(V;) j<z such that)y € V.

There are several results in the subject. Kim et al. [13] in one dimension and Larson et al. [15] in higher
dimensions have shown that a Riesz wavelet is a biorthogonal wavelet if and only if it is associated with a
GMRA. Kim et al. [13] have also given a characterization of Riesz wavelets which are associated with an
MRA in terms of certain dimension function. They have also shown that Riesz wavelets associated with
an MRA always have dual (biorthogonal) Riesz wavelets (also associated with an MRA). This result is
a refinement of Wang’s characterization of biorthogonal wavelets associated with an MRA [18]. On the
other hand, Zalik [19] has initiated investigation of the class of Riesz wavelets obtained by an MRA by
giving a characterization of this class.

The natural question concerns the relation between these different notions of Riesz wavelets. It is
clear that any wavelet which is associated with an MRA is also obtained by the same MRA. However,
the converse turns out to be quite a delicate question which has not been addressed in the literature, yet.
In this paper we will show that the converse is also true under a necessary restriction on the number of
wavelets relative to the order of the MRA. In particular, the two notions of Riesz wavelets associated with
an MRA and obtained by an MRA turn out to be equivalent. The proof of this result is a consequence of
a theorem of de Boor, DeVore, and Ron on the intersection of a nonstationary MRA.

Theorem 1.1 [6, Theorem 4.9]Suppos€¢;) j<z is a sequence of functions iP(R"), whereZ C Z
satisfiesnf;c, j = —oco. Let(U;) jez be the corresponding nonstationaggot necessarily nestedMRA
given by

U;=3par{Ty¢;: k€ Z"}.

ThenY =, U; is alinear subspace df?(R") of dimension< 1.

The paper is organized as follows. In Section 2 we show some basic properties of the dimension
function of shift invariant spaces. In the next section we generalize Theorem 1.1 and use it to show our
main result, Theorem 3.7. Finally, in the last section we present examples illustrating the optimality of
the main result.

2. Shift invariant spaces

In this section we recall some facts about shift invariant (SI) spaces that will be used in the sequel.
Define thedilation operator D¢ f (x) = |detC|Y2 f(Cx), whereC is ann x n nonsingular matrix, and
the translation operatorT,, f(x) = f(x — y), y € R". We use the following definition of the Fourier
transform

fe)= [ reeinoa,

Rn

Definition 2.1. Suppose thal is a lattice, i.e./]” = PZ", whereP is ann x n nonsingular matrix. We
say that a closed subspae c L?(R") is shift invariant (SI) with respect to the lattic&, if f e W
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impliesT, f € W for all y € I". Given a (countable) famil$ c L2(R") and the lattice” we define the
Sl systemE” (@) and Sl spacs’ (@) by

EN@)=(Typ: pc@, yeT}, ST (@) =sparE’ (). (2.1)
WhenI" = 7" we often drop the superscript, and we simply say tha¥ is SI.

The dimension functiorof a SI spaceéW is a I"*-periodic function dinj, : R” — N U {0, oo}, which
measures the size &f over the fibers oR”"/I'*. Here,I'* is the dual lattice, i.e.,

F*:{UER"Z (n,y)erOl‘yeF}. (2.2)

Thatis, if ' = PZ" thenI™* = (P*)~1Z". The precise definition of the dimension function of a spéce

in terms of the range function is given by Proposition 2.6. Alternatively, the dimension function of a
Sl spaceW can be introduced by Stone’s theorem as the multiplicity function of the projection valued
measure coming from the representation of the latficacting onW via translations, see [1-3,11].
However, for our purposes, the following proposition can serve as a definition of the dimension function,
where the notion of range function occurs only implicitly.

Proposition 2.2. Suppose® C L?(R") is a (countable family andI" = PZ" is a lattice. Then the
dimension function o = S’ (®) is given by

dimy, (§) = dimspar{ (¢(¢ + ), . € (r*): g € @}. (2.3)
Moreover, if the systemi! (@) is a tight frame with constart for the spaceW = S’ (@) then
dimf, ¢) = |detP|* Y~ 3" [ + )" (2.4)
pe® nel™

Proof. The proof of Proposition 2.2 in the cafe= Z" can be found, for example, in [5, Proposition 3.1],

[7, Proposition 1.5, Theorem 2.5(ii)], and [16]. The general case follows by a change of variables, see
also Lemma 2.3. Indeed, suppose that(®) is a tight frame with constant 1 fo¥ = S’ (®), I = PZ".
ThenDpET (@) = EZ" (Dp®) is a tight frame forD » W which is Sl with respect t@". By (2.4) applied

for Z" and Lemma 2.3,

dimfy ((P*) ') =dim%, &) =Y > | Dro(& +m|* =1detP| 2> > |o((P*) "6 + )|

ped nel ped nel

=1detP| 1> > [¢((P*) s +n) |

pe® nel*
which shows (2.4) in the general case

Lemma 2.3. Suppose¥ C L2(R") is Sl with respect to the latticE. Let C be anyn x n nonsingular
matrix. ThenDW is Sl with respect to the lattic€ 1" and the following identity holds

dim$_\ &) = dimfy ((C*)'g) fora.e.s. (2.5)

Proof. Suppose® C L?(R") generatesW, i.e., S'(®) = W. Then D-® generatesD W, i.e.,
SC'T(De®) = DeW. By (2.3),
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dim‘[;;luf(S) = dimspar{ (D.g (& + ”))ne(c—lm* e?((c7'r)’): p e @}
= dimspar{ (¢ (( ) E ) e €C(CTT) g € @)
= dim Spar| (@(( ) e+ n)),er € C2(I): ¢ € P}
0

= d'mw (( )
since(C™iN*=C*r* o

Lemma 2.4. Supposé¥ C L?(R") is Sl with respect to the latticE. Let "’ C I" be any sublattice of".
ThenW is Sl with respect to the latticE’, and, moreover,

dimy &)= Y dimj¢+d) foraes, (2.6)
de(I'y*/T'*

where the sum runs over representatives of distinct coséis’'uf/I*.

Proof. Let C be anyn x n matrix such thal™ = CI", I = PZ". Itis well known that the orders of the
quotient groupd”/I"" and (I'"')*/I'* are the same and equal [tetC|. Let @ ¢ L2(R") be any family
whose translates b generate a tight framg’ (@) with constant 1 foWw = S (). Then

El (@)= U EF’(qu>)=EF’( U qub),
der/r’ der/r’
and consequently by (2.4),
dimyy €)= [detcP)| Y Y |eE+n)

veUqer/r Ta® ne)*

=ldett| > > Mlp+n+a’= > dmhE+d). O

@ de(I"y* /I nel’™ de(I")*/T*

Lemma 2.5. Supposd/, V C L%(R") are Sl with respect to the lattic€, and dim;, (&), dim{, (¢) are
finite for a.e.£. ThenW = U + V is also Sl with respect td’, and

dim{y (&) = dim{;(¢) + dim}; (&) — dim{,,,,(¢) for a.e.£. (2.7)

Proof. The proof follows immediately from the range function interpretation of the dimension function,
see Proposition 2.6. 0
Let 7 : L2(R") — L3(T", £2(Z")), whereT" = [—1/2, 1/2)", be the isometric isomorphism given by
TF:T" = (2", TrE)=(fE+0), - (2.8)
We recall that aange functionis a mapping
J:T" — {closed subspaces of(Z")}.

We also need the following fundamental description of Sl spaces, see [5, Result 1.5], or [7, Proposi-
tion 1.5]. For simplicity, we state Proposition 2.6 for S| spaces with respect to the standardZattice
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Proposition 2.6. A closed subspacg c L?(R") is Sl (with respect t&Z") if and only if
V={feL*R"): TfE) eJE) foraeseT"},

whereJ is a measurable range function. The correspondence betWesnd J is one-to-one under the
convention that the range functions are identified if they are equal a.e.
Furthermore, the dimension function Bfis given by

dimy (§) =dim%' (¢) =dimJ (&) fora.e.& e T".

3. GMRAs

In this section we recall already known results about Riesz wavelets and GMRAs, extend a result of
de Boor, DeVore, and Ron mentioned in Section 1, and show our main result. We start by recalling the
notion of a GMRA, which has been studied by a number of authors [1-4,9,15].

Definition 3.1. Let A be am x n integer expansive dilation matrix which is fixed throughout this section.
A generalized multiresolution analysi&EMRA) is a sequence of closed subspacés ;.7 satisfying:

V; C Vi, DaVi =V,
Uvi=L3®"). (V=10
JEL jez

T,Vo=Vy forallkeZ".

The spacé/, is often called aore space.

Given a Riesz wavelet = {y1, ..., ¥~} we define the sequenc®; (¥)) jez by
V,=V,(@)=8paf|{DyuTiy: i < j, keZ", ¢ e¥}. (3.1)

It is easy to see that the sequerié®) ;7 satisfies all the properties of GMRA except possibly the last
one, i.e., that the core spadg is Sl. In the case whe(V;(¥)) ez forms a GMRA, we say that is
associatedvith a GMRA, or¥ generatesa GMRA.

It turns out that the core spadg is Sl if and only if ¥ is a biorthogonal wavelet, i.e., there exists a
Riesz waveletb = {¢?, ..., ¢*} such that

(DA/Tkwl,DA,-/Tk/(]ﬁl/):(Sj’j/(sk’k/csl’[/ for all j,j/EZ, k. keZ", l,l/:l,...,L.

This was shown by Kim et al. [13] in one dimension and by Larson et al. [15] in higher dimensions.
Theorem 3.2. Lety = {y}, ..., ¥'} be a Riesz wavelet. The following are equivalent

(i) the sequencel;(¥));ez forms a GMRA,
(i) v is a biorthogonal wavelet,
(iii) there exists an orthonormal wavelet= {¢?, ..., ¢} which is associated with the same GMRA as
v, i.e., Vo(®) = Vo(¥).



186 M. Bownik / Appl. Comput. Harmon. Anal. 14 (2003) 181-194

Conversely, Baggett et al. [1] have characterized those GMRAS that can be generated by orthonormal
wavelets, and thus by Riesz wavelets by Theorem 3.2.

Theorem 3.3. Let (V;) jcz be a GMRA. The following are equivalent

(i) there exists an orthonormal wavelét= {y1, ..., ¥L} which is associated withV;) ;cz,
(i) there exists a Riesz wavelst= {y/*, ..., ¥*} which is associated wittV;) jcz,
(iif) the dimension functiodimy, (&) of the core spac#; is finite for a.e£ and it satisfies the consistency
eqguation

> dimy, (A7) 6 +d)) = dimy,(6) + L, foraes, (3.2)
deD

whereD is the set ofdetA| representatives of different cosetsZf/ A*7Z" .
Following Zalik [19] we can introduce the notion of wavelets obtained by a GMRA.

Definition 3.4. We say that a GMRAYV)) ;<7 is admissibleof order L, i.e., the core spacg, satisfies
the consistency equation (3.2). We say that a Riesz wavelet{v1, ..., ¥’} is obtainedby a GMRA
if there is an admissible GMRAV) ;7 of order L such that

vl oyt e (3.3

Clearly, every Riesz wavelet which is associated with a GMRA is also obtained by the same GMRA.
The converse to this, see Theorem 3.7, is much less obvious and requires hard work.

We start by generalizing Theorem 1.1 on the intersection of a nonstationary MRA to the case of general
dilations and higher multiplicities.

Theorem 3.5. Suppos&® ;) ;< is a sequence of finite subsetd8tR") of cardinality < L, whereZ C Z
satisfiednf ;. j = —o0. Let(U;) jcz be the corresponding nonstationafyot necessarily nest¢ GMRA
given by

Uj=S5""7 (@) =spa{T,isd: ¢ € ®;, ke Z"}. (3.4)

ThenY =(,., U, is alinear subspace at?(R") of dimension< L.

JjezZ

To show Theorem 3.5 we need a lemma describing linear independence of a finite set of measurable
functions in terms of their values on some dense subgit of

Lemma 3.6. SupposeD is a countable and dense subsetfdf. Supposefi, ..., f,:R*" — C are any
measurable functions. The following are equivalent

(i) f1,..., f arelinearly dependent, i.e., there exist, ..., ¢,,) € C"\{0} such that

m

chfl(x) =0 fora.e.x eR",
=1
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(i) for almost every € R" there exist(c1(x), ..., ¢, (x)) € C"\{0} such that

m

ch(x)fl(x +d)=0 foralldeD.
=1

Proof. The implication (i)= (ii) is trivial.
Suppose (ii) holds. Defing : R" — C™ by f(x) = (f1(x), ..., fm(x)). Following the terminology of
Helson [5,7,10], we define the “range functiofi® R" — {subspaces df™} by

J(x) =spar{ f(x +d): d € D}.

Let P(x) denote the orthogonal projection onf@x). It is clear thatJ(x) is measurable, i.e., for any
v, w € C" the scalar functiom, ,,(x) = (P (x)v, w) is measurable. Clearly,

pv,w(x) = pv,w(x +d) foralld € D. (35)

Letx, y € R" be two Lebesgue points of the functipn ,,, wherev, w € C™. Recall that ifg € L .(R")
then a pointc € R” is said to be d ebesgue poindf g if

lim ! / dz =
|B|—0, xeB | B| 8(2)dz=g(x)
B

with the limit taken over ball$3. The Lebesgue Differentiation theorem asserts that almost every point
x € R" is a Lebesgue point of € Lj (R").

Let (B;);cy be a sequence of balls such that B; and|B;| — 0 asi — oo. By the density ofD
there exists a sequenéé);cy C D such thaty — d; € B; for all i € N. By the Lebesgue Differentiation

theorem and (3.5),

. 1 . 1
pv,w(-x) = lango /pv,w(z) dz = ,Ilm /pv,w(z + dz) dz = pv,w(y)-
B;

| B;| i—oo | Bj]

B;
Hence,p, ,(x) = const for a.ex.

Sincev, w € C™ are arbitraryJ (x) = const for a.ex. By (ii), J(x) # C™ for a.e.x, and hence there
exists a hyperplané c C™ such thatJ(x) Cc H for a.e.x. Therefore,f (x) € H for a.e.x, and (i)
holds. O

Proof of Theorem 3.5. Let f1, ..., f,, be arbitrary functions i, wherem = L + 1. It suffices to show
that fi, ..., f,, axe linearly dependent. Lgte Z and let®; = {¢%, ..., ¢*}. As a consequence of [5,
Theorem 1.7] and a change of variabjes U; if and only if

L
2@ =) _t'®)¢'€) forallgeRr,

=1
for some measurable arid*)/ Z"-periodic functionse?®, ..., o, i.e.,
&) =7 (& + (A*)k) forallkez".
Therefore,

L
AE =D "1®¢'E) fork=1....m, (3.6)

=1
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for some measurable and*)’Z"-periodic function&,ﬁ(&). Let(c1(&),...,c,(&)) be anonzero solution
to the undetermined system of linear equations

a@TE) + -+ en @)1, (5) =0,

3.7
1@ )+ +enE)Ta () =0.

By (3.6) and (3.7) we have

m

D a® fi6)=0

k=1
and by the periodicity ot/ (&),

m

> @) fule + (4% k) =0 forallk e Z". (3.8)

k=1

Let D = Ujez(A*)J'Z”. Since infcz j = —oo, D is dense inR". SinceA (and thusA*) preserves the
lattice Z" we can find universathy (&), ..., ¢, (&) yielding (3.8) for allj € Z. Therefore,

> @) fi6 +d)=0 foralldeD.

k=1

By Lemma 3.6,f4, ..., f, are linearly dependent which completes the proof of Theorem 35.
We are now ready to state our main result.

Theorem 3.7. Supposel = {y1,..., ¥} is a Riesz wavelet, an@V;) <z is an admissible GMRA of
order L, i.e.,dimy, (&) < oo for a.e.£ and(3.2) holds. The following are equivalent

(i) ¥ is obtained by the GMRAV)) jez, i.€.,(3.3) holds,

(i)
W;i+V;=V;;1 and W;NV;={0} forall jeZ, (3.9)
where
W;:=8paf{ Dy Ty k€ Z", Y e ¥}, (3.10)

(iif) ¥ is associated with the GMRA/)) jcz, i.€.,
Vi)=Y W;=V; forall jeZ. (3.11)

i<j

The implications (iii))= (ii) = (i) are trivial. It remains to show the difficult implication @ (iii).
We will present two different proofs of this implication. The first proof works only for GMRAs of finite
height, i.e., those for which the dimension function of the core spgde essentially bounded, and uses
Theorem 3.5. This is the most interesting situation, since it covers Riesz wavelets obtained by an MRA
(also MRAs with higher than one multiplicities). However, the second proof works for general GMRAs
of possibly infinite height.
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Proof of Theorem 3.7 for finite height GMRAS. Suppose? is obtained by the GMRAV) 7. For
j € Z let W; be given by (3.10). Sinc®#; C V;,4 for all j € Z we have that

> W (3.12)

j<0

Here,Z_j<0 W; consists of aII_f_unctiong‘ € L%(R") which can be represented #is= )"
the series converges unconditionally angde W;.

To complete the proof of Theorem 3.7 it remains to show that we have the equality in (3.12). Indeed,
suppose that

Vo)=Y W; =V,
j<0

j<ow,, Where

By applying the dilation operator
Vi(W) =D, (Vo(W)) =D,i (Vo) =V, forall jeZ.

Therefore, the sequenc®; (¥)) <z is exactly the same as the GMRK;) jcz, and hence is associated
with the GMRA(V;) jez.

To show the equality in (3.12), note th@t; is SI with respect to the lattica —/Z" and its dimension
function

dime;’Z" ()=L forae.sg, (3.13)

since D, (EZ' (W)) = EA”% (D,,¥) forms a Riesz basis foW,. Define a nonstationary GMRA
(Uj)j<o by

Ui=Vo© ( > W,-). (3.14)
Jj<i<O0
Since) i<i<o Wi is Sl with respect tod =/ 7", hence its orthogonal complement is also Sl with respect

to the same lattice, and therefdie = Vo N (3, o Wi)* is also Sl with respect td /7",
We claim that for allj < 0 the dimension function d¥; coincides with the dimension function f,
i.e.,

dim?};’Z" (&) = dimé}?’z” () fora.ek. (3.15)

Indeed, (3.15) holds fof = 0. By induction hypothesis suppose that (3.15) holds for sprieD. Then
we need to show (3.15) fgr— 1. Since

Wa+Wot - +WHOU =Vo=W+Wot-—+W,+W;_)@U; 3
=(W_i+Wot -+ W)+ (W10 U;_1),
and
W+ Wodt -+ WHNU;={0}=W_1+Wot- -+ W)NW;_10U;_1),
we conclude by Lemma 2.5 that the dimension function§ pandW;_, ® U;_; are the same, i.e.,

dimg "7 &) =dimy, " E () =dimi, 7€) + dimg) "7 (&) = L+ dimj 7€), (3.16)
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Observe that the consistency equation (3.2) can be written by Lemmas 2.3 and 2.4,
. n . n . n «\—1
diny, (&) = dimi, v, (§) = dimy” ((4*) 7€)

= > dimZ((A") 6 +d) =dim¥ ) + L.
de(A*)~1zn jzn

Hence, forj € Z by the above and Lemma 2.3,

dimi " () ) =i 7 (4) ) =aimi (47) e

=dim ((A*) &) + L =dim} ¥ &) + L. (3.17)
On the other hand, by Lemma 2.4 and the induction hypothesis,
dim3 " () = 3 dimg} %" (& + d)
dE(A*)j—lZH/(A*)jZVL
— 3 dim %6 +d) = dim}, "7 ). (3.18)

dE(A*)j—lZH/(A*)jZVL
Combining (3.16)—(3.18), and Lemma 2.3,

dimg, "7 &) =dim "7 &) — L =dim} "7 ) - L
=dim} 2" (4%€) =dim} |7 (A*€) =dim] "7 @),
we obtain (3.15) forj — 1. Therefore, by induction, (3.15) holds for gl 0.
Suppose that our GMRAV;) ;7 has a finite heighL. Therefore,
diméj_’z" (&) = dim{;, ((A*)_jé) <L foraek.

By (3.15) this implies for allj < 0, dimé;]z" (¢) < L. This means that for each> 0 we can find

a generating se®; of cardinality at mostL such thatU; = SA_jZ"(éj), see [5, Theorem 3.5]. By
Theorem 3.5, this implies that = ﬂj@ U; is a linear subspace @f(R") of dimension< L. By (3.14),

Y=Vo© (Z W), (3.19)
j<0
which represents a “defect” from the equality in (3.12). It remains to show that the defect$pace

trivial, i.e., Y = {0}. }
This can be most easily seen by considering an auxiliary defect $pdeéned by

Y =Von (Z W./>- (3.20)
Jj=0

In other words,Y is the unique complementary spaceﬁfj<0 W; inside Vp, which is, in addition,
contained inZDOW, ie.,

(ZWj>+I7:V0, (ZW])ﬂ)?:{O}, and YC) W

Jj<0 Jj<0 jz0
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The defect spac& must have the same dimensionasMoreover, since/, and > >0 W; are Sl with

respect taz", Y is Sl, too. Since the trivial space is the only finitely-dimensional Sl space, the defect
spaceY must be trivial, and consequently,

> W=

j<0
This completes the proof of Theorem 3.7 in the finite height case.

Proof of Theorem 3.7 for infinite height GMRASs. The proof follows along the lines of the argument
in the finite height case. As before, we could define a nonstationary GMRA <o, the defect space
Y by (3.19), and the auxiliary S| defect spakeby (3.20). The defect spacésandY have the same
(possibly infinite) dimension. Even though, a pridfi,(and thusY) may not be finite-dimensional, we
will see thatY has to be in a certain sense “arbitrarily small”, and thus trivial.

Note first that if(V;) jcz is an admissible GMRA of ordet,

. le _ L
/d|mV0 (€)= oy (3.21)

whereT” is a fundamental domain, séry [—1/2,1/2)". Indeed, (3.21) follows from the fact that for
any orthonormal wavele¥ = {1, ..., L} associated WithiV;) jez, we have

dim? (&) = Dy (§) _ZZZW ) & +0)|%

vew j=1kez"

see [7,8,12,15,17].
Since for anyj <0,

Wi+ Wot - +WH+YCVy and (Wq+W_o+---+W;)NY ={0},
therefore,
dim?” 'z (5)+Zd|mA "7 (&) < dimj "7 (&).
i=j
By Lemma 2.4 and (3.13), difn'%" (§) = |detA| /L, and thus

|detA|=~/ — 1
/L, —
|detA| —
Therefore, integrating the above over*)’/ (T") we have

” |detA|f—
/dum ) < /dum @+ LIE
Tﬂ

since for any Sl spac® (with respect tdZ") and j < 0 we have

/ dima %" (¢) dé = / Z dim%”(s+d>dg=/dim%”<s)d&‘-

(A*)J (T") (A*)J (T") dE(A*)jZn/Z" T

dimd %" (&) < dimg, "' (&) —

(3.22)



192 M. Bownik / Appl. Comput. Harmon. Anal. 14 (2003) 181-194

Therefore, by lettingg — —oco in (3.22) we see that by (3.21),

[ dim ) =0,

Tn

and consequently the defect spatés trivial. This completes the proof of Theorem 3.7 in the general
case. O

As an immediate corollary of Theorems 3.2 and 3.7 we have.

Corollary 3.8. Suppose a Riesz wavelet= {y1, ..., !}, L = |detA| — 1, is obtained by an MRA, i.e.,
there is an MRAV,) jez such thatyt, ..., ¥L € Vi. Then¥ is a biorthogonal wavelet associated with
the same MRAV) jcz.

Remarks. (i) The assumption in Theorem 3.7 th@dt;) ;<7 is an admissible GMRA of ordek can be
relaxed a bit, but not too much. Indeed, it follows from the second proof of Theorem 3.7 that it suffices
to assume (instead of admissibility) that a GMRW) ;. satisfies (3.21) or even less,

L

/dlm (6)dt < et 1 (3.23)

Tn

In that case, any of the conditions (i)—(iii) would imply th@af;) ;7 is an admissible GMRA of ordetk.
Therefore, there are no Riesz wavelétghat are obtained by a GMRA of a strictly lower order than
the cardinality of¥. However, there are examples of Riesz waveletthat are obtained by a GMRA
of a strictly higher order than the cardinality @f, but which are not associated with a GMRA, see
Example 4.4. Therefore, the assumption of admissibility in Theorem 3.7 is necessary.

(ii) Corollary 3.8 can be combined with Zalik’'s characterization of wavelets obtained by an MRA[19,
Proposition 2.2] to yield several interesting results about such wavelets, see [14].

4. Examples

One could think that the implication (i (iii) in Theorem 3.7 is immediate and follows from basic
functional analysis. A slightly counterintuitive Example 4.1 shows that this is false.

Example 4.1. Let (¢;);cz be the standard orthonormal basis¢étZ). Define the space¢V;);.; and
(WG)iEZ by

VV[ =Spar{ei}’ ‘/l =Sp_ar{"~’ei—276i—l, chej}a
jzi
where O< ¢ < 1. Clearly,(V;);z satisfies GMRA like properties, i.e.,

ViCVit, DV =Via, [Vi=1{0, JVi=¢®),
i€Z i€Z
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whereD is a “dilation operator” (known otherwise as the shift operator) acting on the standard basis by
D(e;) = e;11. Moreover,

Vi+ W, =V, VinW; = {0}, 4.1)

and the corresponding projections &f,; onto V; and W; are uniformly bounded for ali € Z.
Nevertheless,

Vo= (ED W,-) @Y, whereY = spar{Zc-’ej}, (4.2)
i<0 j=0

and the defect spadéis nontrivial.
Example 4.1 can be easily transplanted to the setting of Sl spaces using Proposition 2.6.

Example 4.2. Using the notation from Example 4.1, define the Sl spate®;, andY by
Vi={feL’R): Tf(E) eV foraese[-1/2,1/2)},
W, =1|feL?R): Tf(E)eW,foraete(-1/2,1/2)},
Y={feL*R): TfE) eY foraese[-1/21/2)},
whereT f is given by (2.8). Clearly(V;);;, satisfies GMRA like properties, i.e.,

Vi CVisa, DV CVia, [(Vi={0) [JVi=1*®),
ieZ ieZ
whereD is a “dilation operator” mapping (£) to £ (& — 1) in the Fourier domain. Hence is just, the

modulation operator given b® f (x) = ez’f"f(x). It is then obvious tha¥; and W; satisfy the analogues
of (4.1) and (4.2), where the defect spaté nontrivial.

Example 4.2 would be more satisfying if the “dilation operatdr'were the usual dyadic dilation
operator. However, the author is unaware whether such construction is possible.

The following simple example shows that the assumption of the admissibility of a GMRA in
Theorem 3.7 is necessary, although it can be relaxed a bit by (3.23). In particular, Example 4.2 shows
that the restriction on the number of wavelets being equal to the order of a GMRA is unavoidable.

Example 4.3. Let (V;);cz be an MRA associated to the Haar wavelet= 10 1/2) — 11,21, I.€.,
Vi={f € L*R): fluz-i xs12- is constant for alk € Z}.

Define the “misnumbered” GMRAV/);cz by V/ = V1. Clearly, (V/);cz is an admissible GMRA of
order 2 in the sense of Definition 3.4. In fa¢y/);cz is an MRA of order 2, withljg 1/ and 11,5 1
being two scaling functions dfy. Thenys is obtained by(V/);cz, in the sense that € V], but it cannot
be associated withV/);cz, since by Theorem 3.3, would have to be 2. Naturally, in this example, the
Haar wavelet) can be replaced by any orthonormal dyadic waveldti(R).

A more elaborated Example 4.4 gives an example of a Riesz wayeldtich cannot be obtained by
any admissible GMRA of order 1, but yet, it is obtained by some MRA of higher order.
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Example 4.4. Let ¥ be a discontinuous perturbation of the Haar function,
¥ =Lj01/2-6) — L1j24..1, Where O<e <1/2.

Zalik [19, Example 3.2] has shown that for sufficiently smal 0 (saye = 1/32), ¢ is a Riesz wavelet
which is not obtained by an MRA. L&tV;);c be the classical Haar MRA as in Example 4.3. Define
the GMRA(V/);ez, by V/ = V14 for i € Z. Clearly, (V/);cz is an admissible GMRA of order 16; more
precisely, an MRA of order 16. Moreover, the perturbed Haar wavglelith ¢ = 1/32 is obtained by
the MRA (V/),ez (of order 16), that isy € V7.

However, ¥ cannot be obtained by any admissible GMRA of order 1. On the contrary, suppose
otherwise. By Theorem 3.7; must be associated with an admissible GMRA); .7, order 1. Moreover,

dimvé/(f;‘) > 1 for a.e.&, since 1&(5) # 0 for a.e.£. On the other handfoldimvé/(f;‘)ds =1, hence
dimvé/ (¢§) =1 for a.e.£, which means thatV,");cz is an MRA. This is a contradiction with a fact due to
Zalik thatv is not obtained by an MRA.
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