
Existence of a Universal Cover

Richard Koch

February 26, 2006

1 The Theorem

Theorem 1 Suppose the topological space X is connected, locally pathwise connected, and
semi-locally simply connected. Then X has a universal cover C.

Remark: All nice spaces satisfy these hypotheses, so the essential point is that every
reasonable space has a universal cover.

Remark: The hypothesis that X be semi-locally simply connected is necessary. Indeed
if p ∈ X, find an evenly covered neighborhood U of p. We claim that every loop in U
starting at p is homotopic to a constant in X. Indeed find q ∈ C projecting to p and
let Uα ⊆ C be the neighborhood of q corresponding to U ⊆ X. We want to prove that
π(U , p) → π(X, p) is the zero map, but π : Uα → U is a homeomorphism so it suffices to
prove that π(Uα, q) → π(U , p) → π(X, p) is the zero map. This map can be written as
the composition π(Uα, q) → π(C, q) → π(X, p) and this map is zero because C is simply
connected.

2 Motivating the Proof

If we only know X, how can we get our hands on points of its univeral cover C?

Suppose we had a point c ∈ C over a point x ∈ X. We may as well assume that C has a
base point c0 over a base point x0 ∈ X. Choose a path γ : I → C starting at c0 and ending
at c. Then π ◦ γ will be a path in X starting at x0 and ending at x. But conversely, if we
had π ◦ γ in X, we could uniquely lift it to C and thus find c.

If we had two paths γ and τ in C from c0 to c, these paths would be homotopic with fixed
endpoints because C is simply connected, and therefore π ◦γ and π ◦ τ would be homotopic
in X. But conversely if π ◦ γ and π ◦ τ were homotopic in X, then γ and τ would end at
the same point of C by lifting the homotopy h : I × I → X to C.
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Putting all of this together, we discover that a point in C over x is uniquely determined by
a homotopy class of paths in X which begin at x0 and end at x.

Definition 1 Define an equivalence relation ∼ on paths in X which start at x0 by γ ∼ τ
if γ and τ end at the same point and are homotopic in X with fixed endpoints. Let

C = {γ : I → X | γ(0) = x0} / γ and τ are identified if γ ∼ τ

Define π : C → X by γ → γ(1).

3 A Topology on C

Next we want to define a topology on C. It suffices to define small open sets homeomorphic
under π to open sets in X, since the general open set will be a union of these.

Examine the picture below. In this picture, γ is a fixed path in X starting at x0 and ending
at x, and U is a path connected evenly covered open neighborhood of x in X. Also γ̃ is
the lift of γ and Ũ is the open set which projects homeomorphically to U and contains the
end of γ̃.

When if we construct a curve by following γ to its end and then continuing along a path
entirely in U , the lift of this path will follow γ̃ to its end and then remain entirely in Ũ . So
the end of the lift will belong to Ũ , which can be defined as lifts of appropriate paths.

In practice it is not necessary to restrict U to be path connected and evenly covered until
a later stage of the argument. So:
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Definition 2 Let γ : I → X be a path starting at x0 and let U be an open neighborhood
of the end of γ in X. Then < U , γ > is the set of points of C which can be represented by
paths of the form γ ? α where α is a path entirely in U starting at the end of γ.

Definition 3 A subset of C is said to be open if it is a union of sets of the form < U , γ > .

Theorem 2 This is a topology on C. Under this topology, π : C → X is continuous.

Proof: All of the axioms are trivial except the intersection action (why?). To prove that
the intersection of two arbitrary open sets is open, it suffices to prove that the intersection
of < U , γ > and < V, τ > is open (why?). To prove this, it suffices to prove that if the
equivalence class of σ is in < U , γ > ∩ < V, τ >, then there is an open neighborhood
W of the end of σ such that < W, σ > ⊆

(
< U , γ > ∩ < V, τ >

)
(why?). We

will show that W = U ∩ V has this property. By symmetry, it suffices to prove that
< U ∩ V, σ > ⊆ < U , γ >. Since < U ∩ V, σ > ⊆ < U , σ >, it suffices to prove

Lemma 1 If σ ∈< U , γ >, then < U , σ > ⊆ < U , γ >

Proof: By assumption the path σ is homotopic to γ ? α where α is a path entirely in U
starting at the end of γ. This homotopy fixes endpoints, and in particular σ and γ ? α end
at the same point.

A typical element of < U , σ > has a representative of the form σ ? β where β is a path
entirely in U starting at the end of σ. Then σ ?β is homotopic to (γ ?α)?β by a homotopy
which only moves γ ? α to σ and leaves β fixed. But (γ ? α) ? β is homotopic to γ ? (α ? β)
and α ? β is a path entirely in U . Hence γ ? (α ? β) represents an element of < U , γ > and
so σ ? β is in this set.

Completion of the proof of theorem 2: Finally, π : C → X is continuous, for if U is open in
X, then π−1(U) = ∪ < U , γ > over all paths γ which end in U .
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4 C → X is a Covering Space

To complete the proof of our main theorem, it suffices to show that C → X is a cover-
ing space, and that C is simply connected. The more difficult of these steps is the first
one.

Given x ∈ X, choose a semi-locally simply connected open neighborhood U of x. This exists
by hypothesis. Shrink U to a smaller neighborhood of x which is pathwise connected; this is
possible since X is locally pathwise connected. Notice that shrinking a semi-locally simply
connected set produces another such set. We will prove that U is evenly covered.

Separate the paths from x0 to x into homotopy equivalence classes and let {γi} be a
complete set of representatives. We will prove that the inverse image of U in C is the
union of the < U , γi >, that each of these sets is homeomorphic to U , and that they are
disjoint.

We’ll prove them disjoint first. Suppose p ∈
(

< U , γi > ∩ < U , γj >
)
. Suppose p is

represented by a path σ. Since p ∈< U , γi >, there is a path α entirely in U such that
σ ∼ γi ? α. Similarly there is a path β entirely in U such that σ ∼ γj ? β. Notice that α
and β begin and end at the same points.

4



Let β be β traced backward. Then σ ? β ∼ γi ? α ? β and σ ? β ∼ γj ? β ? β and so

γi ? α ? β ∼ γj ? β ? β

But β ? β is homotopic to a constant, and so the right side of this similarity is homotopic
to γj . Also α ? β is a loop at x and by hypothesis such loops are homotopic to constants in
X. So the left side of the above similarity is homotopic to γi. Thus γi ∼ γj , contradicting
the choice of the γi.

From here on everything is easy. We must prove < U , γi >→ U a homeomorphism. It is
onto because U is pathwise connected, so any u ∈ U is the end of a path α starting at x
and thus the image of an element γi ? α in < U , γi > . It is one-to-one, for if γi ? α and
γi ? β map to the same point, then α and β begin and end at the same point of U . Since
the loop α ? β is homotopic to a constant in X, α and β are homotopic in X with fixed
endpoints, and so γi ? α and γi ? β are homotopic paths and represent the same point of
C.

The map < U , γi >→ U is continuous because π : C → X is continuous. It is an open map,
and thus has continuous inverse, because every open set in C is a union of < U , τ > with
U pathwise connected (why?) and the image of such a < U , τ > is U .

5 C is Pathwise Connected

The final step of the proof is fun because it is hokus-pokus. You’ll need to sit in a closet
and see if you buy it.

We must prove that C is connected, and that every loop beginning and ending at c0 is
homotopic to a constant.

We’ll prove C pathwise connected. Let c ∈ C. Then c is an equivalence class of paths in X;
let γ : I → X be a representative of c. For each u ∈ I, consider the path γu from x0 to γ(u)
obtained by following the first part of γ to γ(u). We want this path to be parameterized
by [0, 1] so write

γu(t) = γ(ut) 0 ≤ t ≤ 1

Then each γu represents a point of C. We can then think of the entire collection of γu’s as
a path in C; this path assigns to u the point of C represented by the path γu. (Please think
about this slight of hand until you understand it; it is the central point of the arguments
which follow.) We call this new path γ̃ because it defines a lift of γ to C. So γ̃(u) is the
point of C represented by γu and thus by the portion of γ from x0 to γ(u).

Notice that γ0 is the path which is constantly x0; this path represents the base point
c0 ∈ C. Thus γ̃ is a path in C from c0 to the element c represented by γ. So C is pathwise
connected.
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6 C is Simply Connected

Now we prove C simply connected. Let γ̃ be a loop in C starting and ending at c0. Project
this loop to a path γ in X beginning and ending at x0. Then for each u ∈ [0, 1] we can
consider the first portion of the path γ from γ(0) to γ(u); earlier we called this path γu.
This path represents a point of C; as u varies we obtain a path in C. As before, this
path represents γ̃ and is thus another way to think about the curve γ̃ which started this
paragraph.

Said another way, γ̃(u) is a point in C and so represented by a curve; this curve is γu.

In particular, γ̃(1) = γ1 = γ. Since γ̃ is a closed curve, it ends at c0. So γ is one
representative for c0. But the path which is constantly x0 is another representative, so
these two paths must be homotopic. Thus γ is homotopic to a constant through closed
curves in X.

We already know that C → X is a covering space. On our midterm, we proved that
consequently π(C, c0) → π(X, x0) is one-to-one. Since γ̃ ∈ π(C, c0) maps to γ ∈ π(X, x0)
which is homotopically trivial, γ̃ must itself be homotopically trivial. QED.
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