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Abstract

We investigate Riesz wavelets in the context of generalized multiresolution analysis (GMRA). In particu
show that Zalik’s class of Riesz wavelets obtained by an MRA is the same as the class of biorthogonal w
associated with an MRA.
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1. Introduction

The goal of this note is, among other things, to clarify what it means for a Riesz wavelet to be ge
by an MRA. There are at least two ways in which we can say that a Riesz wavelet is associated
MRA.

Probably the most natural definition is the following which has appeared in the number of
[1,13,15,18]. We say that a Riesz waveletψ ∈L2(R) (with respect to dilation factor 2) isassociated with
an MRAif (Vj)j∈Z given by

Vj =
∑
i<j

Wi, whereWi = span
{
2i/2ψ

(
2ix − k): k ∈ Z

}
is an MRA. Here,∑

i<j

Wi :=
{
f ∈ L2(R): f =

∑
i<j

wj , wi ∈Wi

}
,

where the above series converges unconditionally.
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On the other hand, Zalik proposed the following definition. We say that a Riesz waveletψ is obtained
by an MRAif there is an MRA(Vj )j∈Z such thatψ ∈ V1.

There are several results in the subject. Kim et al. [13] in one dimension and Larson et al. [15] in
dimensions have shown that a Riesz wavelet is a biorthogonal wavelet if and only if it is associated
GMRA. Kim et al. [13] have also given a characterization of Riesz wavelets which are associated
MRA in terms of certain dimension function. They have also shown that Riesz wavelets associat
an MRA always have dual (biorthogonal) Riesz wavelets (also associated with an MRA). This re
a refinement of Wang’s characterization of biorthogonal wavelets associated with an MRA [18].
other hand, Zalik [19] has initiated investigation of the class of Riesz wavelets obtained by an M
giving a characterization of this class.

The natural question concerns the relation between these different notions of Riesz wavele
clear that any wavelet which is associated with an MRA is also obtained by the same MRA. Ho
the converse turns out to be quite a delicate question which has not been addressed in the litera
In this paper we will show that the converse is also true under a necessary restriction on the nu
wavelets relative to the order of the MRA. In particular, the two notions of Riesz wavelets associate
an MRA and obtained by an MRA turn out to be equivalent. The proof of this result is a conseque
a theorem of de Boor, DeVore, and Ron on the intersection of a nonstationary MRA.

Theorem 1.1 [6, Theorem 4.9].Suppose(φj )j∈Z is a sequence of functions inL2(Rn), whereZ ⊂ Z

satisfiesinfj∈Z j = −∞. Let (Uj)j∈Z be the corresponding nonstationary(not necessarily nested) MRA
given by

Uj = span
{
T2j kφj : k ∈ Z

n
}
.

ThenY = ⋂
j∈Z Uj is a linear subspace ofL2(Rn) of dimension� 1.

The paper is organized as follows. In Section 2 we show some basic properties of the dim
function of shift invariant spaces. In the next section we generalize Theorem 1.1 and use it to sh
main result, Theorem 3.7. Finally, in the last section we present examples illustrating the optim
the main result.

2. Shift invariant spaces

In this section we recall some facts about shift invariant (SI) spaces that will be used in the
Define thedilation operatorDCf (x) = |detC|1/2f (Cx), whereC is ann× n nonsingular matrix, and
the translation operatorTyf (x) = f (x − y), y ∈ R

n. We use the following definition of the Fourie
transform

f̂ (ξ )=
∫
Rn

f (x)e−2πi〈x,ξ 〉 dx.

Definition 2.1. Suppose thatΓ is a lattice, i.e.,Γ = PZ
n, whereP is ann× n nonsingular matrix. We

say that a closed subspaceW ⊂ L2(Rn) is shift invariant (SI) with respect to the latticeΓ , if f ∈ W
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impliesTγ f ∈W for all γ ∈ Γ . Given a (countable) familyΦ ⊂ L2(Rn) and the latticeΓ we define the
SI systemEΓ (Φ) and SI spaceSΓ (Φ) by

EΓ (Φ)= {Tγ ϕ: ϕ ∈Φ, γ ∈ Γ }, SΓ (Φ)= spanEΓ (Φ). (2.1)

WhenΓ = Z
n we often drop the superscriptΓ , and we simply say thatW is SI.

The dimension functionof a SI spaceW is aΓ ∗-periodic function dimΓW :Rn → N ∪ {0,∞}, which
measures the size ofW over the fibers ofRn/Γ ∗. Here,Γ ∗ is the dual lattice, i.e.,

Γ ∗ = {
η ∈ R

n: 〈η, γ 〉 ∈ Z for γ ∈ Γ }
. (2.2)

That is, ifΓ = PZ
n thenΓ ∗ = (P ∗)−1

Z
n. The precise definition of the dimension function of a spaceW

in terms of the range function is given by Proposition 2.6. Alternatively, the dimension function
SI spaceW can be introduced by Stone’s theorem as the multiplicity function of the projection v
measure coming from the representation of the latticeΓ acting onW via translations, see [1–3,11
However, for our purposes, the following proposition can serve as a definition of the dimension fu
where the notion of range function occurs only implicitly.

Proposition 2.2. SupposeΦ ⊂ L2(Rn) is a (countable) family andΓ = PZ
n is a lattice. Then the

dimension function ofW = SΓ (Φ) is given by

dimΓ
W(ξ)= dimspan

{(
ϕ̂(ξ + η))

η∈Γ ∗ ∈ $2
(
Γ ∗): ϕ ∈Φ}

. (2.3)

Moreover, if the systemEΓ (Φ) is a tight frame with constant1 for the spaceW = SΓ (Φ) then

dimΓ
W(ξ)= |detP |−1

∑
ϕ∈Φ

∑
η∈Γ ∗

∣∣ϕ̂(ξ + η)∣∣2
. (2.4)

Proof. The proof of Proposition 2.2 in the caseΓ = Z
n can be found, for example, in [5, Proposition 3.

[7, Proposition 1.5, Theorem 2.5(ii)], and [16]. The general case follows by a change of variabl
also Lemma 2.3. Indeed, suppose thatEΓ (Φ) is a tight frame with constant 1 forW = SΓ (Φ), Γ = PZ

n.
ThenDPEΓ (Φ)=EZ

n

(DPΦ) is a tight frame forDPW which is SI with respect toZn. By (2.4) applied
for Z

n and Lemma 2.3,

dimΓ
W

((
P ∗)−1

ξ
) = dimZ

n

DPW
(ξ)=

∑
ϕ∈Φ

∑
η∈Zn

∣∣D̂Pϕ(ξ + η)∣∣2 = |detP |−1
∑
ϕ∈Φ

∑
η∈Zn

∣∣ϕ̂((
P ∗)−1

(ξ + η))∣∣2
= |detP |−1

∑
ϕ∈Φ

∑
η∈Γ ∗

∣∣ϕ̂((
P ∗)−1

ξ + η)∣∣2,
which shows (2.4) in the general case.✷
Lemma 2.3. SupposeW ⊂ L2(Rn) is SI with respect to the latticeΓ . LetC be anyn× n nonsingular
matrix. ThenDCW is SI with respect to the latticeC−1Γ and the following identity holds:

dimC−1Γ
DCW

(ξ)= dimΓ
W

((
C∗)−1

ξ
)

for a.e.ξ. (2.5)

Proof. SupposeΦ ⊂ L2(Rn) generatesW , i.e., SΓ (Φ) = W . Then DCΦ generatesDCW , i.e.,
SC

−1Γ (DCΦ)=DCW . By (2.3),
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dimC−1Γ
DCW

(ξ)= dimspan
{(
D̂cϕ(ξ + η))

η∈(C−1Γ )∗ ∈ $2
((
C−1Γ

)∗)
: ϕ ∈Φ}

= dimspan
{(
ϕ̂
((
C∗)−1

(ξ + η)))
η∈C∗Γ ∗ ∈ $2(C∗Γ ∗): ϕ ∈Φ}

= dimspan
{(
ϕ̂
((
C∗)−1

ξ + η))
η∈Γ ∗ ∈ $2

(
Γ ∗): ϕ ∈Φ}

= dimΓ
W

((
C∗)−1

ξ
)
,

since(C−1Γ )∗ = C∗Γ ∗. ✷
Lemma 2.4. SupposeW ⊂ L2(Rn) is SI with respect to the latticeΓ . LetΓ ′ ⊂ Γ be any sublattice ofΓ .
ThenW is SI with respect to the latticeΓ ′, and, moreover,

dimΓ ′
W (ξ)=

∑
d∈(Γ ′)∗/Γ ∗

dimΓ
W (ξ + d) for a.e.ξ, (2.6)

where the sum runs over representatives of distinct cosets of(Γ ′)∗/Γ ∗.

Proof. LetC be anyn× n matrix such thatΓ ′ = CΓ , Γ = PZ
n. It is well known that the orders of th

quotient groupsΓ/Γ ′ and(Γ ′)∗/Γ ∗ are the same and equal to|detC|. LetΦ ⊂ L2(Rn) be any family
whose translates byΓ generate a tight frameEΓ (Φ) with constant 1 forW = SΓ (Φ). Then

EΓ (Φ)=
⋃

d∈Γ/Γ ′
EΓ

′
(TdΦ)=EΓ

′
( ⋃
d∈Γ/Γ ′

TdΦ

)
,

and consequently by (2.4),

dimΓ ′
W (ξ)=

∣∣det(CP )
∣∣−1 ∑

ϕ∈⋃
d∈Γ/Γ ′ TdΦ

∑
η∈(Γ ′)∗

∣∣ϕ̂(ξ + η)∣∣2

= ∣∣detP
∣∣−1 ∑

ϕ∈Φ

∑
d∈(Γ ′)∗/Γ ∗

∑
η∈Γ ∗

∣∣ϕ̂(ξ + η+ d)∣∣2 =
∑

d∈(Γ ′)∗/Γ ∗
dimΓ

W(ξ + d). ✷

Lemma 2.5. SupposeU,V ⊂ L2(Rn) are SI with respect to the latticeΓ , and dimΓ
U(ξ), dimΓ

V (ξ) are
finite for a.e.ξ . ThenW =U + V is also SI with respect toΓ , and

dimΓ
W(ξ)= dimΓ

U(ξ)+ dimΓ
V (ξ)− dimΓ

U∩V (ξ) for a.e.ξ. (2.7)

Proof. The proof follows immediately from the range function interpretation of the dimension func
see Proposition 2.6.✷

Let T :L2(Rn)→ L2(Tn, $2(Zn)), whereT
n = [−1/2,1/2)n, be the isometric isomorphism given b

T f :Tn → $2
(
Z
n
)
, T f (ξ)= (

f̂ (ξ + k))
k∈Zn

. (2.8)

We recall that arange functionis a mapping

J :Tn → {
closed subspaces of$2

(
Z
n
)}
.

We also need the following fundamental description of SI spaces, see [5, Result 1.5], or [7, P
tion 1.5]. For simplicity, we state Proposition 2.6 for SI spaces with respect to the standard latticeZ

n.
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Proposition 2.6. A closed subspaceV ⊂ L2(Rn) is SI(with respect toZn) if and only if

V = {
f ∈ L2

(
R
n
)
: T f (ξ) ∈ J (ξ) for a.e.ξ ∈ T

n
}
,

whereJ is a measurable range function. The correspondence betweenV andJ is one-to-one under th
convention that the range functions are identified if they are equal a.e.

Furthermore, the dimension function ofV is given by

dimV (ξ)= dimZ
n

V (ξ)= dimJ (ξ) for a.e.ξ ∈ T
n.

3. GMRAs

In this section we recall already known results about Riesz wavelets and GMRAs, extend a r
de Boor, DeVore, and Ron mentioned in Section 1, and show our main result. We start by recal
notion of a GMRA, which has been studied by a number of authors [1–4,9,15].

Definition 3.1. LetA be ann×n integer expansive dilation matrix which is fixed throughout this sect
A generalized multiresolution analysis(GMRA) is a sequence of closed subspaces(Vj )j∈Z satisfying:

Vj ⊂ Vj+1, DAVj = Vj+1,⋃
j∈Z

Vj = L2
(
R
n
)
,

⋂
j∈Z

Vj = {0},

TkV0 = V0 for all k ∈ Z
n.

The spaceV0 is often called acore space.

Given a Riesz waveletΨ = {ψ1, . . . ,ψL} we define the sequence(Vj (Ψ ))j∈Z by

Vj = Vj(Ψ )= span
{
DAiTkψ : i < j, k ∈ Z

n, ψ ∈ Ψ }
. (3.1)

It is easy to see that the sequence(Vj )j∈Z satisfies all the properties of GMRA except possibly the
one, i.e., that the core spaceV0 is SI. In the case when(Vj(Ψ ))j∈Z forms a GMRA, we say thatΨ is
associatedwith a GMRA, orΨ generatesa GMRA.

It turns out that the core spaceV0 is SI if and only ifΨ is a biorthogonal wavelet, i.e., there exist
Riesz waveletΦ = {φ1, . . . , φL} such that〈

DAj Tkψ
l,DAj ′Tk′φ

l′ 〉 = δj,j ′δk,k′δl,l′ for all j, j ′ ∈ Z, k, k′ ∈ Z
n, l, l′ = 1, . . . ,L.

This was shown by Kim et al. [13] in one dimension and by Larson et al. [15] in higher dimension

Theorem 3.2. LetΨ = {ψ1, . . . ,ψL} be a Riesz wavelet. The following are equivalent:

(i) the sequence (Vj(Ψ ))j∈Z forms a GMRA,
(ii) Ψ is a biorthogonal wavelet,

(iii) there exists an orthonormal waveletΦ = {φ1, . . . , φL} which is associated with the same GMRA
Ψ , i.e.,V0(Φ)= V0(Ψ ).
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Conversely, Baggett et al. [1] have characterized those GMRAs that can be generated by orth
wavelets, and thus by Riesz wavelets by Theorem 3.2.

Theorem 3.3. Let (Vj)j∈Z be a GMRA. The following are equivalent:

(i) there exists an orthonormal waveletΨ = {ψ1, . . . ,ψL} which is associated with(Vj)j∈Z,
(ii) there exists a Riesz waveletΨ = {ψ1, . . . ,ψL} which is associated with(Vj)j∈Z,

(iii) the dimension functiondimV0(ξ) of the core spaceV0 is finite for a.e.ξ and it satisfies the consisten
equation∑

d∈D
dimV0

((
A∗)−1

(ξ + d)) = dimV0(ξ)+L, for a.e.ξ, (3.2)

whereD is the set of|detA| representatives of different cosets ofZ
n/A∗

Z
n.

Following Zalik [19] we can introduce the notion of wavelets obtained by a GMRA.

Definition 3.4. We say that a GMRA(Vj )j∈Z is admissibleof orderL, i.e., the core spaceV0 satisfies
the consistency equation (3.2). We say that a Riesz waveletΨ = {ψ1, . . . ,ψL} is obtainedby a GMRA
if there is an admissible GMRA(Vj )j∈Z of orderL such that

ψ1, . . . ,ψL ∈ V1. (3.3)

Clearly, every Riesz wavelet which is associated with a GMRA is also obtained by the same G
The converse to this, see Theorem 3.7, is much less obvious and requires hard work.

We start by generalizing Theorem 1.1 on the intersection of a nonstationary MRA to the case of
dilations and higher multiplicities.

Theorem 3.5. Suppose(Φj )j∈Z is a sequence of finite subsets ofL2(Rn) of cardinality� L, whereZ ⊂ Z

satisfiesinfj∈Z j = −∞. Let(Uj )j∈Z be the corresponding nonstationary(not necessarily nested)GMRA
given by

Uj = SA
−j

Z
n

(Φj)= span
{
TA−j kφ: φ ∈Φj, k ∈ Z

n
}
. (3.4)

ThenY = ⋂
j∈Z Uj is a linear subspace ofL2(Rn) of dimension� L.

To show Theorem 3.5 we need a lemma describing linear independence of a finite set of mea
functions in terms of their values on some dense subset ofR

n.

Lemma 3.6. SupposeD is a countable and dense subset ofR
n. Supposef1, . . . , fm :Rn → C are any

measurable functions. The following are equivalent:

(i) f1, . . . , fm are linearly dependent, i.e., there exist(c1, . . . , cm) ∈ C
m\{0} such that

m∑
l=1

clfl(x)= 0 for a.e.x ∈ R
n,
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(ii) for almost everyx ∈ R
n there exist(c1(x), . . . , cm(x)) ∈ C

m\{0} such that
m∑
l=1

cl(x)fl(x + d)= 0 for all d ∈D.

Proof. The implication (i)⇒ (ii) is trivial.
Suppose (ii) holds. Definef :Rn → C

m by f (x)= (f1(x), . . . , fm(x)). Following the terminology o
Helson [5,7,10], we define the “range function”J :Rn → {subspaces ofCm} by

J (x)= span
{
f (x + d): d ∈D}

.

Let P(x) denote the orthogonal projection ontoJ (x). It is clear thatJ (x) is measurable, i.e., for an
v,w ∈ C

m the scalar functionpv,w(x)= 〈P(x)v,w〉 is measurable. Clearly,

pv,w(x)= pv,w(x + d) for all d ∈D. (3.5)

Let x, y ∈ R
n be two Lebesgue points of the functionpv,w, wherev,w ∈ C

m. Recall that ifg ∈L1
loc(R

n)

then a pointx ∈ R
n is said to be aLebesgue pointof g if

lim
|B|→0, x∈B

1

|B|
∫
B

g(z)dz= g(x)

with the limit taken over ballsB. The Lebesgue Differentiation theorem asserts that almost every
x ∈ R

n is a Lebesgue point ofg ∈ L1
loc(R

n).
Let (Bi)i∈N be a sequence of balls such thatx ∈ Bi and |Bi| → 0 asi → ∞. By the density ofD

there exists a sequence(di)i∈N ⊂D such thaty − di ∈ Bi for all i ∈ N. By the Lebesgue Differentiatio
theorem and (3.5),

pv,w(x)= lim
i→∞

1

|Bi|
∫
Bi

pv,w(z)dz= lim
i→∞

1

|Bi|
∫
Bi

pv,w(z+ di)dz= pv,w(y).

Hence,pv,w(x)= const for a.e.x.
Sincev,w ∈ C

m are arbitraryJ (x)= const for a.e.x. By (ii), J (x) �= C
m for a.e.x, and hence ther

exists a hyperplaneH ⊂ C
m such thatJ (x) ⊂ H for a.e.x. Therefore,f (x) ∈ H for a.e.x, and (i)

holds. ✷
Proof of Theorem 3.5. Let f1, . . . , fm be arbitrary functions inY , wherem= L+ 1. It suffices to show
that f1, . . . , fm axe linearly dependent. Letj ∈ Z and letΦj = {φ1, . . . , φL}. As a consequence of [5
Theorem 1.7] and a change of variablesg ∈Uj if and only if

ĝ(ξ )=
L∑
l=1

τ l(ξ)φ̂l(ξ ) for all ξ ∈ R
n,

for some measurable and(A∗)jZn-periodic functionsτ 1, . . . , τL, i.e.,

τ l(ξ)= τ l
(
ξ + (

A∗)j k) for all k ∈ Z
n.

Therefore,

f̂k(ξ )=
L∑
τ lk(ξ)φ̂

l(ξ ) for k = 1, . . . ,m, (3.6)

l=1
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for some measurable and(A∗)jZn-periodic functionsτ lk(ξ). Let (c1(ξ), . . . , cm(ξ)) be a nonzero solutio
to the undetermined system of linear equations


c1(ξ)τ

1
1 (ξ)+ · · · + cm(ξ)τ 1

m(ξ)= 0,
· · ·
c1(ξ)τ

L
1 (ξ)+ · · · + cm(ξ)τLm(ξ)= 0.

(3.7)

By (3.6) and (3.7) we have
m∑
k=1

ck(ξ)f̂k(ξ)= 0

and by the periodicity ofτ lk(ξ),
m∑
k=1

ck(ξ)f̂k
(
ξ + (

A∗)j k) = 0 for all k ∈ Z
n. (3.8)

Let D = ⋃
j∈Z(A

∗)jZn. Since infj∈Z j = −∞, D is dense inRn. SinceA (and thusA∗) preserves the
latticeZ

n we can find universalc1(ξ), . . . , cm(ξ) yielding (3.8) for allj ∈Z. Therefore,
m∑
k=1

ck(ξ)f̂k(ξ + d)= 0 for all d ∈D.

By Lemma 3.6,f̂1, . . . , f̂m are linearly dependent which completes the proof of Theorem 3.5.✷
We are now ready to state our main result.

Theorem 3.7. SupposeΨ = {ψ1, . . . ,ψL} is a Riesz wavelet, and(Vj )j∈Z is an admissible GMRA o
orderL, i.e.,dimV0(ξ) <∞ for a.e.ξ and(3.2) holds. The following are equivalent:

(i) Ψ is obtained by the GMRA(Vj )j∈Z, i.e.,(3.3) holds,
(ii)

Wj + Vj = Vj+1 and Wj ∩ Vj = {0} for all j ∈ Z, (3.9)

where

Wj := span
{
DAj Tkψ : k ∈ Z

n, ψ ∈ Ψ }
, (3.10)

(iii) Ψ is associated with the GMRA(Vj)j∈Z, i.e.,

Vj(Ψ ) :=
∑
i<j

Wi = Vj for all j ∈ Z. (3.11)

The implications (iii)⇒ (ii) ⇒ (i) are trivial. It remains to show the difficult implication (i)⇒ (iii).
We will present two different proofs of this implication. The first proof works only for GMRAs of fin
height, i.e., those for which the dimension function of the core spaceV0 is essentially bounded, and us
Theorem 3.5. This is the most interesting situation, since it covers Riesz wavelets obtained by a
(also MRAs with higher than one multiplicities). However, the second proof works for general GM
of possibly infinite height.



M. Bownik / Appl. Comput. Harmon. Anal. 14 (2003) 181–194 189

ndeed,

ect
Proof of Theorem 3.7 for finite height GMRAs. SupposeΨ is obtained by the GMRA(Vj )j∈Z. For
j ∈ Z letWj be given by (3.10). SinceWj ⊂ Vj+1 for all j ∈ Z we have that∑

j<0

Wj ⊂ V0. (3.12)

Here,
∑

j<0Wj consists of all functionsf ∈ L2(Rn) which can be represented asf = ∑
j<0wj , where

the series converges unconditionally andwj ∈Wj .
To complete the proof of Theorem 3.7 it remains to show that we have the equality in (3.12). I

suppose that

V0(Ψ ) :=
∑
j<0

Wj = V0.

By applying the dilation operator

Vj(Ψ )=DAj
(
V0(Ψ )

) =DAj (V0)= Vj for all j ∈ Z.

Therefore, the sequence(Vj (Ψ ))j∈Z is exactly the same as the GMRA(Vj)j∈Z, and henceΨ is associated
with the GMRA(Vj )j∈Z.

To show the equality in (3.12), note thatWj is SI with respect to the latticeA−j
Z
n and its dimension

function

dimA−j
Z
n

Wj
(ξ)= L for a.e.ξ, (3.13)

sinceDAj (E
Z
n

(Ψ )) = EA
−j

Z
n

(DAjΨ ) forms a Riesz basis forWj . Define a nonstationary GMRA
(Uj )j�0 by

Uj = V0 �
( ∑
j�i<0

Wi

)
. (3.14)

Since
∑

j�i<0Wi is SI with respect toA−j
Z
n, hence its orthogonal complement is also SI with resp

to the same lattice, and thereforeUj = V0 ∩ (∑j�i<0Wi)
⊥ is also SI with respect toA−j

Z
n.

We claim that for allj � 0 the dimension function ofUj coincides with the dimension function ofVj ,
i.e.,

dimA−jZn
Uj

(ξ)= dimA−jZn
Vj

(ξ) for a.e.ξ. (3.15)

Indeed, (3.15) holds forj = 0. By induction hypothesis suppose that (3.15) holds for somej � 0. Then
we need to show (3.15) forj − 1. Since

(W−1 +W−2 + · · · +Wj)⊕Uj =V0 = (W−1 +W−2 + · · · +Wj +Wj−1)⊕Uj−1

= (W−1 +W−2 + · · · +Wj)+ (Wj−1 ⊕Uj−1),

and

(W−1 +W−2 + · · · +Wj)∩Uj = {0} = (W−1 +W−2 + · · · +Wj)∩ (Wj−1 ⊕Uj−1),

we conclude by Lemma 2.5 that the dimension functions ofUj andWj−1 ⊕Uj−1 are the same, i.e.,

dimA−j+1
Z
n

U (ξ)= dimA−j+1
Z
n

W ⊕U (ξ)= dimA−j+1
Z
n

W (ξ)+ dimA−j+1
Z
n

U (ξ)=L+ dimA−j+1
Z
n

U (ξ). (3.16)

j j−1 j−1 j−1 j−1 j−1
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Observe that the consistency equation (3.2) can be written by Lemmas 2.3 and 2.4,

dimZn

V1
(ξ)= dimZn

DA(V0)
(ξ )= dimAZn

V0

((
A∗)−1

ξ
)

=
∑

d∈(A∗)−1Zn/Zn

dimZ
n

V0

((
A∗)−1

ξ + d) = dimZ
n

V0
(ξ)+L.

Hence, forj ∈ Z by the above and Lemma 2.3,

dimA−j+1
Z
n

Vj

((
A∗)−1

ξ
) = dimA−j+1

Z
n

D
Aj
(V0)

((
A∗)−1

ξ
) = dimAZ

n

V0

((
A∗)−j−1

ξ
)

= dimZ
n

V0

((
A∗)−j

ξ
) +L= dimA−j

Z
n

Vj
(ξ)+L. (3.17)

On the other hand, by Lemma 2.4 and the induction hypothesis,

dimA−j+1
Z
n

Uj
(ξ)=

∑
d∈(A∗)j−1Zn/(A∗)jZn

dimA−j
Z
n

Uj
(ξ + d)

=
∑

d∈(A∗)j−1Zn/(A∗)jZn
dimA−j

Z
n

Vj
(ξ + d)= dimA−j+1

Z
n

Vj
(ξ). (3.18)

Combining (3.16)–(3.18), and Lemma 2.3,

dimA−j+1
Z
n

Uj−1
(ξ)= dimA−j+1

Z
n

Uj
(ξ)−L= dimA−j+1

Z
n

Vj
(ξ)−L

= dimA−j
Z
n

Vj

(
A∗ξ

) = dimA−j
Z
n

DAVj−1

(
A∗ξ

) = dimA−j+1
Z
n

Vj−1
(ξ),

we obtain (3.15) forj − 1. Therefore, by induction, (3.15) holds for allj � 0.
Suppose that our GMRA(Vj )j∈Z has a finite height̃L. Therefore,

dimA−j
Z
n

Vj
(ξ)= dimZ

n

V0

((
A∗)−j

ξ
)
� L̃ for a.e.ξ.

By (3.15) this implies for allj � 0, dimA−j
Z
n

Uj
(ξ) � L̃. This means that for eachj � 0 we can find

a generating setΦj of cardinality at mostL̃ such thatUj = SA
−j

Z
n

(Φj ), see [5, Theorem 3.5]. B
Theorem 3.5, this implies thatY = ⋂

j�0Uj is a linear subspace ofL2(Rn) of dimension� L̃. By (3.14),

Y = V0 �
(∑
j<0

Wj

)
, (3.19)

which represents a “defect” from the equality in (3.12). It remains to show that the defect spacY is
trivial, i.e.,Y = {0}.

This can be most easily seen by considering an auxiliary defect spaceỸ defined by

Ỹ = V0 ∩
(∑
j�0

Wj

)
. (3.20)

In other words,Ỹ is the unique complementary space of
∑

j<0Wj inside V0, which is, in addition,
contained in

∑
j�0Wj , i.e.,(∑

Wj

)
+ Ỹ = V0,

(∑
Wj

)
∩ Ỹ = {0}, and Ỹ ⊂

∑
Wj .
j<0 j<0 j�0
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The defect spacẽY must have the same dimension asY . Moreover, sinceV0 and
∑

j�0Wj are SI with

respect toZn, Ỹ is SI, too. Since the trivial space is the only finitely-dimensional SI space, the d
spaceỸ must be trivial, and consequently,∑

j<0

Wj = V0.

This completes the proof of Theorem 3.7 in the finite height case.✷
Proof of Theorem 3.7 for infinite height GMRAs. The proof follows along the lines of the argume
in the finite height case. As before, we could define a nonstationary GMRA(Uj)j�0, the defect spac
Y by (3.19), and the auxiliary SI defect spaceỸ by (3.20). The defect spacesY and Ỹ have the same
(possibly infinite) dimension. Even though, a priori,Y (and thusỸ ) may not be finite-dimensional, w
will see thatỸ has to be in a certain sense “arbitrarily small”, and thus trivial.

Note first that if(Vj )j∈Z is an admissible GMRA of orderL,∫
Tn

dimZ
n

V0
(ξ)dξ = L

|detA| − 1
, (3.21)

whereT
n is a fundamental domain, sayTn = [−1/2,1/2)n. Indeed, (3.21) follows from the fact that fo

any orthonormal wavelet̃Ψ = {ψ̃1, . . . , ψ̃L} associated with(Vj )j∈Z, we have

dimZ
n

V0
(ξ)=DΨ̃ (ξ) :=

∑
ψ∈Ψ̃

∞∑
j=1

∑
k∈Zn

∣∣ψ̂((
A∗)j (ξ + k))∣∣2

,

see [7,8,12,15,17].
Since for anyj < 0,

(W−1 +W−2 + · · · +Wj)+ Ỹ ⊂ V0 and (W−1 +W−2 + · · · +Wj)∩ Ỹ = {0},
therefore,

dimA−j
Z
n

Ỹ
(ξ )+

−1∑
i=j

dimA−j
Z
n

Wi
(ξ)� dimA−j

Z
n

V0
(ξ).

By Lemma 2.4 and (3.13), dimA
−j

Z
n

Wi
(ξ)= |detA|i−jL, and thus

dimA−j
Z
n

Ỹ
(ξ )� dimA−j

Z
n

V0
(ξ)−L |detA|−j − 1

|detA| − 1
.

Therefore, integrating the above over(A∗)j (Tn) we have∫
Tn

dimZ
n

Ỹ
(ξ )dξ �

∫
Tn

dimZ
n

V0
(ξ)dξ +L |detA|j − 1

|detA| − 1
, (3.22)

since for any SI spaceV (with respect toZn) andj � 0 we have∫
∗ j n

dimA−j
Z
n

V (ξ)dξ =
∫

∗ j n

∑
d∈(A∗)jZn/Zn

dimZ
n

V (ξ + d)dξ =
∫
Tn

dimZ
n

V (ξ)dξ.
(A ) (T ) (A ) (T )



192 M. Bownik / Appl. Comput. Harmon. Anal. 14 (2003) 181–194

eral

.,
ith

uffices

an

ee

[19,

ic
Therefore, by lettingj → −∞ in (3.22) we see that by (3.21),∫
Tn

dimZ
n

Ỹ
(ξ )dξ = 0,

and consequently the defect spaceỸ is trivial. This completes the proof of Theorem 3.7 in the gen
case. ✷

As an immediate corollary of Theorems 3.2 and 3.7 we have.

Corollary 3.8. Suppose a Riesz waveletΨ = {ψ1, . . . ,ψL},L= |detA|− 1, is obtained by an MRA, i.e
there is an MRA(Vj )j∈Z such thatψ1, . . . ,ψL ∈ V1. ThenΨ is a biorthogonal wavelet associated w
the same MRA(Vj )j∈Z.

Remarks. (i) The assumption in Theorem 3.7 that(Vj)j∈Z is an admissible GMRA of orderL can be
relaxed a bit, but not too much. Indeed, it follows from the second proof of Theorem 3.7 that it s
to assume (instead of admissibility) that a GMRA(Vj )j∈Z satisfies (3.21) or even less,∫

Tn

dimZn

V0
(ξ)dξ � L

|detA| − 1
. (3.23)

In that case, any of the conditions (i)–(iii) would imply that(Vj )j∈Z is an admissible GMRA of orderL.
Therefore, there are no Riesz waveletsΨ that are obtained by a GMRA of a strictly lower order th
the cardinality ofΨ . However, there are examples of Riesz waveletsΨ that are obtained by a GMRA
of a strictly higher order than the cardinality ofΨ , but which are not associated with a GMRA, s
Example 4.4. Therefore, the assumption of admissibility in Theorem 3.7 is necessary.

(ii) Corollary 3.8 can be combined with Zalik’s characterization of wavelets obtained by an MRA
Proposition 2.2] to yield several interesting results about such wavelets, see [14].

4. Examples

One could think that the implication (ii)⇒ (iii) in Theorem 3.7 is immediate and follows from bas
functional analysis. A slightly counterintuitive Example 4.1 shows that this is false.

Example 4.1. Let (ei)i∈Z be the standard orthonormal basis of$2(Z). Define the spaces(Vi)i∈Z and
(Wi)i∈Z by

Wi = span{ei}, Vi = span

{
. . . , ei−2, ei−1,

∑
j�i

cj ej

}
,

where 0< c < 1. Clearly,(Vi)i∈Z satisfies GMRA like properties, i.e.,

Vi ⊂ Vi+1, D(Vi)= Vi+1,
⋂
Vi = {0},

⋃
Vi = $2(Z),
i∈Z i∈Z
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whereD is a “dilation operator” (known otherwise as the shift operator) acting on the standard ba
D(ei)= ei+1. Moreover,

Vi +Wi = Vi+1, Vi ∩Wi = {0}, (4.1)

and the corresponding projections ofVi+1 onto Vi and Wi are uniformly bounded for alli ∈ Z.
Nevertheless,

V0 =
(⊕
i<0

Wi

)
⊕ Y, whereY = span

{∑
j�0

cj ej

}
, (4.2)

and the defect spaceY is nontrivial.

Example 4.1 can be easily transplanted to the setting of SI spaces using Proposition 2.6.

Example 4.2. Using the notation from Example 4.1, define the SI spacesṼi, W̃i , andỸ by

Ṽi =
{
f ∈ L2(R): T f (ξ) ∈ Vi for a.e.ξ ∈ [−1/2,1/2)

}
,

W̃i =
{
f ∈ L2(R): T f (ξ) ∈Wi for a.e.ξ ∈ [−1/2,1/2)

}
,

Ỹ = {
f ∈ L2(R): T f (ξ) ∈ Y for a.e.ξ ∈ [−1/2,1/2)

}
,

whereT f is given by (2.8). Clearly,(Ṽi)i∈Z satisfies GMRA like properties, i.e.,

Ṽi ⊂ Ṽi+1, D̃(Ṽi)⊂ Ṽi+1,
⋂
i∈Z

Ṽi = {0},
⋃
i∈Z

Ṽi = L2(R),

whereD̃ is a “dilation operator” mappinĝf (ξ) to f̂ (ξ − 1) in the Fourier domain. Hence,̃D is just, the
modulation operator given bỹDf (x)= e2πixf (x). It is then obvious that̃Vi andW̃i satisfy the analogue
of (4.1) and (4.2), where the defect spaceỸ is nontrivial.

Example 4.2 would be more satisfying if the “dilation operator”D̃ were the usual dyadic dilatio
operator. However, the author is unaware whether such construction is possible.

The following simple example shows that the assumption of the admissibility of a GMR
Theorem 3.7 is necessary, although it can be relaxed a bit by (3.23). In particular, Example 4.2
that the restriction on the number of wavelets being equal to the order of a GMRA is unavoidable

Example 4.3. Let (Vi)i∈Z be an MRA associated to the Haar waveletψ = 1[0,1/2) − 1[1/2,1), i.e.,

Vi =
{
f ∈ L2(R): f |[k2−i ,(k+1)2−i) is constant for allk ∈ Z

}
.

Define the “misnumbered” GMRA(V ′
i )i∈Z by V ′

i = Vi+1. Clearly, (V ′
i )i∈Z is an admissible GMRA o

order 2 in the sense of Definition 3.4. In fact,(V ′
i )i∈Z is an MRA of order 2, with1[0,1/2) and 1[1/2,1)

being two scaling functions ofV ′
0. Thenψ is obtained by(V ′

i )i∈Z, in the sense thatψ ∈ V ′
1, but it cannot

be associated with(V ′
i )i∈Z, since by Theorem 3.3,L would have to be 2. Naturally, in this example, t

Haar waveletψ can be replaced by any orthonormal dyadic wavelet inL2(R).

A more elaborated Example 4.4 gives an example of a Riesz waveletψ which cannot be obtained b
any admissible GMRA of order 1, but yet, it is obtained by some MRA of higher order.
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Example 4.4. Letψ be a discontinuous perturbation of the Haar function,

ψ = 1[0,1/2−ε) − 1[1/2+ε,1), where 0< ε < 1/2.

Zalik [19, Example 3.2] has shown that for sufficiently smallε > 0 (sayε = 1/32),ψ is a Riesz wavele
which is not obtained by an MRA. Let(Vi)i∈Z be the classical Haar MRA as in Example 4.3. Defi
the GMRA(V ′

i )i∈Z, by V ′
i = Vi+4 for i ∈ Z. Clearly,(V ′

i )i∈Z is an admissible GMRA of order 16; mo
precisely, an MRA of order 16. Moreover, the perturbed Haar waveletψ with ε = 1/32 is obtained by
the MRA (V ′

i )i∈Z (of order 16), that is,ψ ∈ V ′
1.

However,ψ cannot be obtained by any admissible GMRA of order 1. On the contrary, sup
otherwise. By Theorem 3.7,ψ must be associated with an admissible GMRA(V ′′

i )i∈Z order 1. Moreover
dimV ′′

0
(ξ) � 1 for a.e.ξ , since ψ̂(ξ) �= 0 for a.e.ξ . On the other hand,

∫ 1
0 dimV ′′

0
(ξ)dξ = 1, hence

dimV ′′
0
(ξ)= 1 for a.e.ξ , which means that(V ′′

i )i∈Z is an MRA. This is a contradiction with a fact due
Zalik thatψ is not obtained by an MRA.
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